高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抚育间伐对云南松非结构性碳和化学计量特征的影响

王丽娜 吴俊文 董琼 石卓功 胡昊程 吴单子 李禄平

王丽娜, 吴俊文, 董琼, 石卓功, 胡昊程, 吴单子, 李禄平. 抚育间伐对云南松非结构性碳和化学计量特征的影响[J]. 北京林业大学学报, 2021, 43(8): 70-82. doi: 10.12171/j.1000-1522.20210115
引用本文: 王丽娜, 吴俊文, 董琼, 石卓功, 胡昊程, 吴单子, 李禄平. 抚育间伐对云南松非结构性碳和化学计量特征的影响[J]. 北京林业大学学报, 2021, 43(8): 70-82. doi: 10.12171/j.1000-1522.20210115
Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. doi: 10.12171/j.1000-1522.20210115
Citation: Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. doi: 10.12171/j.1000-1522.20210115

抚育间伐对云南松非结构性碳和化学计量特征的影响

doi: 10.12171/j.1000-1522.20210115
基金项目: “十三五”国家重点研发专项(2017YFD0601202),国家自然科学基金项目(31960306)
详细信息
    作者简介:

    王丽娜。主要研究方向:森林培育。Email:2367937610@qq.com 地址:650224云南省昆明市盘龙区西南林业大学林学院

    责任作者:

    吴俊文,博士,讲师。主要研究方向:森林培育、植物生理生态。Email:2569755639@qq.com 地址:同上

  • 中图分类号: S791.257

Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis

  • 摘要:   目的  探究抚育间伐对云南松各个器官非结构性碳(NSC),以及碳(C)、氮(N)、磷(P)化学计量学特征的影响机制。  方法  以云南省永仁县国有林场白马河林区云南松中龄林为研究对象,设置间伐(间伐强度为35.4%)与对照样地,分析抚育间伐对云南松非结构性碳和化学计量特征的影响。  结果  (1)抚育间伐显著影响云南松针叶和枝的NSC含量(P < 0.01),对根NSC含量则无显著影响。抚育后枝NSC含量增长9.30%,而针叶NSC含量减少3.57%。(2)抚育间伐对云南松枝C含量、针叶和干P含量有显著影响(P < 0.05),对针叶N含量有极显著影响(P < 0.01),但对根的C、N、P含量没有显著影响。抚育后云南松枝中C含量增加12.93%;针叶中N含量增长18.04%;叶和干中P含量分别降低了27.78%、55.56%。(3)云南松NSC、CNP化学计量学特征在各个器官之间表现出显著差异(P < 0.05)。相关性分析表明:针叶和根P含量与可溶性糖含量呈显著正相关(P < 0.05),而叶中C含量则和可溶性糖含量显著负相关(P < 0.05)。  结论  抚育间伐能促进云南松干、枝和根NSC含量以及各器官C含量的积累,降低叶NSC和各器官P含量,改变C、N、P在各器官中的分布格局;该地区云南松人工林生长在一定程度上受N限制,适当配施N肥将促进林分质量的提高。

     

  • 图  1  不同处理间云南松非结构性碳水化合物积累及分配

    不同大写字母表示抚育组不同器官间差异显著(P < 0.05),不同小写字母表示未抚育组不同器官间差异显著(P < 0.05)。下同。Different capital letters indicate significant differences among varied organs in the tending group (P < 0.05), and different lowercase letters indicate significant differences among varied organs in the control group (P < 0.05). Same as below.

    Figure  1.  Accumulation and distribution of non-structural carbohydrates in Pinus yunnanensis among different treatments

    图  2  不同处理间云南松碳氮磷及其计量比变化

    Figure  2.  Changes of C, N, P and their stoichiometric ratios of Pinus yunnanensis in different treatments

    表  1  永仁县国有林场白马河林区样地基本情况调查表

    Table  1.   Basic information survey of Yongren County Baima River Forest Farm

    样地编号
    Sample plot No.
    海拔
    Altitude/
    m
    坡位和坡向
    Slope position
    and slope aspect
    平均
    胸径
    Average BDH/cm
    平均
    树高
    Average
    tree
    height/m
    间伐前
    林木数
    Pre-thinning
    plant number
    采伐
    株数
    Felled
    tree number
    间伐后
    林木数
    Post-thinning
    plant number
    林分
    密度/
    (株·hm−2)
    Stand density/
    (tree ·ha−1)
    单株材积
    Individual volume/
    m3
    林分蓄积
    Stand volume/
    m3
    WFY-1 2 275 上坡位、西北330°、 半阴坡
    Uphill position,
    northwest 330°,
    semi-shady slope
    12.3 10.3 126 0 126 1 890 0.068 5 8.637 2
    WFY-3 2 216 中坡位、西北318°、 半阴坡
    Middle slope,
    northwest 318°,
    semi-shady slope
    15.2 12.6 95 0 95 1 425 0.120 7 11.470 4
    WFY-4 2 480 上坡位、正西269°、 半阳坡
    Uphill position,
    due west 269°,
    half-sunny slope
    14.8 11.1 118 0 118 1 770 0.104 1 12.288 4
    FY-2 2 360 上坡位、北偏东92°、 半阴坡
    Uphill position,
    north by east 92°,
    semi-shady slope
    16.5 12.9 102 36 66 990 0.144 3 9.523 2
    FY-5 2 530 上坡位、西北308°、 半阴坡
    Uphill position,
    northwest 308°,
    semi-shady slope
    16.3 10.0 85 30 55 825 0.116 2 6.392 3
    FY-6 2 438 上坡位、西北300°、 半阴坡
    Uphill position,
    northwest 300°,
    semi-shady slope
    18.8 14.0 95 33 62 930 0.198 1 12.281 7
    注:抚育样地间伐强度为总株数的35%,间伐木的选择按照留优去劣、间密留匀、兼顾株间距的原则确定,于2017年年初完成。对照样地不采取任何抚育措施。Notes: the thinning intensity of tending sample plots is 35% of the total number of plants. The selection of thinning is determined in accordance with the principles of keeping the best and eliminating the bad, keeping the density evenly and giving consideration to the spacing between plants, and we have completed at the beginning of year 2017. No measure was taken on the CK land.
    下载: 导出CSV

    表  2  样地林分调查表

    Table  2.   Survey of sample site stand

    样地编号
    Sample plot No.
    林木株数
    Plant number
    胸径 DBH/cm树高 Tree height/m材积 Volume/m3蓄积量
    Accumulation volume/m3
    平均值
    Average value
    平均增长量
    Average growth
    平均值
    Average value
    平均增长量
    Average growth
    平均值
    Average value
    平均增长量
    Average growth
    平均值
    Average value
    平均增长量
    Average growth
    WFY-112413.51.211.71.40.090 50.022 011.222 02.584 8
    WFY-39516.81.614.11.50.159 90.039 215.190 53.720 1
    WFY-411816.61.813.62.50.152 00.047 917.936 05.647 6
    FY-26618.92.414.92.00.209 80.065 513.846 84.323 6
    FY-55419.22.912.62.60.190 60.074 410.292 43.900 1
    FY-66220.01.215.81.80.245 00.046 915.190 02.908 3
    注:平均增长量是指与表1中指标相比。
    Note: the average growth index means compared with the indicators in Tab. 1.
    下载: 导出CSV

    表  3  抚育对不同器官非结构性碳水化合物含量影响的双因素方差分析(F值)

    Table  3.   Two-way ANOVA on the effects of tending on the content of non-structural carbohydrates indifferent organs (F value)

    因素
    Factor
    可溶性糖
    Soluble sugar
    淀粉
    Starch
    NSC
    抚育
    Tending
    0.096 13.610** 3.401
    器官
    Organ
    134.330** 73.269** 138.487**
    抚育 × 器官
    Tending × organ
    2.220 2.520 2.222
    注:** 表示 P < 0.01。下同。Notes: ** denotes P < 0.01. Same as below.
    下载: 导出CSV

    表  4  抚育对不同器官非结构性碳水化合物含量影响的独立样本t检验分析

    Table  4.   Independent sample t-test analysis of the effects of tending on the content of non-structural carbohydrates in different organs

    指标 Index叶 Needle干 Stem枝 Branch根 Root
    可溶性糖 Soluble sugar −6.890** 0.404 1.623 0.527
    淀粉 Starch 1.197 3.069** 4.507** 0.102
    NSC −2.674** 1.967 3.230** 0.407
    下载: 导出CSV

    表  5  抚育对不同器官C、N、P含量及其计量比的双因素方差分析(F值)

    Table  5.   Two-way ANOVA on the effects of tending on C, N, P contents and their stoichiometric ratios in different organs (F value)

    因素 FactorCNPC∶NC∶PN∶P
    抚育 Tending5.828*3.81711.902**1.34613.003**18.249**
    器官 Organ18.621**554.421**5.560**14.139**7.486**177.257**
    抚育 × 器官 Tending × organ1.3089.838**4.092**0.7923.061*10.077**
    注:*表示P < 0.05。下同。Notes: * denotes P < 0.05. Same as below.
    下载: 导出CSV

    表  6  抚育对不同器官C、N、P含量及其计量比的独立样本t检验分析

    Table  6.   Independent sample t-test analysis of the effects of tending on C, N, P contents and their stoichiometricratios in different organs

    指标 Indextt value
    叶 Needle干 Stem枝 Branch根 Root
    C1.5640.2462.370*0.454
    N3.835**−0.4890.040−1.482
    P−2.646*−4.167**−0.376−0.553
    C∶N−1.2490.7400.6220.979
    C∶P2.216*3.873**0.4331.155
    N∶P4.057**3.327**−0.153−0.141
    下载: 导出CSV

    表  7  云南松叶−干−枝−根C、N、P含量相关性

    Table  7.   Correlations of C, N and P contents in needle-stem-branch-root of Pinus yunnanensis

    指标
    Index
    叶C
    Needle C
    叶N
    Needle N
    叶P
    Needle P
    干C
    Stem C
    干N
    Stem N
    干P
    Stem P
    枝C
    Branch C
    枝N
    Branch N
    枝P
    Branch P
    根C
    Root C
    根N
    Root N
    根P
    Root P
    叶C Needle C 1
    叶N Needle N −0.99 1
    叶P Needle P −0.589* −0.341 1
    干C Stem C −0.258 0.315 −0.312 1
    干N Stem N −0.148 0.062 0.177 −0.101 1
    干P Stem P −0.408 −0.493* 0.501* 0.100 −0.001 1
    枝C Branch C 0.186 0.409 −0.124 0.129 0.165 −0.613** 1
    枝N Branch N 0.008 −0.182 0.148 −0.148 −0.343 0.038 −0.387 1
    枝P Branch P 0.086 −0.279 0.182 −0.064 −0.39 0.256 −0.289 0.537** 1
    根C Root C 0.231 −0.263 0.226 −0.308 0.050 −0.052 −0.012 0.395 0.423 1
    根N Root N −0.310 −0.031 0.247 0.173 0.654** 0.302 0.059 −0.282 −0.278 −0.077 1
    根P Root P −0.200 −0.090 0.049 0.107 −0.062 0.219 −0.409 0.222 0.411 0.270 −0.061 1
    下载: 导出CSV

    表  8  云南松叶、干、枝、根C∶N∶P相关性

    Table  8.   Correlations of C, N and P stoichiometry of needle-stem-branch-root of Pinus yunnanensis

    指标
    Index
    叶C∶N
    Needle
    C∶N
    叶C∶P
    Needle
    C∶P
    叶N∶P
    Needle
    N∶P
    干C∶N
    Stem
    C∶N
    干C∶P
    Stem
    C∶P
    干N∶P
    Stem
    N∶P
    枝C∶N
    Branch
    C∶N
    枝C∶P
    Branch
    C∶P
    枝N∶P
    Branch
    N∶P
    根C∶N
    Root
    C∶N
    根C∶P
    Root
    C∶P
    根N∶P
    Root
    N∶P
    叶C∶N
    Needle C∶N
    1
    叶C∶P
    Needle C∶P
    0.398 1
    叶N∶P
    Needle N∶P
    −0.280 0.753** 1
    干C∶N
    Stem C∶N
    −0.058 0.226 0.214 1
    干C∶P
    Stem C∶P
    −0.201 0.386 0.571* 0.168 1
    干N∶P
    Stem N∶P
    −0.210 0.298 0.516* −0.332 0.848** 1
    枝C∶N
    Branch C∶N
    −0.200 0.023 0.201 −0.172 0.118 0.232 1
    枝C∶P
    Branch C∶P
    −0.291 −0.029 0.269 −0.303 0.174 0.337 0.635** 1
    枝N∶P
    Branch N∶P
    −0.041 −0.064 0.071 −0.310 0.110 0.223 −0.078 0.671** 1
    根C∶N
    Root C∶N
    0.502* 0.388 0.041 0.246 0.166 0.060 −0.039 −0.273 −0.329 1
    根C∶P
    Root C∶P
    0.099 0.036 −0.020 −0.150 0.425 0.405 0.252 0.223 0.082 0.293 1
    根N∶P
    Root N∶P
    −0.281 −0.287 −0.090 −0.441 −0.052 0.120 0.368 0.473* 0.301 −0.570* 0.481* 1
    下载: 导出CSV

    表  9  云南松NSC构成与C、N、P及其计量比间相关系数

    Table  9.   Correlation coefficients among NSC composition, C, N, P and their stoichiometric ratios of Pinus yunnanensis

    器官 Organ指标 Index可溶性糖 Soluble sugar淀粉 StarchNSCCNPC∶NC∶PN∶P
    叶 Needle 可溶性糖 Soluble sugar 1
    淀粉 Starch −0.120 1
    NSC 0.684** 0.642** 1
    C −0.587* −0.110 −0.534* 1
    N −0.272 0.247 −0.029 −0.099 1
    P 0.561* −0.223 0.270 −0.589* −0.341 1
    C∶N −0.175 −0.236 −0.308 0.664** −0.801** −0.120 1
    C∶P −0.607* 0.134 −0.370 0.836** 0.149 −0.901** 0.398 1
    N∶P −0.546* 0.357 −0.160 0.393 0.721** −0.864** −0.280 0.753** 1
    干 Stem 可溶性糖 Soluble sugar 1
    淀粉 Starch 0.543** 1
    NSC 0.839** 0.913** 1
    C −0.179 −0.032 −0.108 1
    N 0.110 −0.016 0.043 −0.101 1
    P 0.175 −0.194 −0.041 0.100 −0.001 1
    C∶N −0.255 0.040 −0.098 0.370 −0.930** −0.008 1
    C∶P −0.225 0.100 −0.045 −0.015 −0.170 −0.858** 0.168 1
    N∶P 0.047 0.162 0.128 −0.176 0.298 0.819** −0.332 0.848** 1
    枝 Branch 可溶性糖 Soluble sugar 1
    淀粉 Starch 0.226 1
    NSC 0.903** 0.623** 1
    C −0.002 0.494* 0.216 1
    N 0.085 0.037 0.084 −0.387 1
    P 0.464 −0.009 0.369 −0.289 0.537* 1
    C∶N −0.102 0.129 −0.025 0.705** −0.911** −0.543* 1
    C∶P −0.454 0.074 −0.332 0.377 −0.591** −0.942** 0.635** 1
    N∶P −0.452 −0.067 −0.392 −0.127 0.081 −0.755** −0.078 0.671** 1
    根 Root 可溶性糖 Soluble sugar 1
    淀粉Starch 0.703** 1
    NSC 0.963** 0.868** 1
    C 0.241 0.226 0.253 1
    N 0.027 0.158 0.079 −0.077 1
    P 0.472* 0.211 0.409 0.270 −0.061 1
    C∶N −0.110 −0.238 −0.167 0.272 −0.762** −0.150 1
    C∶P −0.441 −0.110 −0.349 0.161 −0.038 −0.816** 0.293 1
    N∶P −0.153 0.180 −0.039 −0.175 0.769** −0.483* −0.570* 0.481* 1
    下载: 导出CSV
  • [1] Russell E S, Liu H P, Thistle H, et al. Effects of thinning a forest stand on sub-canopy turbulence[J]. Agricultural and Forest Meteorology, 2018, 248: 295−305. doi: 10.1016/j.agrformet.2017.10.019
    [2] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [3] 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片 C、N、P 化学计量和养分重吸收特征的影响[J]. 应用生态学报, 2013, 24(4):893−899.

    Guo Z W, Chen S L, Yang Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 893−899.
    [4] Yang Y, Liu B. Effects of planting Caragana shrubs on soil nutrients and stoichiometries in desert steppe of northwest China[J]. Catena, 2019, 183: 104213. doi: 10.1016/j.catena.2019.104213
    [5] 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34(21):6090−6100.

    Du Y, Han Y, Wang C K. The influence of drought on non-structural carbohydrates in the needle and twigs of Larix gmelinii[J]. Acta Ecologica Sinica, 2014, 34(21): 6090−6100.
    [6] 韩发, 贲桂英, 师生波. 青藏高原不同海拔矮嵩草抗逆性的比较研究[J]. 生态学报, 1998, 18(6):92−97.

    Han F, Ben G Y, Shi S B. Comparative study on the resistance of Kobresia humilis grown at different altitudes in Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica, 1998, 18(6): 92−97.
    [7] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34 (1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
    [8] 黄小波. 云南松天然次生林生态化学计量学研究[D]. 北京: 中国林业科学研究院, 2016.

    Huang X B. Stoichiometry of Pinus yunnanensis natural secondary forest[D]. Beijing: Chinese Academy of Forestry, 2016.
    [9] 王凯, 沈潮, 曹鹏, 等. 沙地樟子松幼苗干旱致死过程中非结构性碳水化合物的变化[J]. 应用生态学报, 2018, 29(11): 3513−3520.

    Wang K, Shen C, Cao P, et al. Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality[J]. Chinese Journal of Applied Ecology, 2018,29(11): 3513−3520.
    [10] 成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175−1180.

    Cheng X R, Yu M K, Ge L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1175−1180.
    [11] 刘莉, 蔡锰柯, 刘旭军, 等. 间伐对华北落叶松人工林叶、根及林下土壤C、N、P化学计量特征影响[J]. 东北林业大学学报, 2019, 47(8):1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001

    Liu L, Cai M K, Liu X J, et al. Effects of thinning on ecological stoichiometry C, N and P in leaves, roots and soil of Larix principis-rupprechtii plantation[J]. Journal of Northeast Forestry University, 2019, 47(8): 1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001
    [12] 邱勇斌, 凌高潮, 郑文华, 等. 间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响[J]. 林业科学研究, 2019, 32(4):64−69.

    Qiu Y B, Ling G C, Zheng W H, et al. Effects of thinning on contents and stoichiometry of C, N, and P in different components of Chinese fir plantation[J]. Forest Research, 2019, 32(4): 64−69.
    [13] 王晓荣, 雷蕾, 曾立雄, 等. 不同抚育间伐措施对马尾松林土壤活性有机碳的短期影响[J/OL]. 生态学杂志, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008.

    Wang X R, Lei L, Zeng L X, et al. Short-term effects of different tending thinning practices on soil labile organic carbon of Pinus massoniana stands[J]. Chinese Journal of Ecology, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008.
    [14] 郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4):1188−1196.

    Zheng Y P, Wang H X, Lou X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1188−1196.
    [15] 黄小波, 李帅锋, 苏建荣, 等. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25(11):42−51.

    Huang X B, Li S F, Su J R, et al. Relationship between species richness and ecosystem multifunctionality of natural secondary forest of Pinus yunnanensis[J]. Biodiversity Science, 2017, 25(11): 42−51.
    [16] 张育梅, 及利, 和春庭. 抚育间伐对云南松中幼林的影响[J]. 森林工程, 2017, 33(1):7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003

    Zhang Y M, Ji L, He C T. Effect of thinning on mid-young Pinus yunnanensis plantations[J]. Forest Engineering, 2017, 33(1): 7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003
    [17] 韩明跃, 李莲芳, 郑畹, 等. 间伐强度对云南松中龄低产林分结构的调整研究[J]. 中南林业科技大学学报, 2011, 31(2):27−33.

    Han M Y, Li L F, Zheng W, et al. Effects of different intensity of thinning on the improvement of middle-aged Yunnan pine stand[J]. Journal of Central South University of Forestry & Technology, 2011, 31(2): 27−33.
    [18] 杨剑辉, 欧弢, 陈金龙, 等. 不同间伐梯度下云南松幼林林分结构及林木生长变化[J]. 浙江林业科技, 2015, 35(6):54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010

    Yang J H, Ou T, Chen J L, et al. Stand structure and tree growth of young growth of Pinus yunnanensis under different thinning intensities[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(6): 54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010
    [19] 高成杰, 唐国勇, 刘方炎, 等. 林分结构调整对云南松次生林生长和土壤性质的影响[J]. 林业科学研究, 2017, 30(5):841−847.

    Gao C J, Tang G Y, Liu F Y, et al. Effects of stand structural adjustment on growth and soil properties of Pinus yunnanensis secondary forest[J]. Forest Research, 2017, 30(5): 841−847.
    [20] 王学奎, 黄见良. 植物生理生化实验原理和技术[M].3 版. 北京: 高等教育出版社, 2018.

    Wang X K, Huang J L. Principles and techniques of plant physiological and biochemical experiments [M]. 3rd ed. Beijing: Higher Education Press, 2018.
    [21] 鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
    [22] Chantuma P, Lacointe A, Kasemsap P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiology, 2009, 29: 1021−1031. doi: 10.1093/treephys/tpp043
    [23] 霍常富, 孙海龙, 王政权, 等. 光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响[J]. 林业科学, 2009, 45(7):38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007

    Huo C F, Sun H L, Wang Z Q, et al. Effects of light and nitrogen on growth, carbon and nitrogen metabolism of Fraxinus mandshurica seedlings[J]. Scientia Silvae Sinicae, 2009, 45(7): 38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007
    [24] 王子纯, 李耀翔, 孟永斌, 等. 抚育间伐对针阔混交天然次生林生物量及碳密度的影响[J]. 东北林业大学学报, 2021, 49(4):5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002

    Wang Z C, Li Y X, Meng Y B, et al. Effect of thinning on biomass and carbon density of mixed conifer and broadleaf secondary natural forest[J]. Journal of Northeast Forestry University, 2021, 49(4): 5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002
    [25] Michaels A F. The ratios of life[J]. Science, 2003, 300: 906−907. doi: 10.1126/science.1083140
    [26] 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010, 30(2):296−302.

    Wu W, He X D, Zhou Q X. Review on N∶P stoichiometry in ecosystem[J]. Journal of Desert Research, 2010, 30(2): 296−302.
    [27] Dey D C, Parker W C. Overstorey density affects field performance of underplanted red oak (Quercus rubra) in Ontario[J]. Northern Journal of Applied Forestry, 1997, 14(3): 120−125. doi: 10.1093/njaf/14.3.120
    [28] 方海波, 田大伦, 康文星, 等. 间伐后杉木人工林生态系统养分动态的研究[J]. 中南林学院学报, 1999, 19(2):15−22.

    Fang H B, Tian D L, Kang W X, et al. Nutrient dynamics of Cunninghamia lanceolata plantation forest ecosystems after thinning[J]. Journal of Central South University of Forestry & Technology, 1999, 19(2): 15−22.
    [29] 管惠文, 董希斌, 张甜, 等. 抚育间伐后落叶松天然次生林生境恢复效果的评价[J]. 东北林业大学学报, 2019, 47(7):6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002

    Guan H W, Dong X B, Zhang T, et al. Evaluation of ecological environment restoration of thinning intensity on larch natural secondary forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2019, 47(7): 6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002
    [30] Thompson K E N, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679−689. doi: 10.1046/j.1469-8137.1997.00787.x
    [31] 孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C∶N∶P计量特征对干旱的响应[J]. 干旱区地理, 2021, 44(1):240−249.

    Sun X M, He M Z, Zhou B, et al. Non-structural carbohydrates and C∶N∶P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography, 2021, 44(1): 240−249.
    [32] 熊静, 虞木奎, 成向荣, 等. 光照和氮磷供应比对木荷生长及化学计量特征的影响[J]. 生态学报, 2021, 41(6):2140−2150.

    Xiong J, Yu M K, Cheng X R, et al. Effects of light and N-P supply ratios on growth and stoichiometric of Schima superba[J]. Acta Ecologica Sinica, 2021, 41(6): 2140−2150.
    [33] Fife D N, Nambiar E K S, Saur E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment[J]. Tree Physiology, 2008, 28: 187−196. doi: 10.1093/treephys/28.2.187
    [34] Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121−130. doi: 10.1046/j.1365-2435.2003.00712.x
    [35] Koerselman W, Meuleman A F M. The vegetation N∶P ratios: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783
    [36] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [37] 崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松人工林碳氮磷分配格局及化学计量特征[J]. 生态环境学报, 2014, 23(2):188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002

    Cui N J, Liu X B, Zhang D J, et al. The Distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages[J]. Ecology and Environmental Sciences, 2014, 23(2): 188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002
    [38] Xiao L, Liu G B, Li P, et al. Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in Bothriochloa ischaemum than elevated CO2[J]. Plant Growth Regulation, 2017, 83(2): 325−334. doi: 10.1007/s10725-017-0298-8
    [39] 印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009, 45(3):519−527.

    Yin J J, Guo D L, He S Y, et al. Non-structural carbohydrate, N, and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519−527.
    [40] Lambers H, Chapin F, Pons T. Plant physiological ecology[M]. New York: Springer-Verlag, 1998.
    [41] 王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2):399−407.

    Wang K, Lei H, Xia Y, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 399−407.
    [42] 宋同清. 西南喀斯特植物与环境[M]. 北京: 科学出版社, 2014.

    Song T Q. Karst plants and environment in southwest China[M]. Beijing: Science Press, 2014.
    [43] 王淳, 冀盼盼, 刘璇, 等. 华北落叶松不同器官碳氮磷化学计量特征[J]. 干旱区资源与环境, 2020, 34(11):176−181.

    Wang C, Ji P P, Liu X, et al. Ecological C, N and P stoichiometry of the needle, twigs and fine roots in pure and mixed stands of Larix principis-rupprechtii[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 176−181.
    [44] 盘金文, 郭其强, 孙学广, 等. 不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J]. 植物营养与肥料学报, 2020, 26(4):746−756. doi: 10.11674/zwyf.19272

    Pan J W, Guo Q Q, Sun X G, et al. Contents and stoichiometric characteristics of C, N, P and K under different stand ages of Pinus massoninana plantations[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 746−756. doi: 10.11674/zwyf.19272
    [45] 贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126−135.

    He H L, Yang X C, Li D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Xianbei flower in east Qinghai-Tibet Plateau[J]. Chinese Journal of Plant Ecology, 2017, 41(1): 126−135.
    [46] 孙小妹, 何明珠, 杨睿哲. 白刺器官间非结构性碳水化合与C∶N∶P计量比的关联性[J]. 生态学报, 2021, 41(3):1−11.

    Sun X M, He M Z, Yang R Z. Correlation of non-structural carbohydrates with C∶N∶P stoichiometry among the organs of Nitraria tangutorum[J]. Acta Ecologica Sinica, 2021, 41(3): 1−11.
    [47] Theodorou M, Plaxton W. Metabolic adaptations of plant respiration to nutritional phosphate deprivation[J]. Plant Physiology, 1993, 101: 339−344. doi: 10.1104/pp.101.2.339
  • 加载中
图(2) / 表(9)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  105
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-05-26
  • 网络出版日期:  2021-07-10
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回