Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis
-
摘要:
目的 探究抚育间伐对云南松各个器官非结构性碳(NSC),以及碳(C)、氮(N)、磷(P)化学计量学特征的影响机制。 方法 以云南省永仁县国有林场白马河林区云南松中龄林为研究对象,设置间伐(间伐强度为35.4%)与对照样地,分析抚育间伐对云南松非结构性碳和化学计量特征的影响。 结果 (1)抚育间伐显著影响云南松针叶和枝的NSC含量(P < 0.01),对根NSC含量则无显著影响。抚育后枝NSC含量增长9.30%,而针叶NSC含量减少3.57%。(2)抚育间伐对云南松枝C含量、针叶和干P含量有显著影响(P < 0.05),对针叶N含量有极显著影响(P < 0.01),但对根的C、N、P含量没有显著影响。抚育后云南松枝中C含量增加12.93%;针叶中N含量增长18.04%;叶和干中P含量分别降低了27.78%、55.56%。(3)云南松NSC、CNP化学计量学特征在各个器官之间表现出显著差异(P < 0.05)。相关性分析表明:针叶和根P含量与可溶性糖含量呈显著正相关(P < 0.05),而叶中C含量则和可溶性糖含量显著负相关(P < 0.05)。 结论 抚育间伐能促进云南松干、枝和根NSC含量以及各器官C含量的积累,降低叶NSC和各器官P含量,改变C、N、P在各器官中的分布格局;该地区云南松人工林生长在一定程度上受N限制,适当配施N肥将促进林分质量的提高。 Abstract:Objective Our objective was to explore the mechanism of the effects of thinning on non-structural carbon (NSC), carbon (C), nitrogen (N) and phosphorus (P) stoichiometry of Pinus yunnanensis. Method The middle-aged P. yunnanensis forests were chosen in the Baima River forest area of Yongren County, Yunnan Province of southwestern China, and two experimental sample plots of thinning (thinning intensity of 35.4%) and control were set up to analyze the effects of thinning on NSC and CNP stoichiometric characteristics of P. yunnanensis forests. Result (1) Tending thinning significantly affected the NSC content of needles and branches of P. yunnanensis (P < 0.01), whereas no significant difference on roots was observed. In addition, the NSC content of branch increased by 9.30%, while the NSC content in needles decreased by 3.57%. (2) Thinning had a significant effect on C content of P. yunnanensis branch, P content in needles and stems (P < 0.05), and a highly significant effect on N content in needles (P < 0.01), however, no significant effect was observed on C, N and P content in roots. After thinning, the C content of P. yunnanensis branch increased by 12.93%; the N content in needles increased by 18.04%, and the P content in needles and stems decreased by 27.78% and 55.56%, respectively. (3) The NSC, CNP stoichiometric characteristics showed significant differences among P. yunnanensis organs (P < 0.05). Correlation analysis showed that the P content in needles and roots was significantly positively correlated with soluble sugar content (P < 0.05), while C content in needles was significantly negatively correlated with soluble sugar content (P < 0.05). Conclusion Thinning promots the accumulation of NSC content in stem, branch and root and C content in each organ, whereas needle NSC and P content decreased in each organ, furthermore, distribution pattern of C, N and P in each organ was affected; the growth of P. yunnanensis plantation in this area was limited by N to some extent, and appropriate application of N fertilizer will promote the improvement of stand quality. -
图 1 不同处理间云南松非结构性碳水化合物积累及分配
不同大写字母表示抚育组不同器官间差异显著(P < 0.05),不同小写字母表示未抚育组不同器官间差异显著(P < 0.05)。下同。Different capital letters indicate significant differences among varied organs in the tending group (P < 0.05), and different lowercase letters indicate significant differences among varied organs in the control group (P < 0.05). Same as below.
Figure 1. Accumulation and distribution of non-structural carbohydrates in Pinus yunnanensis among different treatments
表 1 永仁县国有林场白马河林区样地基本情况调查表
Table 1. Basic information survey of Yongren County Baima River Forest Farm
样地编号
Sample plot No.海拔
Altitude/
m坡位和坡向
Slope position
and slope aspect平均
胸径
Average BDH/cm平均
树高
Average
tree
height/m间伐前
林木数
Pre-thinning
plant number采伐
株数
Felled
tree number间伐后
林木数
Post-thinning
plant number林分
密度/
(株·hm−2)
Stand density/
(tree ·ha−1)单株材积
Individual volume/
m3林分蓄积
Stand volume/
m3WFY-1 2 275 上坡位、西北330°、 半阴坡
Uphill position,
northwest 330°,
semi-shady slope12.3 10.3 126 0 126 1 890 0.068 5 8.637 2 WFY-3 2 216 中坡位、西北318°、 半阴坡
Middle slope,
northwest 318°,
semi-shady slope15.2 12.6 95 0 95 1 425 0.120 7 11.470 4 WFY-4 2 480 上坡位、正西269°、 半阳坡
Uphill position,
due west 269°,
half-sunny slope14.8 11.1 118 0 118 1 770 0.104 1 12.288 4 FY-2 2 360 上坡位、北偏东92°、 半阴坡
Uphill position,
north by east 92°,
semi-shady slope16.5 12.9 102 36 66 990 0.144 3 9.523 2 FY-5 2 530 上坡位、西北308°、 半阴坡
Uphill position,
northwest 308°,
semi-shady slope16.3 10.0 85 30 55 825 0.116 2 6.392 3 FY-6 2 438 上坡位、西北300°、 半阴坡
Uphill position,
northwest 300°,
semi-shady slope18.8 14.0 95 33 62 930 0.198 1 12.281 7 注:抚育样地间伐强度为总株数的35%,间伐木的选择按照留优去劣、间密留匀、兼顾株间距的原则确定,于2017年年初完成。对照样地不采取任何抚育措施。Notes: the thinning intensity of tending sample plots is 35% of the total number of plants. The selection of thinning is determined in accordance with the principles of keeping the best and eliminating the bad, keeping the density evenly and giving consideration to the spacing between plants, and we have completed at the beginning of year 2017. No measure was taken on the CK land. 表 2 样地林分调查表
Table 2. Survey of sample site stand
样地编号
Sample plot No.林木株数
Plant number胸径 DBH/cm 树高 Tree height/m 材积 Volume/m3 蓄积量
Accumulation volume/m3平均值
Average value平均增长量
Average growth平均值
Average value平均增长量
Average growth平均值
Average value平均增长量
Average growth平均值
Average value平均增长量
Average growthWFY-1 124 13.5 1.2 11.7 1.4 0.090 5 0.022 0 11.222 0 2.584 8 WFY-3 95 16.8 1.6 14.1 1.5 0.159 9 0.039 2 15.190 5 3.720 1 WFY-4 118 16.6 1.8 13.6 2.5 0.152 0 0.047 9 17.936 0 5.647 6 FY-2 66 18.9 2.4 14.9 2.0 0.209 8 0.065 5 13.846 8 4.323 6 FY-5 54 19.2 2.9 12.6 2.6 0.190 6 0.074 4 10.292 4 3.900 1 FY-6 62 20.0 1.2 15.8 1.8 0.245 0 0.046 9 15.190 0 2.908 3 注:平均增长量是指与表1中指标相比。
Note: the average growth index means compared with the indicators in Tab. 1.表 3 抚育对不同器官非结构性碳水化合物含量影响的双因素方差分析(F值)
Table 3. Two-way ANOVA on the effects of tending on the content of non-structural carbohydrates indifferent organs (F value)
因素
Factor可溶性糖
Soluble sugar淀粉
StarchNSC 抚育
Tending0.096 13.610** 3.401 器官
Organ134.330** 73.269** 138.487** 抚育 × 器官
Tending × organ2.220 2.520 2.222 注:** 表示 P < 0.01。下同。Notes: ** denotes P < 0.01. Same as below. 表 4 抚育对不同器官非结构性碳水化合物含量影响的独立样本t检验分析
Table 4. Independent sample t-test analysis of the effects of tending on the content of non-structural carbohydrates in different organs
指标 Index 叶 Needle 干 Stem 枝 Branch 根 Root 可溶性糖 Soluble sugar −6.890** 0.404 1.623 0.527 淀粉 Starch 1.197 3.069** 4.507** 0.102 NSC −2.674** 1.967 3.230** 0.407 表 5 抚育对不同器官C、N、P含量及其计量比的双因素方差分析(F值)
Table 5. Two-way ANOVA on the effects of tending on C, N, P contents and their stoichiometric ratios in different organs (F value)
因素 Factor C N P C∶N C∶P N∶P 抚育 Tending 5.828* 3.817 11.902** 1.346 13.003** 18.249** 器官 Organ 18.621** 554.421** 5.560** 14.139** 7.486** 177.257** 抚育 × 器官 Tending × organ 1.308 9.838** 4.092** 0.792 3.061* 10.077** 注:*表示P < 0.05。下同。Notes: * denotes P < 0.05. Same as below. 表 6 抚育对不同器官C、N、P含量及其计量比的独立样本t检验分析
Table 6. Independent sample t-test analysis of the effects of tending on C, N, P contents and their stoichiometricratios in different organs
指标 Index t值 t value 叶 Needle 干 Stem 枝 Branch 根 Root C 1.564 0.246 2.370* 0.454 N 3.835** −0.489 0.040 −1.482 P −2.646* −4.167** −0.376 −0.553 C∶N −1.249 0.740 0.622 0.979 C∶P 2.216* 3.873** 0.433 1.155 N∶P 4.057** 3.327** −0.153 −0.141 表 7 云南松叶−干−枝−根C、N、P含量相关性
Table 7. Correlations of C, N and P contents in needle-stem-branch-root of Pinus yunnanensis
指标
Index叶C
Needle C叶N
Needle N叶P
Needle P干C
Stem C干N
Stem N干P
Stem P枝C
Branch C枝N
Branch N枝P
Branch P根C
Root C根N
Root N根P
Root P叶C Needle C 1 叶N Needle N −0.99 1 叶P Needle P −0.589* −0.341 1 干C Stem C −0.258 0.315 −0.312 1 干N Stem N −0.148 0.062 0.177 −0.101 1 干P Stem P −0.408 −0.493* 0.501* 0.100 −0.001 1 枝C Branch C 0.186 0.409 −0.124 0.129 0.165 −0.613** 1 枝N Branch N 0.008 −0.182 0.148 −0.148 −0.343 0.038 −0.387 1 枝P Branch P 0.086 −0.279 0.182 −0.064 −0.39 0.256 −0.289 0.537** 1 根C Root C 0.231 −0.263 0.226 −0.308 0.050 −0.052 −0.012 0.395 0.423 1 根N Root N −0.310 −0.031 0.247 0.173 0.654** 0.302 0.059 −0.282 −0.278 −0.077 1 根P Root P −0.200 −0.090 0.049 0.107 −0.062 0.219 −0.409 0.222 0.411 0.270 −0.061 1 表 8 云南松叶、干、枝、根C∶N∶P相关性
Table 8. Correlations of C, N and P stoichiometry of needle-stem-branch-root of Pinus yunnanensis
指标
Index叶C∶N
Needle
C∶N叶C∶P
Needle
C∶P叶N∶P
Needle
N∶P干C∶N
Stem
C∶N干C∶P
Stem
C∶P干N∶P
Stem
N∶P枝C∶N
Branch
C∶N枝C∶P
Branch
C∶P枝N∶P
Branch
N∶P根C∶N
Root
C∶N根C∶P
Root
C∶P根N∶P
Root
N∶P叶C∶N
Needle C∶N1 叶C∶P
Needle C∶P0.398 1 叶N∶P
Needle N∶P−0.280 0.753** 1 干C∶N
Stem C∶N−0.058 0.226 0.214 1 干C∶P
Stem C∶P−0.201 0.386 0.571* 0.168 1 干N∶P
Stem N∶P−0.210 0.298 0.516* −0.332 0.848** 1 枝C∶N
Branch C∶N−0.200 0.023 0.201 −0.172 0.118 0.232 1 枝C∶P
Branch C∶P−0.291 −0.029 0.269 −0.303 0.174 0.337 0.635** 1 枝N∶P
Branch N∶P−0.041 −0.064 0.071 −0.310 0.110 0.223 −0.078 0.671** 1 根C∶N
Root C∶N0.502* 0.388 0.041 0.246 0.166 0.060 −0.039 −0.273 −0.329 1 根C∶P
Root C∶P0.099 0.036 −0.020 −0.150 0.425 0.405 0.252 0.223 0.082 0.293 1 根N∶P
Root N∶P−0.281 −0.287 −0.090 −0.441 −0.052 0.120 0.368 0.473* 0.301 −0.570* 0.481* 1 表 9 云南松NSC构成与C、N、P及其计量比间相关系数
Table 9. Correlation coefficients among NSC composition, C, N, P and their stoichiometric ratios of Pinus yunnanensis
器官 Organ 指标 Index 可溶性糖 Soluble sugar 淀粉 Starch NSC C N P C∶N C∶P N∶P 叶 Needle 可溶性糖 Soluble sugar 1 淀粉 Starch −0.120 1 NSC 0.684** 0.642** 1 C −0.587* −0.110 −0.534* 1 N −0.272 0.247 −0.029 −0.099 1 P 0.561* −0.223 0.270 −0.589* −0.341 1 C∶N −0.175 −0.236 −0.308 0.664** −0.801** −0.120 1 C∶P −0.607* 0.134 −0.370 0.836** 0.149 −0.901** 0.398 1 N∶P −0.546* 0.357 −0.160 0.393 0.721** −0.864** −0.280 0.753** 1 干 Stem 可溶性糖 Soluble sugar 1 淀粉 Starch 0.543** 1 NSC 0.839** 0.913** 1 C −0.179 −0.032 −0.108 1 N 0.110 −0.016 0.043 −0.101 1 P 0.175 −0.194 −0.041 0.100 −0.001 1 C∶N −0.255 0.040 −0.098 0.370 −0.930** −0.008 1 C∶P −0.225 0.100 −0.045 −0.015 −0.170 −0.858** 0.168 1 N∶P 0.047 0.162 0.128 −0.176 0.298 0.819** −0.332 0.848** 1 枝 Branch 可溶性糖 Soluble sugar 1 淀粉 Starch 0.226 1 NSC 0.903** 0.623** 1 C −0.002 0.494* 0.216 1 N 0.085 0.037 0.084 −0.387 1 P 0.464 −0.009 0.369 −0.289 0.537* 1 C∶N −0.102 0.129 −0.025 0.705** −0.911** −0.543* 1 C∶P −0.454 0.074 −0.332 0.377 −0.591** −0.942** 0.635** 1 N∶P −0.452 −0.067 −0.392 −0.127 0.081 −0.755** −0.078 0.671** 1 根 Root 可溶性糖 Soluble sugar 1 淀粉Starch 0.703** 1 NSC 0.963** 0.868** 1 C 0.241 0.226 0.253 1 N 0.027 0.158 0.079 −0.077 1 P 0.472* 0.211 0.409 0.270 −0.061 1 C∶N −0.110 −0.238 −0.167 0.272 −0.762** −0.150 1 C∶P −0.441 −0.110 −0.349 0.161 −0.038 −0.816** 0.293 1 N∶P −0.153 0.180 −0.039 −0.175 0.769** −0.483* −0.570* 0.481* 1 -
[1] Russell E S, Liu H P, Thistle H, et al. Effects of thinning a forest stand on sub-canopy turbulence[J]. Agricultural and Forest Meteorology, 2018, 248: 295−305. doi: 10.1016/j.agrformet.2017.10.019 [2] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748. [3] 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片 C、N、P 化学计量和养分重吸收特征的影响[J]. 应用生态学报, 2013, 24(4):893−899.Guo Z W, Chen S L, Yang Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 893−899. [4] Yang Y, Liu B. Effects of planting Caragana shrubs on soil nutrients and stoichiometries in desert steppe of northwest China[J]. Catena, 2019, 183: 104213. doi: 10.1016/j.catena.2019.104213 [5] 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34(21):6090−6100.Du Y, Han Y, Wang C K. The influence of drought on non-structural carbohydrates in the needle and twigs of Larix gmelinii[J]. Acta Ecologica Sinica, 2014, 34(21): 6090−6100. [6] 韩发, 贲桂英, 师生波. 青藏高原不同海拔矮嵩草抗逆性的比较研究[J]. 生态学报, 1998, 18(6):92−97.Han F, Ben G Y, Shi S B. Comparative study on the resistance of Kobresia humilis grown at different altitudes in Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica, 1998, 18(6): 92−97. [7] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34 (1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002 [8] 黄小波. 云南松天然次生林生态化学计量学研究[D]. 北京: 中国林业科学研究院, 2016.Huang X B. Stoichiometry of Pinus yunnanensis natural secondary forest[D]. Beijing: Chinese Academy of Forestry, 2016. [9] 王凯, 沈潮, 曹鹏, 等. 沙地樟子松幼苗干旱致死过程中非结构性碳水化合物的变化[J]. 应用生态学报, 2018, 29(11): 3513−3520.Wang K, Shen C, Cao P, et al. Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality[J]. Chinese Journal of Applied Ecology, 2018,29(11): 3513−3520. [10] 成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175−1180.Cheng X R, Yu M K, Ge L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1175−1180. [11] 刘莉, 蔡锰柯, 刘旭军, 等. 间伐对华北落叶松人工林叶、根及林下土壤C、N、P化学计量特征影响[J]. 东北林业大学学报, 2019, 47(8):1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001Liu L, Cai M K, Liu X J, et al. Effects of thinning on ecological stoichiometry C, N and P in leaves, roots and soil of Larix principis-rupprechtii plantation[J]. Journal of Northeast Forestry University, 2019, 47(8): 1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001 [12] 邱勇斌, 凌高潮, 郑文华, 等. 间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响[J]. 林业科学研究, 2019, 32(4):64−69.Qiu Y B, Ling G C, Zheng W H, et al. Effects of thinning on contents and stoichiometry of C, N, and P in different components of Chinese fir plantation[J]. Forest Research, 2019, 32(4): 64−69. [13] 王晓荣, 雷蕾, 曾立雄, 等. 不同抚育间伐措施对马尾松林土壤活性有机碳的短期影响[J/OL]. 生态学杂志, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008.Wang X R, Lei L, Zeng L X, et al. Short-term effects of different tending thinning practices on soil labile organic carbon of Pinus massoniana stands[J]. Chinese Journal of Ecology, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008. [14] 郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4):1188−1196.Zheng Y P, Wang H X, Lou X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1188−1196. [15] 黄小波, 李帅锋, 苏建荣, 等. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25(11):42−51.Huang X B, Li S F, Su J R, et al. Relationship between species richness and ecosystem multifunctionality of natural secondary forest of Pinus yunnanensis[J]. Biodiversity Science, 2017, 25(11): 42−51. [16] 张育梅, 及利, 和春庭. 抚育间伐对云南松中幼林的影响[J]. 森林工程, 2017, 33(1):7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003Zhang Y M, Ji L, He C T. Effect of thinning on mid-young Pinus yunnanensis plantations[J]. Forest Engineering, 2017, 33(1): 7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003 [17] 韩明跃, 李莲芳, 郑畹, 等. 间伐强度对云南松中龄低产林分结构的调整研究[J]. 中南林业科技大学学报, 2011, 31(2):27−33.Han M Y, Li L F, Zheng W, et al. Effects of different intensity of thinning on the improvement of middle-aged Yunnan pine stand[J]. Journal of Central South University of Forestry & Technology, 2011, 31(2): 27−33. [18] 杨剑辉, 欧弢, 陈金龙, 等. 不同间伐梯度下云南松幼林林分结构及林木生长变化[J]. 浙江林业科技, 2015, 35(6):54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010Yang J H, Ou T, Chen J L, et al. Stand structure and tree growth of young growth of Pinus yunnanensis under different thinning intensities[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(6): 54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010 [19] 高成杰, 唐国勇, 刘方炎, 等. 林分结构调整对云南松次生林生长和土壤性质的影响[J]. 林业科学研究, 2017, 30(5):841−847.Gao C J, Tang G Y, Liu F Y, et al. Effects of stand structural adjustment on growth and soil properties of Pinus yunnanensis secondary forest[J]. Forest Research, 2017, 30(5): 841−847. [20] 王学奎, 黄见良. 植物生理生化实验原理和技术[M].3 版. 北京: 高等教育出版社, 2018.Wang X K, Huang J L. Principles and techniques of plant physiological and biochemical experiments [M]. 3rd ed. Beijing: Higher Education Press, 2018. [21] 鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.Bao S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000. [22] Chantuma P, Lacointe A, Kasemsap P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiology, 2009, 29: 1021−1031. doi: 10.1093/treephys/tpp043 [23] 霍常富, 孙海龙, 王政权, 等. 光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响[J]. 林业科学, 2009, 45(7):38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007Huo C F, Sun H L, Wang Z Q, et al. Effects of light and nitrogen on growth, carbon and nitrogen metabolism of Fraxinus mandshurica seedlings[J]. Scientia Silvae Sinicae, 2009, 45(7): 38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007 [24] 王子纯, 李耀翔, 孟永斌, 等. 抚育间伐对针阔混交天然次生林生物量及碳密度的影响[J]. 东北林业大学学报, 2021, 49(4):5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002Wang Z C, Li Y X, Meng Y B, et al. Effect of thinning on biomass and carbon density of mixed conifer and broadleaf secondary natural forest[J]. Journal of Northeast Forestry University, 2021, 49(4): 5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002 [25] Michaels A F. The ratios of life[J]. Science, 2003, 300: 906−907. doi: 10.1126/science.1083140 [26] 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010, 30(2):296−302.Wu W, He X D, Zhou Q X. Review on N∶P stoichiometry in ecosystem[J]. Journal of Desert Research, 2010, 30(2): 296−302. [27] Dey D C, Parker W C. Overstorey density affects field performance of underplanted red oak (Quercus rubra) in Ontario[J]. Northern Journal of Applied Forestry, 1997, 14(3): 120−125. doi: 10.1093/njaf/14.3.120 [28] 方海波, 田大伦, 康文星, 等. 间伐后杉木人工林生态系统养分动态的研究[J]. 中南林学院学报, 1999, 19(2):15−22.Fang H B, Tian D L, Kang W X, et al. Nutrient dynamics of Cunninghamia lanceolata plantation forest ecosystems after thinning[J]. Journal of Central South University of Forestry & Technology, 1999, 19(2): 15−22. [29] 管惠文, 董希斌, 张甜, 等. 抚育间伐后落叶松天然次生林生境恢复效果的评价[J]. 东北林业大学学报, 2019, 47(7):6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002Guan H W, Dong X B, Zhang T, et al. Evaluation of ecological environment restoration of thinning intensity on larch natural secondary forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2019, 47(7): 6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002 [30] Thompson K E N, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679−689. doi: 10.1046/j.1469-8137.1997.00787.x [31] 孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C∶N∶P计量特征对干旱的响应[J]. 干旱区地理, 2021, 44(1):240−249.Sun X M, He M Z, Zhou B, et al. Non-structural carbohydrates and C∶N∶P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography, 2021, 44(1): 240−249. [32] 熊静, 虞木奎, 成向荣, 等. 光照和氮磷供应比对木荷生长及化学计量特征的影响[J]. 生态学报, 2021, 41(6):2140−2150.Xiong J, Yu M K, Cheng X R, et al. Effects of light and N-P supply ratios on growth and stoichiometric of Schima superba[J]. Acta Ecologica Sinica, 2021, 41(6): 2140−2150. [33] Fife D N, Nambiar E K S, Saur E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment[J]. Tree Physiology, 2008, 28: 187−196. doi: 10.1093/treephys/28.2.187 [34] Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121−130. doi: 10.1046/j.1365-2435.2003.00712.x [35] Koerselman W, Meuleman A F M. The vegetation N∶P ratios: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783 [36] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x [37] 崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松人工林碳氮磷分配格局及化学计量特征[J]. 生态环境学报, 2014, 23(2):188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002Cui N J, Liu X B, Zhang D J, et al. The Distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages[J]. Ecology and Environmental Sciences, 2014, 23(2): 188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002 [38] Xiao L, Liu G B, Li P, et al. Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in Bothriochloa ischaemum than elevated CO2[J]. Plant Growth Regulation, 2017, 83(2): 325−334. doi: 10.1007/s10725-017-0298-8 [39] 印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009, 45(3):519−527.Yin J J, Guo D L, He S Y, et al. Non-structural carbohydrate, N, and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519−527. [40] Lambers H, Chapin F, Pons T. Plant physiological ecology[M]. New York: Springer-Verlag, 1998. [41] 王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2):399−407.Wang K, Lei H, Xia Y, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 399−407. [42] 宋同清. 西南喀斯特植物与环境[M]. 北京: 科学出版社, 2014.Song T Q. Karst plants and environment in southwest China[M]. Beijing: Science Press, 2014. [43] 王淳, 冀盼盼, 刘璇, 等. 华北落叶松不同器官碳氮磷化学计量特征[J]. 干旱区资源与环境, 2020, 34(11):176−181.Wang C, Ji P P, Liu X, et al. Ecological C, N and P stoichiometry of the needle, twigs and fine roots in pure and mixed stands of Larix principis-rupprechtii[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 176−181. [44] 盘金文, 郭其强, 孙学广, 等. 不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J]. 植物营养与肥料学报, 2020, 26(4):746−756. doi: 10.11674/zwyf.19272Pan J W, Guo Q Q, Sun X G, et al. Contents and stoichiometric characteristics of C, N, P and K under different stand ages of Pinus massoninana plantations[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 746−756. doi: 10.11674/zwyf.19272 [45] 贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126−135.He H L, Yang X C, Li D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Xianbei flower in east Qinghai-Tibet Plateau[J]. Chinese Journal of Plant Ecology, 2017, 41(1): 126−135. [46] 孙小妹, 何明珠, 杨睿哲. 白刺器官间非结构性碳水化合与C∶N∶P计量比的关联性[J]. 生态学报, 2021, 41(3):1−11.Sun X M, He M Z, Yang R Z. Correlation of non-structural carbohydrates with C∶N∶P stoichiometry among the organs of Nitraria tangutorum[J]. Acta Ecologica Sinica, 2021, 41(3): 1−11. [47] Theodorou M, Plaxton W. Metabolic adaptations of plant respiration to nutritional phosphate deprivation[J]. Plant Physiology, 1993, 101: 339−344. doi: 10.1104/pp.101.2.339 -