Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于EEM-PARAFAC分析冻融作用对高寒泥炭湿地土壤溶解性有机质的影响

王鹏, 商帅帅, 郭璠, 邱景琮, 王鑫晴, 王诗淇, 王春梅

王鹏, 商帅帅, 郭璠, 邱景琮, 王鑫晴, 王诗淇, 王春梅. 基于EEM-PARAFAC分析冻融作用对高寒泥炭湿地土壤溶解性有机质的影响[J]. 北京林业大学学报, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
引用本文: 王鹏, 商帅帅, 郭璠, 邱景琮, 王鑫晴, 王诗淇, 王春梅. 基于EEM-PARAFAC分析冻融作用对高寒泥炭湿地土壤溶解性有机质的影响[J]. 北京林业大学学报, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
Citation: Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096

基于EEM-PARAFAC分析冻融作用对高寒泥炭湿地土壤溶解性有机质的影响

基金项目: 国家自然科学基金项目(41971024、41373069),北京林业大学大学生创新创业训练项目(S202010022338)
详细信息
    作者简介:

    王鹏。主要研究方向:土壤学。Email:upcwangpeng@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学环境科学与工程学院

    责任作者:

    王春梅,博士,副教授。主要研究方向:土壤学、生态学。Email:wangcm@bjfu.edu.cn 地址:同上

  • 中图分类号: S714;TU111.2+5

Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC

  • 摘要:
      目的  全球气候变暖加速了土壤冻融格局的改变,而冻融作用又对土壤溶解性有机质(DOM)产生深刻的影响。
      方法  以高寒泥炭湿地土壤为研究对象,采用室内模拟冻融的方式开展了两种冻融条件下(日冻融:−3 ℃/5 ℃,12 h/12 h,30次;深度冻融:−24 ℃/5 ℃,20 d/10 d,1次)的试验研究,基于紫外−可见吸收光谱(UV-vis)和三维荧光光谱结合平行因子(EEM-PARAFAC)分析探究土壤DOM数量和质量的变化。
      结果  (1)经过30 d培养后,两种冻融处理均显著提高了高寒泥炭湿地土壤溶解性有机碳(DOC)的含量,日冻融和深度冻融条件下土壤样品的DOC含量分别为183.26和187.06 mg/kg,相比于对照组分别增加了18.80%和21.26%(P < 0.05)。(2)不同冻融条件下的土壤DOM的紫外−可见吸收曲线线型差异较小,无明显特征吸收峰,且显示出吸光度随波长呈指数衰减的趋势,但经冻融处理的样品出现了明显的红移现象。(3)两种冻融处理均使得土壤DOM的腐殖化指数(HIX)值(从4.42增加至11.73和17.10)、254 nm处的单位比色皿光程下的紫外吸收值(SUVA254)(从1.35 mg/(L·cm)增加至1.37和1.40 mg/(L·cm))以及A253/A203值(0.38增加至0.40和0.43)增大,波长275 ~ 295 nm处光谱斜率系数减小(从13.34 μm−1减小至13.23和12.91 μm−1)。(4)EEM-PARAFAC鉴别出的荧光组分有类富里酸物质、类腐殖酸物质、溶解性微生物代谢产物和类蛋白物质,冻融改变了土壤DOM的组成以及各组分的贡献率。对照组土壤DOM组分C1、C2和C3的贡献率分别为37%、32%和31%;日冻融条件下,组分C1、C2和C3的贡献率分别为41%、34%和 25%;深度冻融条件下,组分C1、C2和C3的贡献率分别为44%、35%和 21%。
      结论  冻融改变了土壤DOM的数量和质量,表现为DOC含量的增加和腐殖化程度的提高。
    Abstract:
      Objective  Global warming has accelerated changes in soil freeze-thaw patterns, and it is important to clarify the effects of freeze-thaw on dissolved organic matter (DOM) in soils.
      Method  Experimental studies were conducted in alpine peat wetland soils under two freeze-thaw conditions (daily freeze-thaw: −3 ℃/5 ℃, 12 h/12 h, 30 times; deep freeze-thaw: −24 ℃/5 ℃, 20 d/10 d, 1 time) using simulated freeze-thaw methods. The changes in soil DOM quantity and quality were investigated based on ultraviolet-visible absorption spectroscopy (UV-vis) and three-dimensional fluorescence spectroscopy combined with parallel factor (EEM-PARAFAC) analysis.
      Result  (1) After 30 d of incubation, the soil dissolved organic carbon (DOC) content was significantly increased. The DOC content of soil samples under day freeze-thaw and deep freeze-thaw conditions was 183.26 and 187.06 mg/kg, respectively, which increased by 18.80% and 21.26% compared with control group (P < 0.05). (2) The UV-vis absorption curves of soil DOM under different freeze-thaw conditions showed little difference, with no obvious characteristic absorption peak, and the absorbance decreased exponentially with the wavelength, but the freeze-thaw samples showed obvious red shift phenomenon. (3) Both freeze-thaw treatments resulted in increased HIX (from 4.42 to 11.73 and 17.10), SUVA254 (from 1.35 mg/(L·cm) to 1.37 and 1.40 mg/(L·cm)) and A253/A203 values (from 0.38 to 0.40 and 0.43) and decreased spectral slope coefficient at wavelength of 275−295 (from 13.34 μm−1 to 13.23 and 12.91 μm−1) of soil DOM. (4) The fluorescent components identified by EEM-PARAFAC included fulvic acid-like substances, humic acid-like substances, soluble microbial metabolites and protein-like substances. Freeze-thaw changed the composition of soil DOM and the percentage of PARAFAC-derived components. The proportions of the three PARAFAC-derived components in the control group were 37%, 32% and 31%, in the daily freeze-thaw group were 41%, 34% and 25% and in the deep freeze-thaw group were 44%, 35% and 21%, respectively.
      Conclusion  Freeze-thaw changes the quantity and quality of DOM in soils, which is manifested in the increase of DOC content and the enhancement of humification degree.
  • 防浪林是种植于堤防迎水侧滩地上用于防浪护堤和抢险取材的专用林,既可以保持水土、调节气候、促进林业经济发展,又可以防浪消能、延长堤防寿命和减少堤防的维护费用,是堤防工程的重要组成部分[1-2]。目前我国各大江河堤岸的重要河段均种植了防浪林,且根据不同河段的实际情况,实施了不同的防浪林建设方案。物理模型实验是研究防浪林消浪机理的一个有效手段,对科学提出防浪林优化布局以及如何营造防浪林工程有重要理论指导意义和实用价值。目前已有很多学者进行了相关的物理实验研究。何飞等[3]在考虑植物根、茎、叶影响下设计水槽实验探究刚性植物的消浪特性,认为根、茎、叶均在不同程度上影响植物消浪特性。陈杰等[4]在研究刚性植物根、茎、叶对植物消波特性的影响中得出植物消波特性与植物淹没度有关,根、茎、叶的存在增加了植物拖曳力系数。陈杰等[5]还通过物理实验研究了规则波通过非淹没刚性植物波高的沿程变化,实验结果表明相比于矩形分布方式,三角形的分布方式消耗了更多的波能,消浪效果更明显。

    以上相关的物理实验研究主要是针对植被本身的特性以及排列方式对消浪效果的影响,缺乏对林带宽度、植被密度、滩地波高等因素的考虑,以及不规则波条件下植被对消浪效果的影响。

    本文以嫩江干流佰大街堤防为例,选取防浪林林带宽度、排列方式、密度、树型以及滩地波高作为影响因素,采用控制变量法,通过构建防浪林消浪物理模型研究其对消浪效果的影响,并提出合理的防浪林优化设计方案。

    嫩江干流佰大街堤防位于黑龙江省齐齐哈尔市泰来县境内,自汤池镇愚公堤经佰大街村至李地房子,堤防分为上、中、下3段,全长6.70 km。原佰大街堤上下段中间为高地相连,后因村民在高地附近修建民房,不断从高地取土,导致现有高地地面高程减少,最低处地面高程141.5 m,远低于此处河道50年一遇洪水位144 m,造成了防洪缺口。现状堤防属于扩建砂堤,筑堤土料比较松散,抗冲刷能力较弱,容易产生流土、管涌等现象。嫩江该河段高水位时,水面宽阔,堤前滩地现有防浪林1.0 km,多为5 ~ 8年生的杨树(Populus spp.)和少量柳树(Salix spp.)。预计规划新建防浪林10 km。该段堤防防洪标准目前仅为30 ~ 35年一遇。佰大街堤防如图1所示。

    图  1  佰大街堤防示意图
    Figure  1.  Schematic map of Baidajie Dike

    模型比尺的确定主要依据实验条件、波浪要素、造波机性能等因素,并综合考虑比尺效应带来的误差影响等。已有的物理模型实验研究中,王瑞雪[6]选择几何比尺1∶20,在长40 m× 宽0.5 m × 高0.8 m 的水槽中进行非刚性植物对波浪传播变形影响的实验研究;吉红香[7]选择几何比尺为1∶10,在长66 m × 宽1.0 m × 高1.6 m的水槽中研究滩地植物对波浪变形及消浪效果的影响。

    本实验是在不规则波浪水槽中进行。为了消除比尺效应,更好的模拟嫩江干流防浪林的消浪效果,依据实际条件下防浪林的植被生长能力、波浪要素以及现有实验设备条件,结合实验方案的设计,对比造波机实际可造波周期,依照周期比例确定模型几何比尺,并根据重力相似准则确定时间比尺,最终确定本模型采用的比尺为1∶10。其中比尺确定公式[8]如(1)所示。

    λ=lmlp,λt=λ1/2,λf=λ1/2λu=λ1/2,λF=λ3,λQ=λ5/2 (1)

    式中:λ为模型长度比尺;lp为原型长度;lm为模型长度;λt为时间比尺;λf为频率比尺;λu为速度比尺;λF为力比尺;λQ为流量比尺。

    关于植被消浪的物理模型实验设计方面,白玉川等[9]用裁减的桧柏(Sabina chinensis)枝模拟防浪林,研究了非破碎波条件下的防浪林消浪效果。胡嵋等[10]对于在堤岸上栽种植被消浪这一新的护岸工程,选取桧柏树枝作为防浪林的模型,择选出对消浪护岸具有主要影响的因素。王瑞雪[6]用PVC塑料圆管来模拟刚性植物树干进行波浪水槽物理模型实验。吴迪等[11]和曹海锦等[12]也分别利用聚乙烯仿真绿色植物模拟柔性植物进行柔性植物消浪及沿程阻流特性实验研究。通过不同的研究可以发现影响消浪效果的主要因素为防浪林林带宽度、排列方式、种植密度、林木高度等。

    针对不同的实际条件,物理模型的设计方案有一定的差异,需根据实际情况和需要来设计实验方案。本实验根据嫩江干流的实际条件及水文资料,推算佰大街堤防典型断面的多年一遇水位高程及波要素极值,对比分析不同条件下波浪沿程衰减的变化。由于防浪林消浪效果的影响因素较多,因而本模型实验采用控制单因素变量法,得出各因素对消浪效果的影响。本实验中设计的主要对比方案有:不同的防浪林林带宽度、不同的防浪林排列方式、不同的防浪林密度、不同树型的防浪林、以及不同的来波波高等的消浪实验方案。分析不同实验方案条件下的消浪效果,提出该段的防浪林优化布局方案。

    根据研究区实际防浪林植被的外形参数,包括树高、树干直径、树冠直径、树冠以下树干高度等,按照比尺计算模型树的外形参数,根据所需材料的尺寸对模型树进行修剪和黏合,植物树干采用圆形木棒模拟,植物树冠部分采用塑料仿真枝叶模拟,由此制作合适的模型树,如图2所示。

    图  2  人工模型树
    Figure  2.  Artificial model tree

    同时,为更好的定量分析防浪林消浪机理,定义q为防浪林植被消浪系数:

    q=(hh)/h (2)

    式中:h为无防浪林的波高,h为经过防浪林消波后的波高。

    佰大街断面50年一遇洪水条件下滩地平均水深为2.83 m,此时防浪林处于部分淹没状态。依据该断面多年一遇水位及波浪要素值的推算结果中50年一遇的波要素,得出该堤段波浪周期在2 ~ 4 s之间,平均波高在0.1 ~ 0.6 m之间。根据《海港水文规范》推算出相应的1/10大波(规则波)波高,Hs(不规则波)有效波高,分别进行了规则波和不规则波消浪效果的模拟实验,实验波要素分别为1/10波高1.16 m、有效波高0.91 m、平均波高0.57 m、平均周期3.01 m。此外,为进一步研究不同波要素条件下防浪林消浪效果的差异,选取了1.1倍和0.9倍50年一遇波高条件进行对比实验。

    本实验是在河海大学海岸工程实验大厅70 m长的不规则波浪水槽中进行,水槽宽1.0 m,高1.8 m,有效实验段宽1 m。水槽一端安装了推板式不规则生波机,通过电机系统控制推波板运动行程和频率[13]。数字波高仪采用YWS200-XX型,波高采集系统采用水工试验数据采集处理系统(DJ800型),精度为0.01 cm。所有量测信号均通过计算机采集、记录和分析,能模拟最大波高0.3 m、波周期0.5 ~ 5 s的不规则波,具备研究不规则波作用下的各种动力响应机制及波浪与建筑物相互作用关键技术和理论问题的能力。水槽底部铺设灰色混凝板,在灰塑料板上打孔用以固定植物模型。水槽左侧为造波机,波高传感器两个,分别布设在防浪林模型前后,采集波高的变化。最右侧为消波层,能够有效地吸收尾波的波能,避免波浪的反射对实验造成干扰(实验布置和实验实景图分别如图3图4所示)。

    图  3  实验布置
    Figure  3.  Experimental layout
    图  4  实验实景图
    Figure  4.  Experimental real scenery

    根据实验方案,进行了佰大街断面在不同排列方式(等边三角形、正方形及梅花形,如图5 ~ 7所示)条件下的消浪实验。由于模型比尺为1∶10,因此根据佰大街的种植现状,确定实验室条件下的防浪林植被密度为17株/m2,树干直径为0.7 cm,树干高度为16 cm,树冠直径为13 cm,树冠为高度8 cm。规则波和不规则波条件下的实验结果分别如图8图9所示。

    图  5  等边三角形排列布置图
    Figure  5.  Equilateral triangle arrangement layout
    图  7  梅花形排列布置图
    Figure  7.  Plum blossom arrangement layout
    图  8  不同排列方式规则波沿程消浪系数
    Figure  8.  Regular wave dissipation coefficient along the path of different arrangements
    图  9  不同排列方式不规则波沿程消浪系数
    Figure  9.  Irregular wave dissipation coefficient along the path of different arrangements
    图  6  正方形排列布置图
    Figure  6.  Square arrangement layout

    对比不同的防浪林排列方式下防浪林的消浪效果,可见在规则波条件下,当林带宽度在40 m以上时,等边三角形和梅花形排列的防浪林要明显优于正方形排列;在不规则波条件下,当林带宽度在40 m以上时,等边三角形和正方形排列的防浪林要明显优于梅花形排列。因此,等边三角形排列方式相对较优。这与陈杰等[5]通过物理实验研究规则波通过非淹没刚性植物波高的沿程变化中得出三角形分布方式消浪效果最明显的结论一致。对比相同防浪林林带宽度下的规则波和不规则的消浪效果,可以发现规则波条件下防浪林的消浪系数较大,但两者差距较小。而实际条件下的波浪为不规则波,因而不规则波的消浪系数更为接近实际条件。

    同时,还可以发现,不管是规则波还是不规则波条件下,随着林带宽度增加到30 m以后,防浪林的消浪系数对于林带宽度的敏感度降低,此时消浪效果提升空间很小。

    根据实验方案,进行了在不同密度的防浪林(实验室条件下8株/m2,17株/m2,27株/m2)条件下的消浪实验。其中实验室条件下树型为,树干直径0.7 cm,树干高度16 cm,树冠直径13 cm,树冠高度8 m。采用不规则波,实验结果如图10所示。

    图  10  不同密度不规则波沿程消浪系数
    Figure  10.  Irregular wave dissipation coefficient along the path of different densities

    对比不同密度的防浪林的消浪效果,可以发现,当防浪林林带宽度为10 m时,不同密度的防浪林消浪效果差别不大,均为8%左右;当防浪林林带宽度大于10 m时,防浪林的消浪效果随着密度的增加而增加,密度27株/m2比密度8株/m2的消浪系数大5%到10%。但过高的密度会影响防浪林树木的正常生长,而且种植成本较高。可见,当林带宽度为40 m,排列方式为等边三角形时,0.17株/m2(原型条件)是较为经济合理的植被密度方案。此时,当防浪林林带宽度进一步增大50 m时,防浪林的消浪系数仅增加3.04%。

    根据实地测量,选取了4种树型作为树干和树冠条件的组合,如表1所示,采用相对较优的等边三角形排列方式,实验室条件下防浪林密度为17株/m2。规则波和不规则波条件下的模型实验结果分别如图11图12所示。

    表  1  树型尺寸
    Table  1.  Tree size
    项目
    Item
    树型1
    Tree type 1
    树型2
    Tree type 2
    树型3
    Tree type 3
    树型4
    Tree type 4
    树干高度
    Trunk height/m
    0.260.260.260.16
    树干半径
    Trunk radius/m
    0.025 0.015 0.015 0.007
    树冠高度
    Crown height/m
    0.350.350.350.08
    树冠直径
    Crown radius/m
    0.250.250.170.13
    下载: 导出CSV 
    | 显示表格
    图  11  不同树型规则波沿程消浪系数
    Figure  11.  Regular wave dissipation coefficient along the path of different tree types
    图  12  不同树型不规则波沿程消浪系数
    Figure  12.  Irregularwave dissipation coefficient along the path of different tree types

    由以上结果可见,不同树型的消浪效果有着明显的差异。树型1(成年树)树干较粗,树冠较为茂密,茂密的根、茎、叶存在增加了植物拖曳力系数,因而消浪能力显著,规则波条件下,20 m宽的防浪林其消浪系数即达60%左右,50 m宽防浪林的消浪系数可达到80%以上。

    树型2相对树型1的差别为树干半径较小,由消浪实验结果可见,树干的粗细对消浪效果的影响较小。树型3的消浪系数要小于树型2。而树型4(幼树)的消浪效果明显小于树型1、树型2和树型3。可见,不同防浪林树型对同一断面条件下的消浪效果有着重要的影响,对比其消浪系数可知,树冠的消浪作用要明显强于树干,因而在防浪林方案设计时,需考虑采用树冠消浪为主的方法。

    根据实验方案,进行了在不同来波波高(1.1倍50年一遇波高、50年一遇波高、0.9倍50年一遇波高)条件下的消浪实验。采用相对较优的等边三角形排列方式,实验室条件下,树干直径0.7 cm,树干高度16 cm,树冠直径13 cm,树冠高度8 cm。规则波和不规则波条件下的模型实验结果分别如图13图14所示。

    图  13  不同波高规则波沿程消浪系数
    Figure  13.  Regular wave dissipation coefficient along the path of different wave heights
    图  14  不同波高不规则波沿程消浪系数
    Figure  14.  Irregular wave dissipation coefficient along the path of different wave heights

    图13图14可见,不同波高条件下的消浪效果有所差异,但差异较小,且不规则波的消浪系数变化更为稳定。波高越大,消浪效果越好。

    嫩江干流佰大街堤防段,在合理的防浪林树型条件下,等边三角形排列的防浪林要优于梅花形和正方形排列方式;密度的增加对防浪林消浪效果有着一定的提高,但过高的密度会影响防浪林树木的正常生长;不同树型对不同断面条件的消浪效果有着重要的影响,且树冠的消浪作用要明显强于树干。不同波高条件下的消浪效果有所差异,但差异较小,且不规则波的消浪系数变化更为稳定。

  • 图  1   不同冻融条件下土壤DOC含量

    CK代表对照组,FT1代表日冻融交替,FT2代表深度冻融交替。图中不同字母表示差异显著(P < 0.05)。下同。CK represents control group. FT1 represents day freeze-thaw alternation and FT2 represents deep freeze-thaw alternation. Different lowercase letters mean significantly different at P < 0.05 level. The same below.

    Figure  1.   Soil DOC contents under different freeze-thaw conditions

    图  2   不同冻融条件下土壤溶解性有机质样品紫外−可见吸收光谱

    Figure  2.   UV-vis spectra of soil dissolved oganic matter(DOM) samples under different freeze-thaw conditions

    图  3   基于EEM-PARAFAC的对照组土壤DOM 3组分三维荧光光谱图及荧光载荷

    C1、C2、C3分别为土壤DOM三维荧光光谱中的有机组分1、组分2和组分3。下同。C1, C2 and C3 are organic component 1, component 2 and component 3 in the three-dimensional fluorescence spectrum of soil. The same below.

    Figure  3.   EEMs and fluorescence loadings of three DOM components modeled by PARAFAC in the group of control

    图  4   基于EEM-PARAFAC的日冻融交替组土壤DOM 3组分三维荧光光谱图及其荧光载荷

    Figure  4.   EEMs and fluorescence loadings of three DOM components modeled by PARAFAC in the group of daily freeze-thaw alternation

    图  5   基于EEM-PARAFAC的深度冻融交替组土壤DOM 3组分的三维荧光光谱图及其荧光载荷

    Figure  5.   EEMs and fluorescence loadings of three DOM components modeled by PARAFAC in the group of deep freeze-thaw alternation

    图  6   基于EEM-PARAFAC的各处理下土壤DOM样品3组分的贡献率

    Figure  6.   Contribution rates of three components of soil DOM samples for treatments based on EEM-PARAFAC

    表  1   基于紫外−可见吸收光谱和三维荧光光谱计算得出的表征参数平均值(n = 3)

    Table  1   Average values of characterization parameters calculated by UV-vis and EEM spectral data (n = 3)

    处理
    Treatment
    光谱斜率系数
    Spectral slope coefficient
    (S)/μm−1
    比紫外吸收值
    Specific UV absorbance at 254 nm
    (SUVA254)/(mg·L−1·cm−1)
    吸光度比值
    Ratio of UV absorbance at 253
    and 203 nm (A253/A203)
    腐殖化指数
    Humification index (HIX)
    CK 13.34(0.21) 1.35(0.05) 0.38(0.04) 4.42(0.18)
    FT1 13.23(0.16) 1.37(0.07) 0.40(0.02) 11.73(0.23)
    FT2 12.91(0.11) 1.40(0.04) 0.43(0.03) 17.10(0.28)
    注: 括号中数值为标准偏差。Note: value in brackets is standard deviation.
    下载: 导出CSV
  • [1] 徐欢, 王芳芳, 李婷, 等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报, 2020, 40(10):3168−3182.

    Xu H, Wang F F, Li T, et al. A review of freezing-thawing cycle effects on key processes of soil nitrogen cycling and the underlying mechanisms[J]. Acta Ecologica Sinica, 2020, 40(10): 3168−3182.

    [2] 孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤, 2008, 40(4):505−509. doi: 10.3321/j.issn:0253-9829.2008.04.001

    Sun H, Qin J H, Wu Y. Freeze-thaw cycles and their impacts on ecological process: a review[J]. Soils, 2008, 40(4): 505−509. doi: 10.3321/j.issn:0253-9829.2008.04.001

    [3]

    Henry H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology & Biochemistry, 2007, 39(5): 977−986.

    [4]

    Kim E A, Lee H K, Choi J H. Effects of a controlled freeze-thaw event on dissolved and colloidal soil organic matter[J]. Environmental Science & Pollution Research International, 2016, 24(2): 1338−1346.

    [5] 薛爽, 王茜, 仇付国, 等. 冻融作用对土壤中溶解性有机物的光谱学特性的影响[J]. 环境科学学报, 2016, 36(5):1824−1832.

    Xue S, Wang Q, Qiu F G, et al. Effect of freezing-thawing on the spectroscopic characteristics of dissolved organic matter in soil[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1824−1832.

    [6] 孔玉华, 朱龙飞, 吴浩浩, 等. 冻融条件和土壤湿度对森林土壤渗漏液溶解性有机质含量与光谱结构特征的影响[J]. 应用生态学报, 2019, 30(9):2903−2914.

    Kong Y H, Zhu L F, Wu H H, et al. Effects of freeze-thaw and soil moisture on content and spectral structure properties of dissolved organic matter in forest soil leachates[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2903−2914.

    [7]

    Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review [J]. Soil Science, 2000, 165(4): 277−304.

    [8]

    Wang J J, Liu Y, Bowden R, et al. Long-term nitrogen addition alters the composition of soil-derived dissolved organic matter[J]. ACS Earth and Space Chemistry, 2020, 4(2): 189−201. doi: 10.1021/acsearthspacechem.9b00262

    [9]

    Yuan X C, Si Y T, Lin W S, et al. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation[J/OL]. PLoS One, 2018, 13(1): e0191403 [2020−12−10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191403.

    [10] 王茜. 冻融及融雪过程对土壤中溶解性有机物影响的研究[D]. 沈阳: 辽宁大学, 2016.

    Wang Q. Study on the effect of dissolved organic matter at freezeing-thawing and snow melting processes[D]. Shenyang: Liaoning University, 2016.

    [11]

    Haei M, Quist M G, Ilstedt U, et al. The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments[J]. Biogeochemistry, 2012, 107(1−3): 95−106. doi: 10.1007/s10533-010-9534-2

    [12]

    Fuss C B, Driscoll C T, Groffman P M, et al. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability[J]. Biogeochemistry, 2016, 131(1/2): 35−37.

    [13] 汪太明, 王业耀, 香宝, 等. 交替冻融对黑土可溶性有机质荧光特征的影响[J]. 光谱学与光谱分析, 2011, 31(8):2136−2140. doi: 10.3964/j.issn.1000-0593(2011)08-2136-05

    Wang T M, Wang Y Y, Xiang B, et al. Effect freezing and thawing cycles on fluorescence characterization of black soil dissolved organic matter[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2136−2140. doi: 10.3964/j.issn.1000-0593(2011)08-2136-05

    [14]

    Mitra S, Wassmann R, Vlek P L G. An appraisal of global wetland area and its organic carbon stock[J]. Current Science, 2005, 88(1): 25−35.

    [15] Mitsch W J, Gosselink J G. Wetlands[M]. 4th ed. Hoboken: John Wiley & Sons, 2007.
    [16] 谢秀风, 郗敏, 李悦, 等. 湿地溶解性有机质(DOM)源识别方法研究[J]. 地质论评, 2014, 60(5):1102−1108.

    Xie X F, Xi M, Li Y, et al. Research of the source identification methods for dissolved organic matter (DOM) in wetland[J]. Geological Review, 2014, 60(5): 1102−1108.

    [17] 邓昭衡. 外源氮输入和冻融对泥炭土温室气体排放的影响[D]. 北京: 北京林业大学, 2015.

    Deng Z H. Effects of exogenous nitrogen and freezing-thawing cycles on the greenhouse gas emissions in peat soils[D]. Beijing: Beijing Forestry University, 2015.

    [18]

    Cook S, Peacock M, Evans C D, et al. Quantifying tropical peatland dissolved organic carbon (DOC) using a UV-visible spectroscopy[J]. Water Research, 2017, 115: 229−235. doi: 10.1016/j.watres.2017.02.059

    [19]

    Zhao C, Gao S J, Zhou L, et al. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing[J]. Environmental Science and Pollution Research, 2019, 26(3): 2960−2973. doi: 10.1007/s11356-018-3860-7

    [20]

    Wu H H, Xu X K, Fu P Q, et al. Responses of soil WEOM quantity and quality to freeze-thaw and litter manipulation with contrasting soil water content: a laboratory experiment[J/OL]. Catena, 2021, 198: 105058[2021−10−20]. http://10.1016/j. catena. 2020.105058.

    [21]

    Santos P S, Santos E B, Duarte A C. First spectroscopic study on the structural features of dissolved organic matter isolated from rainwater in different seasons[J]. Science of the Total Environment, 2012, 426: 172−179. doi: 10.1016/j.scitotenv.2012.03.023

    [22]

    Santos P S, Otero M, Duarte R M, et al. Spectroscopic characterization of dissolved organic matter isolated from rainwater[J]. Chemosphere, 2009, 74(8): 1053−1061. doi: 10.1016/j.chemosphere.2008.10.061

    [23] 赵晨. 北京城区径流雨水中DOM表征及其与铜离子相互作用研究[D]. 北京: 北京建筑大学, 2016.

    Zhao C. Dissolved organic matter of storm water runoff in Beijing urban area: characterization and its interaction with copper ions[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016.

    [24]

    Green S A, Blough N V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters[J]. Limnology and Oceanography, 1994, 39(8): 1903−1916. doi: 10.4319/lo.1994.39.8.1903

    [25]

    Zhao C, Wang C C, Li J Q, et al. Dissolved organic matter in urban stormwater runoff at three typical regions in Beijing: chemical composition, structural characterization and source identification[J]. Royal Society of Chemistry Advances, 2015, 5(90): 73490−73500.

    [26]

    Pifer A D, Fairey J L. Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control[J]. Water Research, 2012, 46(9): 2927−2936.

    [27]

    Tan Y, Kilduff J E, Kitis M, et al. Dissolved organic matter removal and disinfection byproduct formation control using ion exchange[J]. Desalination, 2005, 176(1−3): 189−200. doi: 10.1016/j.desal.2004.10.019

    [28]

    Fuentes M, González-Gaitano G, García-Mina J M. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Organic Geochemistry, 2006, 37(12): 1949−1959.

    [29]

    Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6(11): 572−579.

    [30]

    Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706−719. doi: 10.1016/j.orggeochem.2009.03.002

    [31]

    Stedmon C A. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3−4): 239−254.

    [32]

    Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnology & Oceanography, 1981, 26(1): 43−53.

    [33]

    Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology & Oceanography, 2008, 53(3): 955−969.

    [34]

    Korshin G V, Benjamin M M, Sletten R S. Adsorption of natural organic matter (NOM) on iron oxide: effects on NOM composition and formation of organo-halide compounds during chlorination[J]. Water Research, 1997, 31(7): 1643−1650. doi: 10.1016/S0043-1354(97)00007-9

    [35]

    Zhao C, Wang Z H, Wang C C, et al. Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions[J]. Environmental Pollution, 2018, 243: 177−188. doi: 10.1016/j.envpol.2018.08.062

    [36] 高敏, 李艳霞, 张雪莲, 等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报, 2016, 35(12):2269−2274. doi: 10.11654/jaes.2016-1087

    Gao M, Li Y X, Zhang X L, et al. Influence of freeze-thaw process on soil physical, chemical and biological properties: a review[J]. Journal of Agro-Environment Science, 2016, 35(12): 2269−2274. doi: 10.11654/jaes.2016-1087

    [37] 刘淑霞, 王宇, 赵兰坡, 等. 冻融作用下黑土有机碳数量变化的研究[J]. 农业环境科学学报, 2008, 27(3):984−990. doi: 10.3321/j.issn:1672-2043.2008.03.027

    Liu S X, Wang Y, Zhao L P, et al. Effect of freezing and thawing on the content of organic carbon of black soil[J]. Journal of Agro-Environment Science, 2008, 27(3): 984−990. doi: 10.3321/j.issn:1672-2043.2008.03.027

    [38] 曹军, 陶澍. 土壤与沉积物中天然有机物释放过程的动力学研究[J]. 环境科学学报, 1999, 19(3):75−80.

    Cao J, Tao S. Release kinetics of organic carbon from soil and sediment[J]. Acta Scientiae Circumstantiae, 1999, 19(3): 75−80.

    [39]

    Slavik I, Muetter S, Mokosch R, et al. Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM)[J]. Water Research, 2012, 46(19): 6543−6553. doi: 10.1016/j.watres.2012.09.033

    [40]

    Mohanty S K, Saiers J E, Ryan J N. Colloid-facilitated mobilization of metals by freeze-thaw cycles[J]. Environmental Science & Technology, 2014, 48(2): 977−984.

    [41]

    Ishii S K L, Boyer T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006−2017.

    [42]

    Gruber D F, Simjouw J P, Seitzinger S P, et al. Dynamics and characterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental Predator-Prey System[J]. Applied and Environmental Microbiology, 2006, 72(6): 4184−4191. doi: 10.1128/AEM.02882-05

    [43]

    Koponen H T, Jaakkola T, Keinnen-Toivola M M, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology and Biochemistry, 2006, 38(7): 1861−1871. doi: 10.1016/j.soilbio.2005.12.010

    [44]

    De B W, Folman L B, Summerbell R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. Fems Microbiology Reviews, 2010, 29(4): 795−811.

图(6)  /  表(1)
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  364
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-14
  • 修回日期:  2021-04-11
  • 网络出版日期:  2021-11-05
  • 发布日期:  2021-11-29

目录

/

返回文章
返回