高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白皮松EST-SSR分子标记的开发及应用

杨雄 杨宁 袁启华 赵贵娟 李国雷 贾黎明 陈仲

杨雄, 杨宁, 袁启华, 赵贵娟, 李国雷, 贾黎明, 陈仲. 白皮松EST-SSR分子标记的开发及应用[J]. 北京林业大学学报, 2021, 43(7): 1-11. doi: 10.12171/j.1000-1522.20210094
引用本文: 杨雄, 杨宁, 袁启华, 赵贵娟, 李国雷, 贾黎明, 陈仲. 白皮松EST-SSR分子标记的开发及应用[J]. 北京林业大学学报, 2021, 43(7): 1-11. doi: 10.12171/j.1000-1522.20210094
Yang Xiong, Yang Ning, Yuan Qihua, Zhao Guijuan, Li Guolei, Jia Liming, Chen Zhong. Development and application of EST-SSR molecular markers in Pinus bungeana[J]. Journal of Beijing Forestry University, 2021, 43(7): 1-11. doi: 10.12171/j.1000-1522.20210094
Citation: Yang Xiong, Yang Ning, Yuan Qihua, Zhao Guijuan, Li Guolei, Jia Liming, Chen Zhong. Development and application of EST-SSR molecular markers in Pinus bungeana[J]. Journal of Beijing Forestry University, 2021, 43(7): 1-11. doi: 10.12171/j.1000-1522.20210094

白皮松EST-SSR分子标记的开发及应用

doi: 10.12171/j.1000-1522.20210094
基金项目: 2018年北京市温泉苗圃优树种质资源圃建设项目(2018HXFWLXY008),北京市支持中央在京高校共建项目(2018GJ-03、2019GJ-03)
详细信息
    作者简介:

    杨雄,博士生。主要研究方向:分子标记辅助育种、植物体细胞胚再生。Email:Xiongyang@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    陈仲,讲师。主要研究方向:树木分子生物学、功能基因组学、森林遗传学。Email:zhongchen@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.243

Development and application of EST-SSR molecular markers in Pinus bungeana

  • 摘要:   目的  白皮松作为我国濒危的乡土树种,具有重要的经济和园林观赏价值,为进一步开发和利用白皮松种质资源,本研究基于EST-SSR标记对北京地区3个不同种源地的白皮松群体遗传多样性开展评价。  方法  以白皮松转录组数据为依据,对其微卫星位点进行筛选并设计合成了96对引物,并对北京温泉苗圃栽培收集的3个不同种源地(北京、山东、山西)的白皮松群体,共60个植株开展遗传多样性分析,对其群体内与群体间的遗传结构进行评价。  结果  96对引物中共筛选获得了5对多态性引物,其观察杂合度、期望杂合度、多态性信息含量和等位基因位点个数变化范围分别为0.203 ~ 0.433、0.211 ~ 0.530、0.187 ~ 0.484和2 ~ 5。3个白皮松样本群体中等位基因数量、有效等位基因数量、香农信息指数、观察杂合度和固定指数变化范围为2.400 ~ 3.000、1.516 ~ 1.761、0.484 ~ 0.606、0.295 ~ 0.362和−0.075 ~ 0.081,平均值分别为2.677、1.632、0.560、0.333和−0.007。遗传分化系数和基因流变化范围分别为0.021 6 ~ 0.115 3和1.399 6 ~ 11.340 0,平均值分别为0.090 2和2.521 2。AMOVA分析显示遗传变异主要来自于群体内,群体间差异较小,仅占据11%。  结论  本研究共获得了5对多态性的白皮松EST-SSR引物,可用于后续白皮松群体遗传多样性分析和分子标记辅助育种工作;北京温泉苗圃栽培收集的3个不同种源地的白皮松群体分析结果表明,当地现有收集的白皮松种源群体遗传相似度较高,在未来种质资源保存和苗木繁育工作中应考虑增加其他种源地的白皮松群体。

     

  • 图  1  白皮松不同类型的EST-SSR重复序列的分布频率

    Mono-. 单碱基重复基元;Di-. 二碱基重复基元;Tri-. 三碱基重复基元;Tetra-. 四碱基重复基元;Penta-. 五碱基重复基元;Hexa-. 六碱基重复基元。Mono-, one-base-repeat motif; Di-, two-base-repeat motif; Tri-, three-base-repeat motif; Tetra-, four-base-repeat motif; Penta-, five-base-repeat motif; Hexa-, six-base-repeat motif.

    Figure  1.  Distribution frequency of EST-SSR repeats in different types of P. bungeana

    图  2  白皮松96对EST-SSR引物预试验扩增情况

    Figure  2.  Pre-experimental amplification of 96 pairs of EST-SSR primers in P. bungeana

    图  3  5个微卫星位点在3个群体中的等位基因分布模式

    Na. 等位基因数量;Na freq. ≥5%. 基因分布频率大于等于5%的等位基因数量;Ne. 有效等位基因数量;. 香浓多样性指数;No. private alleles. 单个群体中特有的等位基因数量。Na, number of alleles; Na freq. ≥5%, number of alleles whose gene distribution frequency is greater than or equal to 5%; Ne, number of effective alleles; , Shannon’s diversity index; No. private alleles, number of alleles unique to a single population.

    Figure  3.  Allelic distribution patterns of five microsatellite loci in the three populations

    表  1  白皮松3个群体的地理位置及主要生态因子

    Table  1.   Geographical location and main ecological factors of three populations in Pinus bungeana

    林分代号
    Abbreviation of
    stand
    样本数量
    Sample size
    林分来源
    Stand source
    经度
    Longitude
    纬度
    Latitude
    海拔
    Altitude/m
    年降水量
    Annual
    precipitation/mm
    林分起源
    Stand origin
    SDTA 20 山东泰安 Taian, Shandong 116°17′E 36°07′N 61 600.0 天然林 Natural forest
    SXXY 20 山西孝义 Xiaoyi, Shanxi 111°48′E 37°12′N 950 493.0 天然林 Natural forest
    BJMS 20 北京蟒山 Mangshan, Beijing 116°16′E 40°15′N 330 631.0 人工林 Plantation
    下载: 导出CSV

    表  2  白皮松EST-SSR引物

    Table  2.   Primers used for EST-SSR analysis of P. bungeana

    引物编号 Primer No.前引物序列 Forward primer sequence后引物序列 Reverse primer sequence元件 Motif
    BPS-SSR-01 CATAACACAGCAGCAACCGG ACACTGCTGCAAAAATAACCCT A
    BPS-SSR-02 GCCGAAACGACCTTTCACAC CTAAAGCATAAACCGCCGCC AAAT
    BPS-SSR-03 TCCAAGAAAGCGCGTTCTCT TGTTATTTTATTAGCGCGGCCG GAG
    BPS-SSR-04 ACAAGGGGAGAGCAATGTGG GCCATTTCCAACAGCTTAGCA GA
    BPS-SSR-05 TGAGAAGAAGGCCGAGGAGA GCTTGAGCACCTTGAAGATGT AAG
    BPS-SSR-06 AGCCCTAGTCCGAGTCCAAT GAGGCCCAGGAGGAGAAAAC CTG
    BPS-SSR-07 TGCCAGAGACAATGCAGACA GGAAATACCTGTCGGCCACA TGA
    BPS-SSR-08 TCTGGTGTTGTGGATGCCTC ACGCTGCTGTTACTTCCGAA GAAAG
    BPS-SSR-09 CGGCCTCAACAACCTCTTCT TCCTCCGGCTGTTCGTAGTA CTCTC
    BPS-SSR-10 AGCCGAAATCAAAAGCGCAG GGGGACAACGCGGATGAA CCTGAC
    BPS-SSR-11 GGCGTGGTGGTGAATTGAAC GAGCTTGGGGGCAATCTTCT CTC
    BPS-SSR-12 TTCACCCCCTGCAGATTTCC GCAAGCCTCCCCTTCAGAAT ATTCA
    BPS-SSR-13 AAGGGCAAGAGTAAACGGGG GTTGGCGGCATTGCAGAATC GAGGAA
    BPS-SSR-14 CTGGGTGTTCCTACCAGCAG ACCCTCAGTTTGTCAGGGGA TGATAA
    BPS-SSR-15 TACAGTAGGAAGCAGTGCCA GAGGGAGTGGCGTTATCGAG GGCAAC
    BPS-SSR-16 CTGCAGATGAGGAGGCTGAC AGCAGCAACCTAGAGGCAAT GAA
    BPS-SSR-17 ACAGAAAGTGGGAGGAAGCG TCTCCTCTCCCCTCCTCTCA GAAGA
    BPS-SSR-18 CTCCTGGCCATCCCAAACAA AACTACGAAAGCTCCAGGCC GGTGAT
    BPS-SSR-19 CAGCTCAACTCGCATTACGC ACCACCTGTGTTTGGCAAGA GCA
    BPS-SSR-20 TGGGATTGTCCAAGAGCAGG TCACTCTGATTGTGACTGCGA CAATCC
    BPS-SSR-21 GGATGCAGAGGACGAGAGG TCGGATCTCCTCTTCCCCTG AGGGGA
    BPS-SSR-22 TGCTCCACAGACAGAAGCTG CCCCTAGCATTGTTGTACCTTC GAT
    BPS-SSR-23 CATTCTTGGGGGCTCTACCG TAAACGGCCTGACTCCAACC AT
    BPS-SSR-24 TCCAGGTGGCTTTGGTTCTC GCAGGTCACTGGTATCGACC T
    BPS-SSR-25 CACAGGGAGTGGCGGTATAC AGCATCGATTCCTCCACTGC GGCGAT
    BPS-SSR-26 GGTGACCCTTTGGAGAGGTC AAAATCGCCACCATTGCCAC CCACA
    BPS-SSR-27 TTGTGTGAGCAGCCAACAGA GGGGAGATCAATGACAACCCA TTCCTC
    BPS-SSR-28 TACCTCCATGGGGGTGTTGA GCTCTGGACTGGATGGTCAG CAGAG
    BPS-SSR-29 ATTGGGAGGGCGGAGAAAAG GGCGGCATTGACAATGAGAC GGCAGA
    BPS-SSR-30 GCTTATTCCCTGGGCATGGT CTGTGGCCAAGCATTGCTTC CAGCGA
    BPS-SSR-31 TCTCTCACGCGTTTTGCAGA AGAAGTGGTCCACTCCCGTA TGATG
    BPS-SSR-32 GCGATTGATCAGGATGCACC TGCTGAATTTTTGCAGCAGAGA AT
    BPS-SSR-33 TCGCTCGTACTTGCACCATT TCGGACTCAGGCCAGTACTT TCTTC
    BPS-SSR-34 TCAAAACGGCACTGGCATTG CCGATCAATGGCCATGGCTA TGGCTT
    BPS-SSR-35 TCCCTGCACAGCTGAAAACA AATGACAATGCTTTGGCCGG ACTGCG
    BPS-SSR-36 CTCTGTTCCGTCGGTGATCC GCTCTTCCAACTTGCGCTTC GGACAT
    BPS-SSR-37 TTTGGAGCAATGTTTCGGCG ACACTGCATCCCACTGTCTG ATAGAG
    BPS-SSR-38 ACTTCGTGAGCAGGTTGAGG AATTCCTCTGCTTCGGGTGC AAG
    BPS-SSR-39 TTACTGACAGGTCGCCTTCG TATATGGGTGGCTGCCTCTG ATGTCG
    BPS-SSR-40 ACCACGTCATCATCGTCGTC AAACTGAGGCAGAGGCTTCC GAGGCA
    BPS-SSR-41 ATTATGGGCGGTGGCAGAAA CCCCGTTCCTACCATCCAAT GAA
    BPS-SSR-42 GGAATCTCAGCGCTTCCTGT AAGCTCTCACAAACGTGGCA CAG
    BPS-SSR-43 CTGTCGAGCGAAGGTTACCC AGGTCCCTTGCCCATCTCTA GCAGTT
    BPS-SSR-44 GGGTGAGCTAGACCGTCAAA TATTGACGGCGGCCTTTCTT CTCTG
    BPS-SSR-45 CCGCGAAGACAGAGTATCCC AGCTGGGAAAAAGATCGCCA TAT
    BPS-SSR-46 GAAAATTGCCCCCGTCGAAG GCAAAGACGCTTCCAGCAAA GAGGAA
    BPS-SSR-47 GCCTTATCTTCTTCCTTGTGTGA CACATAGAAGAGGCGGCAGT TCT
    BPS-SSR-48 GGAAGGTTGCCAGGTGGTAA ACATCACAACGAAGGGACCC TGGAGA
    BPS-SSR-49 CTCGAGTCTCTCACCCTTGC CCGTGTTTGTCCACCAGACT AGCCGC
    BPS-SSR-50 ACGCCGGATTTCAACAGACT GGGGAGAACGGCGATTGTTA AACGCC
    BPS-SSR-51 AAGGGCTCCATGATGTCTGC ACGTGGGCATAGGCTTGAAA CTTCAC
    BPS-SSR-52 ATCTTTGTCCAGCGCTTCGA GGAAGCACGGGAATCAGACA CCTCT
    BPS-SSR-53 ATCAGTACAACGCTGCCCAG CTGCCCGGAGTCTGAGAATC CAG
    BPS-SSR-54 GTCTTTCGGTGTGGGCTGTA CCGTCACACGATCGTCCAAT TTGT
    BPS-SSR-55 TGCAGGGAGTGTCTACAGGA GAGAAACGTGAAGCCCCTCA GAC
    BPS-SSR-56 CCTTTGCTCTGTACGAGGGG TCAGTCGTTTCAGTCGCAGT GCACGG
    BPS-SSR-57 TGGGGGAAAAGCTAGATCCA CTTTGTGTTTGGCCTCCAGC AGAGGC
    BPS-SSR-58 TGAGGGCAATGTTACTCGCT AACAATCGCCGCTATCAGCT AGG
    BPS-SSR-59 AGGGGCCTCAGCTGATATCA AACAACAGCAACAGCAGCAG TGC
    BPS-SSR-60 CTATCAGGGGATTGTGGGGC TCTGCTGCTGGAGACGTAAC CGG
    BPS-SSR-61 TATTCGCCACTCTGCACGTT CCTCCATGGGGAAGGGAATG TTGCAG
    BPS-SSR-62 ATTGATCAGGCGAGGCAGAC GCAGGTTTTCGTTGTGGGTG GGGCGA
    BPS-SSR-63 ATCGAACCCGTAGTCTCCCA AAGTCAAGAAAGTGGCCGCT TGGGCT
    BPS-SSR-64 CCGCGGTTTTGATGTGAACC CCCTGTCCAGTTCGTTGTCA GACAAC
    BPS-SSR-65 GGCTAGCGAGTGGTGATTGT GAGTTGCTTCTCCTCCGCAT CCTGGC
    BPS-SSR-66 TTGCGAAGGAGGTCCATAGC GGGGTAGATGGAGAATGGCC AAAGGC
    BPS-SSR-67 GCTTCGTTGGTAAGGGCCTA AGTTCTTGCACTGCCCAACT GATGGA
    BPS-SSR-68 GCCTTGTAGTTTTGGCCTGC CTGCAGGATGGGGCTCTTTT AGA
    BPS-SSR-69 AAGTCCTCGGCTTCGCATTC GAGCCCAGTGCCTCAATCTT CTT
    BPS-SSR-70 CGGGCAACAGTCTGTTAGGT GCCTGAAACAGCCTCCTCAT ATGGGC
    BPS-SSR-71 TAAGAAGCCTGCGTGGACTG GCATATTTGAATGCCTTTCTGGG AT
    BPS-SSR-72 CTCACCCGACAACTACAACA TGAGGGCTCTTGTTGACAGT CCCCTG
    BPS-SSR-73 CGTACCAAGTGCGCCTCTAT TAGTGCCAACTCTGCGCTAC GAG
    BPS-SSR-74 ACTGGGGGCAACAATATCAGA GAGTGGTGGGTGTGGAAGAG AGTGA
    BPS-SSR-75 CCTGCAACTGGATGACGACT ACCGGCACACAGAAAAGCTA CCACGA
    BPS-SSR-76 GCAGTCCCCTCGCTATAACC TCAGAAACCCAGCGGTGTAC AAATAA
    BPS-SSR-77 GAAGTAGAAGCAGGCGGAGG ATAACGCTGCCAGTGCTTCT AGCAGA
    BPS-SSR-78 GCTGATCCTCTTGACTCCGG GGCAATGGTGAGAGTGTGGA TGACCC
    BPS-SSR-79 GCCTAGGCACTGGAATTCCT GGTGGGCATGACAGATGGAA TTCCTC
    BPS-SSR-80 TGAGCTTTCACAACACCCGA GGCCCAATTCTCCTCCTTCC TGAT
    BPS-SSR-81 CCTCAGCTCATCCTACAGCG TCTCTTCCAGTTCGACTTCCA AAGGTG
    BPS-SSR-82 ACGGGTCATTGCGCCATTAT CCACGCCAACATTGACCTTG ATGGCG
    BPS-SSR-83 TTGTTCAATCCCTCCACCGC GGAATCTTCCCGTCCTGCAA TTGTT
    BPS-SSR-84 GGCCCTATGAGTGCACTGTT ACAGCCCCTACTATTGCGAA CAGGG
    BPS-SSR-85 GGGGATTCTTCAATCTGTAACGC ACCCCACGTAACCCTTATGC GATCCT
    BPS-SSR-86 TAGATACTCCGGTGCCAACG ATTTCAGCAGCCCATCCGAG CAG
    BPS-SSR-87 AAGAAAATGGTGGGCCGGAT CTTCCTCCAGCTCCCCAAAG AGCAGT
    BPS-SSR-88 TCTACACGGTCCAAGCGATG TTCCCTTTCGATGACCTGCA GAGCAG
    BPS-SSR-89 TGTCGAGAAGGCTATTGCTGA TGACATCTGCAACGTCTCCT ATA
    BPS-SSR-90 GGAAGCTTTGCATGTGCCAA GCAACCAGCTCTTCCGACTT TTTCA
    BPS-SSR-91 ATGGACATGCGTTGTGGAGT CTGGATACACATGGCCTCCC AGAGTG
    BPS-SSR-92 CGAACGTCTCCGGATCGAAT AGGGGAAGGCATGATTGTGG TCCTCT
    BPS-SSR-93 TCCGCCTGAGTTCCAAGTTC ACGGTGATGAAGGGAAAACCA A
    BPS-SSR-94 GATCTTCAGAGAGCTCCGGC ACCACTGGAAACACTTCGCA AAT
    BPS-SSR-95 GAGCATCGTCCGAATGTGGA TTGCCCCTCCTCTTCTTCCT AGA
    BPS-SSR-96 AAGCTGCTGAATTGGGCTCT ACACATGATGACAGGGCAGG TCTTGT
    下载: 导出CSV

    表  3  PCR反应体系

    Table  3.   PCR reaction system μL

    类别
    Category
    预试验反应体系
    Pre-experiment
    reaction system
    SSR-PCR反应体系
    SSR-PCR reaction
    system
    2 × PCR MIX 10.0 10.0
    DNA模板 DNA template 2.0 2.0
    前引物 Forward prime 3.2 0.8
    后引物 Reverse prime 3.2 3.2
    M13引物 M13 primer 3.2
    ddH2O 1.6 0.8
    总计 Total 20.0 20.0
    下载: 导出CSV

    表  4  白皮松中25个微卫星位点的特征

    Table  4.   Characteristics of 25 microsatellite loci developed in P. bungeana

    引物编号
    Primer No.
    等位基因数
    Number of alleles (Na)
    元件
    Motif
    观察杂合度
    Observed
    heterozygosity (Ho)
    期望杂合度
    Expected
    heterozygosity (He)
    多态性信息含量
    Polymorphism information
    content (PIC)
    BPS-SSR-01 2 A 0.203 0.211 0.187
    BPS-SSR-09 4 CTCTC 0.364 0.530 0.484
    BPS-SSR-14 3 TGATAA 0.433 0.487 0.374
    BPS-SSR-52 5 CCTCT 0.417 0.423 0.361
    BPS-SSR-83 2 TTGTT 0.265 0.232 0.204
    BPS-SSR-62 2 GGGCGA 0.033 0.033 0.032
    BPS-SSR-96 2 TCTTGT 0.000 0.130 0.120
    BPS-SSR-04 1 GA
    BPS-SSR-08 1 GAAAG
    BPS-SSR-12 1 ATTCA
    BPS-SSR-16 1 GAA
    BPS-SSR-30 1 CAGCGA
    BPS-SSR-50 1 AACGCC
    BPS-SSR-54 1 TTGT
    BPS-SSR-63 1 TGGGCT
    BPS-SSR-64 1 GACAAC
    BPS-SSR-75 1 CCACGA
    BPS-SSR-79 1 TTCCTC
    BPS-SSR-82 1 ATGGCG
    BPS-SSR-90 1 TTTCA
    BPS-SSR-91 1 AGAGTG
    BPS-SSR-93 1 A
    BPS-SSR-95 1 AGA
    BPS-SSR-80 2 TGAT
    BPS-SSR-13 2 GAGGAA
    下载: 导出CSV

    表  5  3个白皮松群体遗传多样性参数

    Table  5.   Genetic diversity parameters of the three populations in P. bungeana

    群体
    Population
    Na有效等位基因数量
    Number of effective allele (Ne)
    香农多样性指数
    Shannon’s diversity index (I)
    Ho固定指数
    Fixation index (Fix)
    SDTA 2.400 1.516 0.484 0.295 −0.026
    SXXY 3.000 1.620 0.589 0.362 −0.075
    BJMS 2.600 1.761 0.606 0.343 0.081
    均值 Mean 2.667 1.632 0.560 0.333 −0.007
    下载: 导出CSV

    表  6  白皮松中不同SSR位点的F-统计量

    Table  6.   F-statistic of SSR locus in P. bungeana

    位点 Locus亚群内 Within subgroup (Fis)群体内 Within group (Fit)亚群间 Between subgroups (Fst)基因流 Gene flow (Nm)
    BPS-SSR-01 −0.021 4 0.028 6 0.048 9 4.859 4
    BPS-SSR-09 0.189 6 0.312 4 0.151 6 1.399 6
    BPS-SSR-14 0.082 9 0.102 7 0.021 6 11.340 0
    BPS-SSR-52 −0.123 6 0.006 0 0.115 3 1.918 1
    BPS-SSR-83 −0.257 6 −0.149 3 0.086 1 2.652 0
    均值 Mean 0.011 4 0.100 6 0.090 2 2.521 2
    下载: 导出CSV

    表  7  群体间遗传相似度GI(对角线之上)和遗传距离GD(对角线之下)

    Table  7.   Nei’s genetic identity (GI, above diagonal) and genetic distance (GD, below diagonal) among populations

    群体 PopulationSDTASXXYBJMS
    SDTA 0.935 5 0.905 9
    SXXY 0.066 7 0.934 7
    BJMS 0.098 8 0.067 5
    下载: 导出CSV

    表  8  3个白皮松群体方差分析结果

    Table  8.   ANOVA of the three populations in P. bungeana

    变异来源
    Source of variation
    自由度
    Degree of freedom (df)
    离差平方和
    Sum of squares (SS)
    方差成分
    Variance component
    变异所占百分比
    Percentage of variation/%
    群体间 Among populations 2 17.617 0.310 11
    群体内 Within population 57 148.450 2.604 89
    合计 Total 59 166.067 2.915 100
    下载: 导出CSV
  • [1] 彭重华, 薄楠林. 白皮松研究进展[J]. 中国农学通报, 2007, 23(11):174−178. doi: 10.3969/j.issn.1000-6850.2007.11.039

    Peng Z H, Bo N L. Research progress in Pinus bungeana[J]. Chinese Agricultural Science Bulletin, 2007, 23(11): 174−178. doi: 10.3969/j.issn.1000-6850.2007.11.039
    [2] 李斌, 顾万春. 白皮松分布特点与研究进展[J]. 林业科学研究, 2003, 16(2):225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017

    Li B, Gu W C. Distribution characteristics and research progress in Pinus bungeana[J]. Forest Research, 2003, 16(2): 225−232. doi: 10.3321/j.issn:1001-1498.2003.02.017
    [3] Cai Q, Li B, Lin F, et al. De novo sequencing and assembly analysis of transcriptome in Pinus bungeana Zucc. ex Endl[J]. Forests, 2018, 9(3): 156.
    [4] 李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2):181−188. doi: 10.3321/j.issn:1005-0094.2002.02.008

    Li B, Gu W C, Lu B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodiversity Science, 2002, 10(2): 181−188. doi: 10.3321/j.issn:1005-0094.2002.02.008
    [5] 王小平, 刘晶岚, 王九龄, 等. 白皮松种子及球果形态特征的地理变异[J]. 北京林业大学学报, 1998, 20(3):28−34.

    Wang X P, Liu J L, Wang J L, et al. Geographical variation of morphologic characteristics of Pinus bungeana seeds and cones[J]. Journal of Beijing Forestry University, 1998, 20(3): 28−34.
    [6] 李斌, 顾万春. 白皮松保育遗传学: 天然群体遗传多样性评价与保护策略[J]. 林业科学, 2005, 41(1):57−64. doi: 10.3321/j.issn:1001-7488.2005.01.011

    Li B, Gu W C. Conservation genetics of Pinus bungeana: evaluation and conservation of natural populations’ genetic diversity[J]. Scientia Silvae Sinicae, 2005, 41(1): 57−64. doi: 10.3321/j.issn:1001-7488.2005.01.011
    [7] 张雪霞. 基于SCoT标记的白皮松景观基因组学研究[D]. 郑州: 河南农业大学, 2019.

    Zhang X X. The landscape genomics studies of Pinus bungeana (Pinaceae) based on SCoT molecular markers[D]. Zhengzhou: Henan Agricultural University, 2019.
    [8] 刘芳. 基于核基因序列的白皮松谱系地理学研究[D]. 西安: 西北大学, 2011.

    Liu F. Phylogeography of Pinus bungeana based on nuclear genes[D]. Xi’an: Northwest University, 2011.
    [9] 赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传结构的地理变异分析[J]. 植物遗传资源学报, 2013, 14(3):395−401.

    Zhao H, Zheng Y Q, Li B, et al. Genetic structure analysis of natural populations of Pinus bungeana in different geographical regions[J]. Journal of Plant Genetic Resources, 2013, 14(3): 395−401.
    [10] 赵罕, 郑勇奇, 李斌, 等. 白皮松天然群体遗传多样性的EST-SSR分析[J]. 林业科学研究, 2014, 27(4):474−480.

    Zhao H, Zheng Y Q, Li B, et al. Genetic diversity analysis of Pinus bungeana natural populations with EST-SSR markers[J]. Forest Research, 2014, 27(4): 474−480.
    [11] 李斌, 孟庆阳, 李言达, 等. 白皮松种质资源鉴定与评价[J]. 湖南林业科技, 2016, 43(2):1−7. doi: 10.3969/j.issn.1003-5710.2016.02.001

    Li B, Meng Q Y, Li Y D, et al. Identification and evaluation of germplasm resources of Pinus bungeana[J]. Hunan Forestry Science Technology, 2016, 43(2): 1−7. doi: 10.3969/j.issn.1003-5710.2016.02.001
    [12] 李昕蔓, 金卓颖, 苏安然, 等. 白皮松EST-SSR序列分布特征及引物开发[J]. 林业与生态科学, 2019, 34(3):266−272.

    Li X M, Jin Z Y, Su A R, et al. EST-SSR sequnence distribution and primer development of Pinus bungeana[J]. Forestry and Ecological Sciences, 2019, 34(3): 266−272.
    [13] Kalia R K, Rai M K, Kalia S, et al. Microsatellite markers: an overview of the recent progress in plants[J]. Euphytica, 2011, 177(3): 309−334. doi: 10.1007/s10681-010-0286-9
    [14] Ellis J R, Burke J M. EST-SSRs as a resource for population genetic analyses[J]. Heredity, 2007, 99(2): 125−132. doi: 10.1038/sj.hdy.6801001
    [15] 张利达, 唐克轩. 植物EST-SSR标记开发及其应用[J]. 基因组学与应用生物学, 2010, 29(3):534−541.

    Zhang L D, Tang K X. Development of plant EST-SSR markers and its application[J]. Genomics and Applied Biology, 2010, 29(3): 534−541.
    [16] 李永强, 李宏伟, 高丽锋, 等. 基于表达序列标签的微卫星标记(EST-SSRs)研究进展[J]. 植物遗传资源学报, 2004, 5(1):91−95. doi: 10.3969/j.issn.1672-1810.2004.01.020

    Li Y Q, Li H W, Gao L F, et al. Prograss of simple sequence repeats derived from expressed sequence tags[J]. Journal of Plant Genetic Resources, 2004, 5(1): 91−95. doi: 10.3969/j.issn.1672-1810.2004.01.020
    [17] Jamali S H, Cockram J, Hickey L T. Insights into deployment of DNA markers in plant variety protection and registration[J]. Theoretical and Applied Genetics, 2019, 132(7): 1911−1929. doi: 10.1007/s00122-019-03348-7
    [18] Rungis D, Bérubé Y, Zhang J, et al. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags[J]. Theoretical and Applied Genetics, 2004, 109(6): 1283−1294. doi: 10.1007/s00122-004-1742-5
    [19] Bai T D, Xu L A, Xu M, et al. Characterization of masson pine (Pinus massoniana Lamb.) microsatellite DNA by 454 genome shotgun sequencing[J]. Tree Genetics & Genomes, 2014, 10(2): 429−437.
    [20] Xiang X Y, Zhang Z X, Wang Z G, et al. Transcriptome sequencing and development of EST-SSR markers in Pinus dabeshanensis, an endangered conifer endemic to China[J]. Molecular Breeding, 2015, 35(8): 1−10.
    [21] Echt C S, Saha S, Deemer D L, et al. Microsatellite DNA in genomic survey sequences and unigenes of loblolly pine[J]. Tree Genet Genomes, 2011, 7(4): 773−780.
    [22] Liu L, Zhang S J, Lian C L. De novo transcriptome sequencing analysis of cDNA library and large-scale unigene assembly in Japanese red pine (Pinus densiflora)[J]. International Journal of Molecular Sciences, 2015, 16(12): 29047−29059. doi: 10.3390/ijms161226139
    [23] Hulce D, Li X, Snyder-Leiby T, et al. Genemarker genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. Journal of Biomolecular Techniques Jbt, 2011, 22(Suppl.): S35.
    [24] Kalinowski S T. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2010, 16(5): 1099−1106.
    [25] Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537−2539. doi: 10.1093/bioinformatics/bts460
    [26] Duan D, Jia Y, Yang J, et al. Comparative transcriptome analysis of male and female conelets and development of microsatellite markers in Pinus bungeana, an endemic conifer in China[J]. Genes, 2017, 8(12): 363.
    [27] 周惠娟. 濒危植物白皮松遗传多样性及遗传结构研究[D]. 西安: 西北大学, 2013.

    Zhou H J. Genetic diversity and population structure of natural endangered forest tree Pinus bungeana in China[D]. Xi’an: Northwest University, 2013.
    [28] 杨一欣. 白皮松组植物的群体遗传学和物种形成研究[D]. 西安: 西北大学, 2016.

    Yang Y X. Population genetics and speciation of Sect. Parrya Mayr[D]. Xi’an: Northwest University, 2016.
    [29] 李为民, 李思锋, 黎斌. 利用SSR分子标记分析秦岭冷杉自然居群的遗传多样性[J]. 植物学报, 2012, 47(4):413−421.

    Li W M, Li S F, Li B. Genetic diversity in natural populations of Abies chensiensis based on nuclear simple sequence repeat markers[J]. Chinese Bulletin of Botany, 2012, 47(4): 413−421.
    [30] Tong Y W, Lewis B J, Zhou W M, et al. Genetic diversity and population structure of natural Pinus koraiensis populations[J]. Forests, 2019, 11(1): 39.
    [31] Xiang X Y, Zhang Z X, Duan R Y, et al. Genetic diversity and structure of Pinus dabeshanensis revealed by expressed sequence tag-simple sequence repeat (EST-SSR) markers[J]. Biochemical Systematics and Ecology, 2015, 61: 70−77. doi: 10.1016/j.bse.2015.06.001
  • 加载中
图(3) / 表(8)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  102
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-13
  • 修回日期:  2021-04-18
  • 网络出版日期:  2021-06-26
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回