高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种源栎属和锥属橡实品质差异及综合评价研究

孙佳成 武妍妍 朱景乐 孙永玉 冯健 江泽平 史胜青

孙佳成, 武妍妍, 朱景乐, 孙永玉, 冯健, 江泽平, 史胜青. 不同种源栎属和锥属橡实品质差异及综合评价研究[J]. 北京林业大学学报, 2022, 44(7): 36-51. doi: 10.12171/j.1000-1522.20210117
引用本文: 孙佳成, 武妍妍, 朱景乐, 孙永玉, 冯健, 江泽平, 史胜青. 不同种源栎属和锥属橡实品质差异及综合评价研究[J]. 北京林业大学学报, 2022, 44(7): 36-51. doi: 10.12171/j.1000-1522.20210117
Sun Jiacheng, Wu Yanyan, Zhu Jingle, Sun Yongyu, Feng Jian, Jiang Zeping, Shi Shengqing. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances[J]. Journal of Beijing Forestry University, 2022, 44(7): 36-51. doi: 10.12171/j.1000-1522.20210117
Citation: Sun Jiacheng, Wu Yanyan, Zhu Jingle, Sun Yongyu, Feng Jian, Jiang Zeping, Shi Shengqing. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances[J]. Journal of Beijing Forestry University, 2022, 44(7): 36-51. doi: 10.12171/j.1000-1522.20210117

不同种源栎属和锥属橡实品质差异及综合评价研究

doi: 10.12171/j.1000-1522.20210117
基金项目: 中央级公益性科研院所基本科研业务费专项(CAFYBB2018ZB001-1)
详细信息
    作者简介:

    孙佳成。主要研究方向:特殊种质资源评价与多酚代谢调控。Email:sjc9867@163.com 地址:100091 北京市海淀区香山路东小府1号

    责任作者:

    史胜青,研究员。主要研究方向:林木抗逆机制及资源挖掘利用。Email:shi.shengqing@caf.ac.cn 地址:同上

  • 中图分类号: S792.18;S792.17

Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances

  • 摘要:   目的  明确和比较不同种源栎属和锥属橡实品质特征,充分挖掘其果用资源潜力,为今后两属优良种质资源选育、开发利用和保护提供借鉴。  方法  本研究收集了我国15个省(市)的6个种28个种源栎属和7个种48个种源锥属的橡实,对其形态、营养物质和多酚类物质及其抗氧化能力进行测定,并利用因子分析法进行综合评价。  结果  (1)形态特征方面,栎属橡实体型上多为椭球形,而锥属橡实多为近圆球形,前者体型大小和重量分别约为后者的1.5倍和2倍。(2)种仁营养物质方面,栎属可溶性糖含量约为18.31 ~ 79.94 mg/g,其中,麻栎、短柄枹栎和蒙古栎可溶性糖含量高于栎属平均值;锥属整体水平上可溶性糖含量较低,约为20.16 ~ 52.08 mg/g,而苦槠和黧蒴锥等个别种可溶性糖含量达到栎属平均水平。栎属淀粉含量为169.33 ~ 382.27 mg/g,锥属淀粉含量为130.29 ~ 544.12 mg/g,整体高于栎属,但黧蒴锥的淀粉含量显著低于各个种。栎属和锥属的总氨基酸和可溶性蛋白含量的平均值相差较小,但各个种之间具有显著差异。(3)种仁功能性成分方面,栎属总多酚含量为54.64 ~ 242.90 mg/g,锥属总多酚含量为1.28 ~ 138.11 mg/g,前者平均值约是后者的4.5倍。除苦槠和黧蒴锥外,其他锥属总多酚含量极低,为1.28 ~ 4.66 mg/g,且总黄酮和可溶性单宁含量变化趋势与总多酚类似。栎属维生素E含量高于锥属平均值,而锥属中除多酚含量高的苦槠和黧蒴锥之外,其他种维生素E含量均较低。两属中25号短柄枹栎抗氧化活性最高,其DPPH自由基清除率最高可达82.98%。(4)综合得分排名发现,16号种源橡实体型最大,多酚类物质含量较高;20号种源橡实体型较大,淀粉和多酚类物质较高,可溶性蛋白和总氨基酸含量适中,各方面整体表现平稳;排名前十的橡实分别为16、17、20、14、2、24、28、8、3、19号种源的橡实。  结论  我国栎属和锥属种质资源的橡实形态、营养、功能成分等性状变异丰富、变异程度较高,其中,筛选出了10份综合排名靠前的优质橡实种源。研究结果为后续富含淀粉和富含多酚类物质的优良新品种选育提供了丰富的种质资源。

     

  • 图  1  不同种源栎属和锥属橡实种仁总抗氧化能力

    A. DPPH(2,2-二苯基-1-苦基肼)法;B. FRAP(铁离子还原抗氧化能力)法;C. ABTS(2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸)法。A, DPPH (2,2-diphenyl-1-picrylhydrazyl) method; B, FRAP (ferric reducing antioxidant potential) method; C, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) method.

    Figure  1.  Total antioxidant abilities of kernels in the acorns of Quercus and Castanopsis from different provenances

    表  1  栎属和锥属橡实采集基本信息

    Table  1.   Basic collection information of Quercus and Castanopsis acorns

    编号
    No.
    种源地
    Provenance
    日期
    Date
    编号
    No.
    种源地
    Provenance
    日期
    Date
    1 辽宁甘井子区 Ganjingzi District, Liaoning 2018–09 39 云南鹤庆 Heqing, Yunnan 2018–12
    2 河北承德 Chengde, Hebei 2018–09 40 云南云龙 Yunlong, Yunnan 2018–12
    3 辽宁老黑山 Laohei Mountain, Liaoning 2018–09 41 云南临沧 Lincang, Yunnan 2018–12
    4 辽宁步云山 Buyun Mountain, Liaoning 2018–09 42 云南凤庆 Fengqing, Yunnan 2018–11
    5 辽宁仙人洞 Xianrendong, Liaoning 2018–09 43 江西龙南 Longnan, Jiangxi 2018–12
    6 河南许昌 Xuchang, Henan 2018–10 44 江西崇义 Chongyi, Jiangxi 2019–01
    7 黑龙江伊春 Yichun, Heilongjiang 2018–09 45 浙江蛤湖 Hahu, Zhejiang 2018–12
    8 山东青州 Qingzhou, Shandong 2018–09 46 浙江苦梨坑 Kulikeng, Zhejiang 2018–12
    9 吉林白山 Baishan, Jilin 2018–09 47 浙江坑下 Kengxia, Zhejiang 2018–12
    10 吉林永吉县 Yongji County, Jilin 2018–09 48 浙江际头畈 Jitoufan, Zhejiang 2018–12
    11 吉林四平 Siping, Jilin 2018–09 49 浙江梅湾 Meiwan, Zhejiang 2018–12
    12 吉林临江 Linjiang, Jilin 2018–09 50 浙江庆元 Qingyuan, Zhejiang 2018–12
    13 黑龙江齐齐哈尔 Qiqihar, Heilongjiang 2018–09 51 浙江文成 Wencheng, Zhejiang 2018–12
    14 辽宁仙人洞 Xianrendong, Liaoning 2018–10 52 福建天台山 Tiantai Mountain, Fujian 2018–12
    15 辽宁甘井子区 Ganjingzi District, Liaoning 2018–09 53 福建坝头 Batou, Fujian 2018–12
    16 河北唐山 Tangshan, Hebei 2018–09 54 福建下坊 Xiafang, Fujian 2018–12
    17 北京密云 Miyun District, Beijing 2018–09 55 福建沙山 Sha Mountain, Fujian 2018–12
    18 辽宁仙人洞 Xianrendong, Liaoning 2018–10 56 福建元坑 Yuankeng, Fujian 2018–12
    19 甘肃天水 Tianshui, Gansu 2018–11 57 江西全南 Quannan, Jiangxi 2018–12
    20 陕西宝鸡 Baoji, Shaanxi 2018–09 58 江西上犹 Shangyou, Jiangxi 2018–12
    21 辽宁仙人洞 Xianrendong, Liaoning 2018–09 59 江西新余 Xinyu, Jiangxi 2019–03
    22 河南宝天曼2/3样地 Baotianman 2/3 Sample Plot, Henan 2018–10 60 广东新丰 Xinfeng, Guangdong 2018–12
    23 河南宝天曼4样地 Baotianman 4 Sample Plot, Henan 2018–10 61 江西定南 Dingnan, Jiangxi 2018–12
    24 河南宝天曼8样地 Baotianman 8 Sample Plot, Henan 2018–10 62 江西龙南 Longnan, Jiangxi 2018–12
    25 河南宝天曼2/4样地 Baotianman 2/4 Sample Plot, Henan 2018–10 63 江西崇义 Chongyi, Jiangxi 2018–12
    26 河南万沟村 Wangou Village, Henan 2018–10 64 江西全南 Quannan, Jiangxi 2019–01
    27 辽宁大黑山 Dahei Mountain, Liaoning 2018–09 65 广东翁源 Wengyuan, Guangdong 2018–12
    28 辽宁仙人洞 Xianrendong, Liaoning 2018–09 66 江西定南 Dingnan, Jiangxi 2018–12
    29 云南大理 Dali, Yunnan 2018–10 67 江西龙南 Longnan, Jiangxi 2019–01
    30 云南龙陵 Longling, Yunnan 2018–12 68 广东翁源 Wengyuan, Guangdong 2018–12
    31 云南永德 Yongde, Yunnan 2018–12 69 江西全南 Quannan, Jiangxi 2018–12
    32 云南丽江 Lijiang, Yunnan 2018–12 70 广东连平 Lianping, Guangdong 2018–12
    33 云南剑川 Jianchuan, Yunnan 2018–12 71 江西崇义 Chongyi, Jiangxi 2018–12
    34 云南景谷 Jinggu, Yunnan 2018–12 72 广东新丰 Xinfeng, Guangdong 2018–12
    35 云南景东 Jingdong, Yunnan 2018–12 73 江西全南 Quannan, Jiangxi 2019–01
    36 云南镇沅 Zhenyuan, Yunnan 2018–12 74 江西龙南 Longnan, Jiangxi 2018–12
    37 云南双柏 Shuangbai, Yunnan 2018–12 75 广东新丰 Xinfeng, Guangdong 2018–12
    38 云南永德 Yongde, Yunnan 2018–12 76 江西龙南 Longnan, Jiangxi 2018–12
    注:1 ~ 13为栎属,蒙古栎;14为栎属,栓皮栎;15 ~ 18为栎属,麻栎;19 ~ 24为栎属,锐齿槲栎;25 ~ 26为栎属,短柄枹栎;27 ~ 28为栎属,槲树;29 ~ 42为锥属,高山栲;43 ~ 59为锥属,苦槠;60 ~ 65为锥属,米槠;66 ~ 71为锥属,丝栗栲;72 ~ 74为锥属,黧蒴锥;75为锥属,红锥;76为锥属,青钩栲。Notes: 1–13 represent Quercus (Q. mongolica); 14 represents Quercus (Q. variabilis); 15–18 represent Quercus (Q. acutissima);19–24 represent Quercus (Q. aliena var. acuteserrata); 25–26 represent Quercus (Q. serrata var. brevipetiolata); 27–28 represent Quercus (Q. dentata); 29–42 represent Castanopsis (C. delavayi); 43–59 represent Castanopsis (C. sclerophylla); 60–65 represent Castanopsis (C. carlesii); 66–71 represent Castanopsis (C. fargesii); 72–74 represent Castanopsis (C. fissa); 75 represents Castanopsis (C. hystrix); 76 represents Castanopsis (C. kawakamii).
    下载: 导出CSV

    表  2  76份栎属和锥属不同种源橡实形态特征

    Table  2.   Phenotypic traits of 76 Quercus and Castanopsis acorns from different provenances

    编号
    No.

    Length/cm

    Width/cm
    周长
    Perimeter/cm
    单粒质量
    Single grain
    mass/g
    长宽比
    Aspect
    ratio
    编号
    No.

    Length/cm

    Width/cm
    周长
    Perimeter/cm
    单粒质量
    Single grain
    mass/g
    长宽比
    Aspect
    ratio
    11.451.304.101.571.12401.361.143.600.991.19
    22.361.964.482.001.20411.331.123.500.891.19
    32.041.504.812.451.36421.581.714.932.240.93
    41.991.514.672.251.31431.301.263.991.271.03
    51.911.575.062.261.21441.451.374.231.591.06
    62.041.504.642.641.36451.381.293.931.351.07
    71.981.554.632.361.28461.441.364.311.681.06
    82.191.655.143.111.33471.451.444.531.821.01
    91.981.374.322.071.45481.551.414.411.741.10
    101.881.233.901.581.53491.281.213.741.121.06
    111.821.304.061.201.40501.381.354.241.481.02
    121.661.193.440.871.39511.371.414.401.640.97
    131.931.424.452.231.36521.481.524.722.020.98
    142.081.745.423.781.19531.221.253.951.110.97
    151.861.635.102.741.14541.251.294.031.300.97
    162.392.136.587.281.12551.401.404.241.651.00
    172.221.915.894.841.16561.541.424.391.721.08
    181.691.534.792.501.10571.361.364.171.451.00
    192.101.705.383.501.23581.271.193.801.121.06
    202.051.284.111.741.60591.251.223.901.241.03
    211.160.903.210.791.28601.050.912.960.561.15
    221.821.354.241.971.35611.131.163.390.800.97
    232.061.354.222.401.53621.000.912.910.521.10
    242.221.865.845.071.19631.181.043.270.751.13
    251.630.963.130.911.70641.081.113.190.680.97
    261.800.882.820.832.05651.010.973.040.621.04
    272.121.384.412.221.54661.020.902.850.711.13
    281.861.635.102.741.14671.221.053.370.841.17
    291.451.304.101.571.12681.241.013.190.821.23
    301.311.083.620.821.21691.161.043.240.871.12
    311.421.183.691.111.20701.211.093.430.921.11
    321.451.263.851.321.15710.990.973.140.651.03
    331.361.253.911.261.08721.341.093.471.011.23
    341.310.993.240.691.32731.541.294.111.621.19
    351.431.183.741.111.21741.421.263.901.411.13
    361.310.933.000.691.42751.041.023.260.701.02
    371.371.203.791.021.14761.631.705.393.000.96
    381.421.173.671.051.21平均值 Mean1.551.314.071.671.19
    391.391.203.841.081.15F82.068**51.527**63.328**72.86**28.556**
    注: **表示0.01水平上差异显著。下同。Notes: ** means that the difference is significant at the level of 0.01. The same below.
    下载: 导出CSV

    表  3  76份栎属和锥属不同种源橡实营养成分

    Table  3.   Nutrient components of 76 Quercus and Castanopsis acorns from different provenances

    编号 No.可溶性糖
    Soluble
    sugar/(mg·g−1)
    淀粉
    Starch/(mg·g−1)
    总氨基酸
    Total amino acid/(mg·g−1)
    可溶性蛋白
    Soluble protein/(mg·g−1)
    编号
    No.
    可溶性糖
    Soluble
    sugar/(mg·g−1)
    淀粉
    Starch/(mg·g−1)
    总氨基酸
    Total amino acids/(mg·g−1)
    可溶性蛋白
    Soluble protein/(mg·g−1)
    152.95214.2937.5227.164032.56534.4044.1812.93
    265.43277.4746.2010.324124.14516.2347.5811.92
    363.10240.8833.1817.894224.36446.0235.0526.79
    449.04235.9440.1018.984334.48260.2832.8828.50
    539.20234.6433.4620.764444.75369.9826.6118.69
    635.16224.0544.4319.434531.77477.3937.1216.21
    762.39211.3811.2614.444652.08457.3332.2419.87
    861.77212.5234.8910.514747.00493.4136.1817.24
    953.23173.2124.8612.924840.62390.7423.4019.53
    1062.27219.5338.1910.664935.11396.4822.1819.28
    1150.54270.3333.9512.355036.40440.4130.7518.53
    1247.76312.4822.389.985141.65417.1730.7621.71
    1350.50247.9738.458.735238.01391.7732.2416.46
    1470.02382.2736.1919.845348.85374.0738.1619.42
    1549.68195.7131.2329.265439.23342.1231.4819.21
    1652.34180.0132.8824.205536.80364.0730.4118.02
    1740.40188.8336.7512.885637.79340.3631.6219.04
    1879.94249.1944.9419.515741.31305.4325.7318.63
    1942.47169.3339.6424.225839.42326.0826.6818.40
    2057.12186.1836.1615.755943.29334.9636.1918.57
    2118.31185.8320.9316.346033.83347.9039.7026.53
    2250.59298.8928.8118.916130.67327.8936.5027.99
    2351.39267.1029.6116.536223.12463.5915.7319.39
    2441.91242.9527.7324.516322.80432.8140.2116.00
    2561.43237.1320.4918.636420.85401.3932.4620.69
    2652.89255.5130.2516.306529.85460.0739.3718.91
    2739.03230.1632.7119.816632.84351.4533.4923.48
    2863.43218.6742.8720.236733.93352.4429.0019.30
    2927.67363.2932.4425.276825.68441.4730.6714.70
    3027.96356.4221.9913.246927.90421.1342.4421.16
    3121.23393.6514.6412.147028.80452.4240.0921.95
    3225.71339.7434.7312.707121.42429.3235.7818.03
    3343.33509.3733.1614.107244.83130.2954.4633.51
    3450.89460.9141.8629.147348.83138.0926.8024.83
    3542.19511.4223.8015.167429.49161.0834.9627.64
    3644.10498.4240.7629.307522.51365.0220.8215.54
    3739.71442.0544.8617.747620.16442.709.718.36
    3825.37472.6447.7913.82平均值 Mean40.95336.2132.4218.73
    3932.71544.1238.1712.57F25.412**27.064**22.478**26.798**
    下载: 导出CSV

    表  4  76份栎属和锥属不同种源橡实多酚类相关物质

    Table  4.   Polyphenol related compound of Quercus and Castanopsis acorns from different provenances

    编号
    No.
    总多酚
    Total
    polyphenols/
    (mg·g−1)
    总黄酮
    Total
    flavonoids/
    (mg·g−1)
    可溶性单宁
    Soluble tannin/
    (mg·g−1)
    维生素E
    Vitamin E/
    (μg·g−1)
    编号
    No.
    总多酚
    Total
    polyphenols/
    (mg·g−1)
    总黄酮
    Total
    flavonoids/
    (mg·g−1)
    可溶性单宁
    Soluble tannins/
    (mg·g−1)
    维生素E
    Vitamin E/
    (μg·g−1)
    1 123.39 78.16 16.43 57.59 40 1.78 1.54 1.69 24.98
    2 89.81 47.53 16.80 57.95 41 2.02 1.45 1.84 23.66
    3 117.28 67.95 17.26 45.23 42 1.43 0.96 1.29 21.46
    4 120.60 67.69 17.08 35.18 43 52.06 26.08 14.14 51.39
    5 127.52 67.91 16.98 33.94 44 78.34 29.46 16.62 58.56
    6 114.23 62.83 16.95 41.25 45 24.94 16.16 11.82 37.75
    7 77.36 40.46 16.83 53.29 46 39.56 20.57 14.31 43.62
    8 61.39 35.03 16.28 53.74 47 26.07 14.58 13.48 38.59
    9 74.93 40.08 15.95 57.31 48 37.06 22.01 15.20 48.64
    10 73.00 37.05 16.16 54.80 49 55.71 26.84 15.26 52.71
    11 69.05 42.53 15.81 53.48 50 23.55 17.37 12.67 37.03
    12 54.64 37.22 16.27 46.79 51 55.65 33.59 15.71 52.70
    13 65.35 37.92 16.54 51.87 52 49.61 21.61 14.88 40.19
    14 141.83 103.01 16.78 51.52 53 44.41 20.33 15.22 46.83
    15 129.91 82.65 15.87 56.03 54 77.18 26.92 15.80 43.76
    16 90.17 66.27 16.16 52.39 55 62.57 23.21 15.63 43.05
    17 114.40 71.39 16.41 53.04 56 45.56 20.62 14.92 39.88
    18 133.63 77.07 17.02 21.02 57 58.72 28.04 15.93 52.83
    19 81.89 43.96 14.18 60.41 58 62.06 25.43 15.71 55.43
    20 234.95 114.84 16.72 55.03 59 59.57 26.45 15.93 51.43
    21 242.90 162.35 17.33 30.02 60 1.79 5.81 2.01 29.71
    22 131.90 83.58 17.65 65.42 61 1.28 7.39 2.24 30.06
    23 155.38 81.42 16.79 45.34 62 2.52 2.93 2.97 30.93
    24 116.94 79.79 17.18 24.43 63 2.08 3.22 2.58 33.62
    25 238.90 122.64 17.49 36.68 64 2.19 5.54 2.59 38.00
    26 168.17 83.69 17.25 50.58 65 1.59 5.42 2.37 28.98
    27 104.62 60.53 17.14 39.49 66 3.38 3.37 2.12 37.10
    28 133.77 78.54 16.96 49.21 67 4.66 4.95 3.17 36.50
    29 2.00 0.89 1.58 22.23 68 2.34 2.20 1.53 29.66
    30 2.62 1.72 2.71 22.06 69 1.94 1.79 1.61 29.48
    31 2.19 1.32 2.13 21.62 70 1.94 1.43 1.33 29.03
    32 1.76 1.35 1.57 26.97 71 2.22 2.48 1.96 29.89
    33 1.88 1.53 1.95 23.59 72 114.47 112.62 14.73 40.25
    34 2.31 2.25 2.65 30.22 73 127.57 123.98 16.62 59.78
    35 2.49 2.63 2.68 21.16 74 138.11 164.77 16.29 64.65
    36 2.89 1.58 2.99 29.10 75 1.39 7.42 2.49 28.65
    37 1.87 1.52 2.10 27.73 76 3.35 2.24 2.32 31.53
    38 1.98 0.96 2.13 20.90 平均值
    Mean
    61.61 37.53 10.89 40.45
    39 1.78 1.34 1.88 23.36 F 130.301** 162.12** 673.341** 81.492**
    下载: 导出CSV

    表  5  栎属和锥属橡实各指标相关性分析

    Table  5.   Correlation analysis of each index of Quercus and Castanopsis acorns

    指标
    Index

    Length

    Width
    周长
    Perimeter
    单粒质量
    Single grain
    mass
    长宽比
    Aspect
    ratio
    可溶性糖
    Soluble
    sugar
    淀粉
    Starch
    总氨基酸
    Total
    amino
    acids
    可溶性
    蛋白
    Soluble
    protein
    总多酚
    Total
    polyphenols
    总黄酮
    Total
    flavonoids
    可溶性
    单宁
    Soluble
    tannins
    维生素E
    Vitamin E

    Length
    1.000

    Width
    0.785** 1.000
    周长
    Perimeter
    0.771** 0.966** 1.000
    单粒质量
    Single grain mass
    0.786** 0.886** 0.926** 1.000
    长宽比
    Aspect ratio
    0.483** −0.147 −0.122 0.019 1.000
    可溶性糖
    Soluble
    sugar
    0.640** 0.433** 0.418** 0.398** 0.416** 1.000
    淀粉
    Starch
    −0.597** −0.373** −0.399** −0.452** −0.404** −0.469** 1.000
    总氨基酸
    Total amino acids
    0.042 0.027 −0.017 −0.010 −0.004 0.146 0.039 1.000
    可溶性蛋白
    Soluble
    protein
    −0.199* −0.064 −0.029 0.023 −0.202* −0.016 −0.178 0.243* 1.000
    总多酚
    Total polyphenols
    0.570** 0.287** 0.331** 0.368** 0.528** 0.559** −0.757** −0.056 0.089 1.000
    总黄酮
    Total
    flavonoids
    0.487** 0.256* 0.301** 0.354** 0.428** 0.459** −0.769** −0.012 0.211* 0.935** 1.000
    可溶性单宁
    Soluble
    tannin
    0.627** 0.504** 0.523** 0.470** 0.299** 0.669** −0.709** −0.085 0.014 0.796** 0.718** 1.000
    维生素E
    Vitamin E
    0.448** 0.369** 0.347** 0.316** 0.189 0.517** −0.609** −0.092 0.053 0.520** 0.505** 0.758** 1.000
    注:相关性分析结果为主成分分析计算,*和**分别表示在0.05和0.01水平上差异显著。Notes: correlation analysis results are calculated by principal component analysis; * and ** represent significant difference at the level of 0.05 and 0.01, respectively.
    下载: 导出CSV

    表  6  栎属和锥属橡实各指标方差贡献率

    Table  6.   Variance contribution rates of each index of Quercus and Castanopsis acorns

    主成分
    Principal
    component
    特征值
    Eigenvalue
    方差贡献率
    Variance
    contribution rate/%
    累计贡献率
    Cumulative
    contribution rate/%
    14.56735.13535.135
    23.70628.50563.639
    31.43411.03474.674
    41.1759.04283.715
    下载: 导出CSV

    表  7  栎属和锥属橡实各指标主成分载荷量

    Table  7.   Main component loading of each index of Quercus and Castanopsis acorns

    指标
    Index
    主成分1
    Principal component 1
    主成分2
    Principal component 2
    主成分3
    Principal component 3
    主成分4
    Principal component 4
    长 Length 0.472 0.724 0.420 0.144
    宽 Width 0.166 0.972 −0.020 −0.002
    周长 Perimeter 0.201 0.964 −0.043 −0.030
    单粒质量 Single grain mass 0.247 0.904 −0.007 0.026
    长宽比 Aspect ratio 0.530 −0.214 0.694 0.217
    可溶性糖 Soluble sugar 0.574 0.363 0.307 0.298
    淀粉 Starch −0.845 −0.243 0.023 −0.009
    总氨基酸 Total amino acids −0.085 0.035 −0.105 0.929
    可溶性蛋白 Soluble protein 0.241 −0.115 −0.803 0.336
    总多酚 Total polyphenols 0.917 0.132 0.124 0.031
    总黄酮 Total flavonoids 0.907 0.099 −0.038 0.053
    可溶性单宁 Soluble tannins 0.821 0.379 0.061 −0.091
    维生素E Vitamin E 0.698 0.260 −0.052 −0.170
    下载: 导出CSV

    表  8  栎属和锥属橡实品质综合评价排名

    Table  8.   Comprehensive evaluation ranking of Quercus and Castanopsis acorn quality

    编号
    No.
    F1F2F3F4M排名
    Ranking
    编号
    No.
    F1F2F3F4M排名
    Ranking
    16 1.61 2.21 0.11 0.79 1.28 1 59 0.80 0.68 −0.07 0.61 0.52 39
    17 1.47 1.82 0.36 0.67 1.13 2 46 0.65 0.81 0.00 0.64 0.52 40
    20 1.84 1.12 0.60 0.85 1.11 3 58 0.83 0.65 −0.05 0.40 0.51 41
    14 1.52 1.60 0.30 0.88 1.10 4 43 0.83 0.68 −0.37 0.64 0.50 42
    2 1.37 1.55 0.57 0.91 1.07 5 54 0.75 0.70 −0.12 0.53 0.50 43
    24 1.33 1.68 0.12 0.75 1.03 6 53 0.68 0.67 −0.11 0.68 0.48 44
    28 1.48 1.41 0.17 0.95 1.02 7 47 0.48 0.84 0.01 0.67 0.47 45
    8 1.32 1.50 0.59 0.70 1.02 8 49 0.71 0.60 −0.07 0.32 0.44 46
    3 1.43 1.30 0.41 0.80 0.99 9 50 0.44 0.68 −0.07 0.54 0.39 47
    19 1.37 1.50 0.05 0.84 0.99 10 45 0.35 0.58 −0.02 0.62 0.34 48
    15 1.51 1.35 −0.12 0.76 0.97 11 76 0.08 0.97 0.15 0.01 0.32 49
    23 1.46 1.11 0.52 0.71 0.95 12 42 0.02 0.78 −0.39 0.78 0.26 50
    18 1.25 1.23 0.22 1.13 0.91 13 32 0.07 0.43 0.09 0.62 0.21 51
    22 1.48 1.08 0.28 0.58 0.91 14 29 0.08 0.45 −0.25 0.75 0.20 52
    7 1.33 1.29 0.47 0.28 0.91 15 37 0.04 0.37 −0.03 0.92 0.20 53
    4 1.27 1.19 0.29 0.91 0.90 16 34 0.15 0.17 −0.20 1.07 0.18 54
    6 1.26 1.19 0.24 0.92 0.89 17 67 0.18 0.24 −0.09 0.57 0.17 55
    9 1.33 1.13 0.53 0.50 0.89 18 33 −0.06 0.40 0.08 0.67 0.16 56
    73 1.59 0.97 −0.05 0.60 0.89 19 35 −0.02 0.34 0.16 0.53 0.16 57
    25 1.65 0.63 0.56 0.65 0.88 20 38 −0.11 0.28 0.07 0.90 0.13 58
    27 1.29 1.08 0.38 0.77 0.87 21 30 0.03 0.24 0.12 0.40 0.13 59
    5 1.22 1.21 0.14 0.73 0.86 22 36 0.10 0.07 −0.17 1.04 0.13 60
    10 1.25 0.97 0.63 0.78 0.85 23 39 −0.14 0.32 0.11 0.71 0.12 61
    13 1.15 1.14 0.55 0.69 0.85 24 61 0.10 0.22 −0.47 0.79 0.12 62
    26 1.53 0.54 0.76 0.78 0.85 25 31 −0.02 0.30 0.15 0.23 0.12 63
    74 1.60 0.85 −0.28 0.68 0.83 26 40 −0.13 0.26 0.11 0.83 0.11 64
    1 1.36 0.92 −0.16 0.82 0.80 27 63 −0.03 0.14 −0.09 0.69 0.08 65
    11 1.12 0.92 0.46 0.64 0.76 28 41 −0.18 0.20 0.08 0.85 0.08 66
    72 1.30 0.60 −0.36 1.28 0.70 29 70 −0.06 0.17 −0.23 0.81 0.08 67
    21 1.38 0.40 0.10 0.35 0.64 30 66 0.10 0.02 −0.28 0.68 0.07 68
    44 0.95 0.89 0.02 0.43 0.63 31 69 −0.04 0.12 −0.23 0.84 0.07 69
    12 0.93 0.69 0.50 0.38 0.61 32 60 0.07 0.02 −0.35 0.87 0.07 70
    57 0.87 0.82 −0.06 0.40 0.57 33 68 −0.05 0.11 0.04 0.55 0.07 71
    48 0.76 0.88 0.02 0.41 0.56 34 64 0.01 0.14 −0.32 0.54 0.06 72
    51 0.78 0.86 −0.16 0.53 0.55 35 75 −0.03 0.10 −0.13 0.30 0.03 73
    52 0.65 0.95 0.00 0.53 0.55 36 65 −0.11 0.02 −0.22 0.73 0.01 74
    56 0.72 0.86 0.00 0.58 0.55 37 71 −0.13 0.02 −0.24 0.61 −0.01 75
    55 0.72 0.81 −0.05 0.50 0.52 38 62 −0.09 −0.05 −0.18 0.25 −0.04 76
    注:F1F2F3F4分别代表主成分1、2、3、4得分,M代表综合得分。Notes: F1, F2, F3, F4 represent the scores of principal component 1, 2, 3 and 4, respectively; M represents comprehensive score.
    下载: 导出CSV
  • [1] 中国科学院中国植物志编委会. 中国植物志[M]. 北京: 科学出版社, 1998, 22: 219−262.

    Editorial Committee of Chinese Flora of Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1998, 22: 219−262.
    [2] 周磊, 许敏, 杨崇仁, 等. 壳斗科植物的化学成分及生物活性研究进展[J]. 天然产物研究与开发, 2012, 24(2): 260−273. doi: 10.3969/j.issn.1001-6880.2012.02.028

    Zhou L, Xu M, Yang C R, et al. The advance of chemical components and bioactivity of Fagaceous plants[J]. Natural Product Research and Development, 2012, 24(2): 260−273. doi: 10.3969/j.issn.1001-6880.2012.02.028
    [3] 刘瑞亮. 栎属橡子单宁提取与淀粉浓醪发酵工艺研究[D]. 北京: 北京化工大学, 2016.

    Liu R L. Study on acorn (Quercus L.) tannin extraction and very high gravity (VHG) fermentation of acorn starch[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [4] 周伟, 夏念和. 我国壳斗科植物资源: 尚待开发的宝库[J]. 林业资源管理, 2011(2): 93−96,100. doi: 10.3969/j.issn.1002-6622.2011.02.018

    Zhou W, Xia N H. The Chinese Fagaceae resources: a treasury imperative for development[J]. Forest Resources Management, 2011(2): 93−96,100. doi: 10.3969/j.issn.1002-6622.2011.02.018
    [5] 谢碧霞, 谢涛. 我国橡实资源的开发利用[J]. 中南林业科技大学学报, 2002, 22(3): 37−41. doi: 10.3969/j.issn.1673-923X.2002.03.006

    Xie B X, Xie T. Exploitation study of acorn resources in China[J]. Journal of Central South of Forestry University, 2002, 22(3): 37−41. doi: 10.3969/j.issn.1673-923X.2002.03.006
    [6] 杨舒婷. 我国壳斗科淀粉资源植物的研究与开发利用[J]. 江苏农业科学, 2014, 42(5): 324−327. doi: 10.3969/j.issn.1002-1302.2014.05.106

    Yang S T. Exploitation and utilization of starch resource plants of Fagaceae in China[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 324−327. doi: 10.3969/j.issn.1002-1302.2014.05.106
    [7] 高立琼, 陈丽冰, 杨倩, 等. 橡子淀粉制备及其理化性质研究[J]. 食品科技, 2015, 40(4): 215−218.

    Gao L Q, Chen L B, Yang Q, et al. Preparation of acorn starch and its physicochemical properties[J]. Food Science and Technology, 2015, 40(4): 215−218.
    [8] 李娜, 赵文恩, 李勇. 橡实利用研究进展[J]. 中国野生植物资源, 2016, 35(2): 45−50. doi: 10.3969/j.issn.1006-9690.2016.02.013

    Li N, Zhao W E, Li Y. Advances in studies on acorn exploitation and utilization[J]. Chinese Wild Plant Resources, 2016, 35(2): 45−50. doi: 10.3969/j.issn.1006-9690.2016.02.013
    [9] 孙巧玉, 刘勇. 控释肥和灌溉方式对栓皮栎容器苗苗木质量及造林效果的影响[J]. 林业科学研究, 2018, 31(5): 137−144.

    Sun Q Y, Liu Y. Effect of controlled-release fertilizer and irrigation method on seedling quality and outplanting performance of Quercus variabilis[J]. Forest Research, 2018, 31(5): 137−144.
    [10] 罗强. 栓皮栎橡子果仁多酚组分及功能性评价[D]. 杨凌: 西北农林科技大学, 2017.

    Luo Q. Polyphenol components and functional evaluation of Quercus variabilis acorn nutlet[D]. Yangling: Northwest A&F University, 2017.
    [11] Vinha A F, Barreira J C M, Costa A S G, et al. A new age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(6): 947−981. doi: 10.1111/1541-4337.12220
    [12] Vinha A F, Costa A S G, Barreira J C M, et al. Chemical and antioxidant profiles of acorn tissues from Quercus spp. : potential as new industrial raw materials[J]. Industrial Crops and Products, 2016, 94: 143−151.
    [13] Akcan T, Gökçe R, Asensio M, et al. Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest[J]. Journal of Food Science and Technology, 2017, 54: 3050−3057. doi: 10.1007/s13197-017-2740-3
    [14] Makhlouf F Z, Squeo G, Barkat M, et al. Antioxidant activity, tocopherols and polyphenols of acornoil obtained from Quercus species grown in Algeria[J]. Food Research International, 2018, 114: 208−213. doi: 10.1016/j.foodres.2018.08.010
    [15] Zhang L, Wang Y, Li D, et al. The absorption, distribution, metabolism and excretion of procyanidins[J]. Food and Function, 2016, 7(3): 1273−1281. doi: 10.1039/C5FO01244A
    [16] 张志健, 王勇. 我国橡子资源开发利用现状与对策[J]. 氨基酸和生物资源, 2009, 31(3): 10−14.

    Zhang Z J, Wang Y. Exploitation and utilization of acorn resources in China[J]. Amino Acids and Biotic Resources, 2009, 31(3): 10−14.
    [17] 邱丽氚, 路丹桂, 李雅丽, 等. 中国壳斗科植物属的分布区定量研究[J]. 西北植物学报, 2019, 39(2): 343−348.

    Qiu L C, Lu D G, Li Y L, et al. Quantitative analysis of geographical distributions in all genera of Fagaceae in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(2): 343−348.
    [18] 魏园园, 刘琪, 梁宗瑶, 等. 栓皮栎橡子果仁多酚抗氧化与抑菌活性研究[J]. 食品工业科技, 2019, 40(20): 42−48.

    Wei Y Y, Liu Q, Liang Z Y, et al. Antioxidative and antibacterial activity of polyphenolsin Quercus variabilis acorn nutlet[J]. Science and Technology of Food Industry, 2019, 40(20): 42−48.
    [19] 王亚凤. 锥属植物栲中多酚类成分及抗氧化研究[D]. 桂林: 广西师范大学, 2019.

    Wang Y F. Polyphenols and antioxidant capacity of polyphenols from Castanopsis fargesii Franch[D]. Guilin: Guangxi Normal University, 2019.
    [20] Li S N, Zhou Y B, Liu M, et al. Nutrient composition and starch characteristics of Quercus glandulifera Bl. seeds from China[J]. Food Chemistry, 2015, 185(2015): 371−376.
    [21] 马冬雪, 刘仁林. 9种壳斗科树种坚果3种矿质元素及Vc含量分析[J]. 林业科学研究, 2011, 24(2): 253−255.

    Ma D X, Liu R L. Analysis of 3 mineral elements and Vc contents in nuts of 9 Fagaceae species[J]. Forest Research, 2011, 24(2): 253−255.
    [22] 丁月平. 苦槠淀粉理化性质及其体外消化特性研究[D]. 南昌: 南昌大学, 2019.

    Ding Y P. The study of physicochemical properties and in vitro digestibility of Castanopcis sclerophylla starch[D]. Nanchang: Nanchang University, 2019.
    [23] Korus J, Witczak M, Ziobro R, et al. The influence of acorn flour on rheological properties of gluten-free dough and physical characteristics of the bread[J]. European Food Research and Technology, 2015, 240(6): 1135−1143. doi: 10.1007/s00217-015-2417-y
    [24] Correia P R, Nunes M C, Beirão-Da-Costa M L. The effect of starch isolation method on physical and functional properties of Portuguese nut starches (Ⅱ): Q. rotundifolia Lam. and Q. suber Lam. acorns starches[J]. Food Hydrocolloids, 2013, 30(1): 448−455. doi: 10.1016/j.foodhyd.2012.06.014
    [25] Elham A, Arken M, Kalimanjan G, et al. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus infectoria Galls[J]. Journal of Ethnopharmacology, 2020, 17: 113592.
    [26] Fernandes A, Fernandes I L, Cruz L, et al. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.[J]. Journal of Agricultural and Food Chemistry, 2009, 57(23): 11154−11160. doi: 10.1021/jf902093m
    [27] Wakamatsu H, Tanaka S, Matsuo Y, et al. Reductive metabolism of ellagitannins in the young leaves of Castanopsis sieboldii[J]. Molecules, 2019, 24(23): 4279−4292. doi: 10.3390/molecules24234279
    [28] Huang Y L, Tsujita T, Tanaka T, et al. Triterpene hexahydroxydiphenoyl esters and a quinic acid purpurogallin carbonyl ester from the leaves of Castanopsis fissa[J]. Phytochemistry, 2011, 72(16): 2006−2014. doi: 10.1016/j.phytochem.2011.07.007
    [29] 李娜妮, 何念鹏, 于贵瑞. 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究[J]. 西北植物学报, 2015, 35(9): 1846−1854. doi: 10.7606/j.issn.1000-4025.2015.09.1846

    Li N N, He N P, Yu G R. Non-structural carbohydrates in leaves of tree species from four typical forests in China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1846−1854. doi: 10.7606/j.issn.1000-4025.2015.09.1846
    [30] 王斌, 张腾霄, 宋相周, 等. 不同产地板蓝根中多糖及总氨基酸含量的分析比较[J]. 南方农业学报, 2014, 45(1): 23−27. doi: 10.3969/j:issn.2095-1191.2014.1.23

    Wang B, Zhang T X, Song X Z, et al. Comparison analysis on polysaccharide and total amino acids content in indigowoad root derived from different places[J]. Journal of Southern Agriculture, 2014, 45(1): 23−27. doi: 10.3969/j:issn.2095-1191.2014.1.23
    [31] 张文德, 李信荣, 尹璐, 等. 食品中蛋白质的测定: GB/T 5009.5—2003[S]. 北京: 中国标准出版社, 2003.

    Zhang W D, Li X R, Yin L, et al. Determination of protein in food: GB/T 5009.5−2003 [S]. Beijing: China Standard Press, 2003.
    [32] Gallardo A, Morcuende D, Solla A, et al. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: crosstalk between defoliation and Phytophthora cinnamomi infection[J]. Physiologia Plantarum, 2019, 165(2): 319−329. doi: 10.1111/ppl.12848
    [33] Deng N, Chang E M, Li M H, et al. Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids[J]. Frontiers in Plant Science, 2016, 7(174): 1−15.
    [34] 郭婷婷, 门兴元, 于毅, 等. 二点委夜蛾适应性与玉米苗营养物质和次生代谢物质含量的关系[J]. 昆虫学报, 2018, 61(8): 984−990.

    Guo T T, Men X Y, Yu Y, et al. Relationship between the adaptability of Athetis lepigone (Lepidoptera: Noctuidae) and the contents of nutrients and secondary metabolites in maize seedlings[J]. Acta Entomologica Sinica, 2018, 61(8): 984−990.
    [35] 崔云龙, 李民. 分光光度法测定维生素E[J]. 临床检验杂志, 1990, 8(1): 14−16. doi: 10.3321/j.issn:1001-764X.1990.01.006

    Cui Y L, Li M. Determination of vitamin E by spectrophotometry[J]. Chinese Journal of Clinical Laboratory Science, 1990, 8(1): 14−16. doi: 10.3321/j.issn:1001-764X.1990.01.006
    [36] Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT-Food Science and Technology, 1995, 28(1): 25−30. doi: 10.1016/S0023-6438(95)80008-5
    [37] Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70−76. doi: 10.1006/abio.1996.0292
    [38] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine, 1999, 26: 1231−1237. doi: 10.1016/S0891-5849(98)00315-3
    [39] 王坤, 黄晓露, 李宝财, 等. 30个多穗柯种源主要经济性状及活性成分分析与评价[J]. 西南农业学报, 2019, 32(5): 1051−1056.

    Wang K, Huang X L, Li B C, et al. Analysis and evaluation on main economic traits and active constituents of thirty Lithocarpus ploystachyus Rehd. provenances[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(5): 1051−1056.
    [40] Liebhold A, Sork V, Peltonen M, et al. Within-population spatial synchrony in mast seeding of North American oaks[J]. Oikos, 2004, 104(1): 156−164. doi: 10.1111/j.0030-1299.2004.12722.x
    [41] 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020, 33(2): 93−102. doi: 10.13275/j.cnki.lykxyj.2020.02.012

    Xiong S F, Wu L W, Chen Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances[J]. Forest Research, 2020, 33(2): 93−102. doi: 10.13275/j.cnki.lykxyj.2020.02.012
    [42] 刘志龙, 虞木奎, 唐罗忠, 等. 不同种源麻栎种子形态特征和营养成分含量的差异及聚类分析[J]. 植物资源与环境学报, 2009, 18(1): 36−41. doi: 10.3969/j.issn.1674-7895.2009.01.007

    Liu Z L, Yu M K, Tang L Z, et al. Variation and cluster analyses of morphological characters and nutrient content of Quercus acutissima seed from different provenances[J]. Journal of Plant Resources and Environment, 2009, 18(1): 36−41. doi: 10.3969/j.issn.1674-7895.2009.01.007
    [43] 王学, 肖治术, 张知彬, 等. 昆虫种子捕食与蒙古栎种子产量和种子大小的关系[J]. 昆虫学报, 2008, 51(2): 161−165. doi: 10.3321/j.issn:0454-6296.2008.02.009

    Wang X, Xiao Z S, Zhang Z B, et al. Insect seed predation and its relationships with seed crop and seed size of Quercus mongolica[J]. Acta Entomologica Sinica, 2008, 51(2): 161−165. doi: 10.3321/j.issn:0454-6296.2008.02.009
    [44] 石培春, 李英枫, 韩璐, 等. 不同品质类型小麦籽粒淀粉含量积累的动态差异[J]. 石河子大学学报(自然科学版), 2012, 30(4): 417−421. doi: 10.13880/j.cnki.65-1174/n.2012.04.011

    Shi P C, Li Y F, Han L, et al. The dynamic accumulations of grain starch content in wheat cultivars with different qualities[J]. Journal of Shihezi University (Natural Science), 2012, 30(4): 417−421. doi: 10.13880/j.cnki.65-1174/n.2012.04.011
    [45] 梁晶, 石瑛, 刘凯, 等. 马铃薯不同品种在不同生态条件下的淀粉含量与淀粉产量[J]. 中国马铃薯, 2007, 21(2): 85−89. doi: 10.3969/j.issn.1672-3635.2007.02.005

    Liang J, Shi Y, Liu K, et al. Starch content and starch yield of eight potato varieties under different ecological environments[J]. Chinese Potato Journal, 2007, 21(2): 85−89. doi: 10.3969/j.issn.1672-3635.2007.02.005
    [46] 敖特根, 杨秋林. 蒙古栎橡子营养成分的研究[J]. 内蒙古农牧学院学报, 1998, 19(1): 72−76.

    Ao T G, Yang Q L. Studies on nutrient contents in acorn of Quercus mongolia fisch[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1998, 19(1): 72−76.
    [47] Siro I, Kapolna E, Kapolna B, et al. Functional food. Product development, marketing and consumer acceptance: a review[J]. Appetite, 2008, 51(3): 456−467. doi: 10.1016/j.appet.2008.05.060
    [48] Blaiotta G, Gatta B L, Capua M D, et al. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions[J]. Food Microbiology, 2013, 36(2): 161−169. doi: 10.1016/j.fm.2013.05.002
    [49] Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery[J]. Carbohydrate Polymers, 2012, 87(2): 987−994. doi: 10.1016/j.carbpol.2011.09.044
    [50] 栾泰龙, 郑焕春, 李淑玲,等. 橡子粉乙醇化试验条件研究[J]. 安徽农业科学, 2001, 16(3): 288−292. doi: 10.13989/j.cnki.0517-6611.2015.26.245

    Luan T L, Zheng H C, Li S L, et al. Experimental study on the acorn powder ethanol[J]. Journal of Anhui Agricultural Sciences, 2001, 16(3): 288−292. doi: 10.13989/j.cnki.0517-6611.2015.26.245
    [51] 李迎超. 木本淀粉能源植物栓皮栎与麻栎资源调查及地理种源变异分析[D]. 北京: 中国林业科学研究院, 2013.

    Li Y C. Resource investigation and provenance analysis of woody starch energy plant Quercus variabilis Bl. and Quercus acutissima Carr[D]. Beijing: Chinese Academy of Forestry, 2013.
    [52] 厉月桥. 木本能源植物蒙古栎与辽东栎资源调查与优良种质资源筛选[D]. 北京: 中国林业科学研究院, 2011.

    Li Y Q. Resource investigation and superior germplasm resources selection of woody energy plants Quercus mongolica Fisch and Quercus liaotungensis Koidz [D]. Beijing: Chinese Academy of Forestry, 2011.
    [53] 郝乘仪, 于蕾, 胡杨. 我国橡子开发利用现状与前景[J]. 吉林医药学院学报, 2017, 38(5): 361−363. doi: 10.13845/j.cnki.issn1673-2995.2017.05.018

    Hao C Y, Yu L, Hu Y. Current status and prospects of development and utilization of acorns in China[J]. Journal of Jilin Medical University, 2017, 38(5): 361−363. doi: 10.13845/j.cnki.issn1673-2995.2017.05.018
    [54] 翁德宝, 黄雪方, 杨基楼. 四种南京地产栽培野菜蛋白质营养价值的评价研究[J]. 自然资源学报, 2001, 16(3): 288−292. doi: 10.3321/j.issn:1000-3037.2001.03.015

    Weng D B, Huang X F, Yang J L. Evaluating protein quality of four kinds of cultivated wild vegetables in Nanjing[J]. Journal of Natural Resources, 2001, 16(3): 288−292. doi: 10.3321/j.issn:1000-3037.2001.03.015
    [55] 赵竞, 景浩. 不同品种葡萄皮, 籽提取物多酚含量及抗氧化能力的比较研究[J]. 食品工业科技, 2009, 30(10): 154−158.

    Zhao J, Jing H. Analysis of polyphenol contents and antioxidant activity of grape skin and seed extracts from different varieties of grapes[J]. Science and Technology of Food Industry, 2009, 30(10): 154−158.
    [56] 张盼. 橡子仁多酚提取工艺优化及功能活性评价[D]. 杭州: 浙江大学, 2003.

    Zhang P. Optimization of acorn nutlet polyphenol extraction and evaluation of acorn nutlet polyphenol functional activities [D]. Hangzhou: Zhejiang University, 2003.
    [57] 侯盼盼. 橡子壳多酚的提取分离及功能性研究[D]. Yangling: 西北农林科技大学, 2018.

    Hou P P. Extration and separation and function of acorn shell polyphenols[D]. Yangling: Northwest A&F University, 2018.
    [58] 魏艳秀, 刘攀峰, 杜庆鑫, 等. 不同种质杜仲叶中多酚和黄酮含量差异性分析[J]. 林业科学研究, 2016, 29(4): 529−535. doi: 10.3969/j.issn.1001-1498.2016.04.009

    Wei Y X, Liu P F, Du Q X, et al. Comparison in contents of polyphenol and flavonoid in leaves of Eucommia ulmoides germplasm[J]. Forest Research, 2016, 29(4): 529−535. doi: 10.3969/j.issn.1001-1498.2016.04.009
    [59] 陆胜波, 陈静, 张文娥, 等. 遮光对铁核桃青皮多酚物质及相关酶活性和基因表达的影响[J]. 植物生理学报, 2020, 56(6): 1231−1242. doi: 10.13592/j.cnki.ppj.2020.0043

    Lu S B, Chen J, Zhang W E, et al. Effect of shading on polyphenols, related enzyme activity and gene expression in green husk of Juglans sigillata[J]. Plant Physiology Journal, 2020, 56(6): 1231−1242. doi: 10.13592/j.cnki.ppj.2020.0043
    [60] Karioti A, Sokovic M, Ciric A, et al. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6412−6422. doi: 10.1021/jf2011535
    [61] Uprety Y, Poudel R C, Shrestha K K, et al. Diversity of use and local knowledge of wild edible plant resources in Nepal[J]. Journal of Ethnobiology and Ethnomedicine, 2012, 8(1): 16−31. doi: 10.1186/1746-4269-8-16
    [62] Aryal K P, Poudel S, Chaudhary R P, et al. Diversity and use of wild and non-cultivated edible plants in the western Himalaya[J]. Journal of Ethnobiology and Ethnomedicine, 2018, 14: 10−28. doi: 10.1186/s13002-018-0211-1
    [63] 陈锋, 于翠翠. 野生食用植物资源的开发利用现状及前景分析[J]. 现代食品, 2018(19): 32−34. doi: 10.16736/j.cnki.cn41-1434/ts.2018.19.010

    Chen F, Yu C C. Current situation and prospect of exploitation and utilization of wild edible plant resources[J]. Modern Food, 2018(19): 32−34. doi: 10.16736/j.cnki.cn41-1434/ts.2018.19.010
    [64] Rakić S, Petrović S, Kukić J, et al. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia[J]. Food Chemistry, 2007, 104(2): 830−834.
    [65] Gentilesca T, Camarero J J, Colangelo M, et al. Drought-induced oak decline in the western mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience[J]. iForest Biogeosciences and Forestry, 2017, 10(5): 796−806.
    [66] Knutzen F, Dulamsuren C, Meier I C, et al. Recent climate warming-related growth decline impairs European beech in the center of its distribution range[J]. Ecosystems, 2017, 20(8): 1494−1511.
    [67] Colangelo M, Camarero J J, Borghetti M, et al. Drought and Phytophthora are associated with the decline of oak species in southern Italy[J]. Frontiers in Plant Science, 2018, 9: 1595−1608.
    [68] 唐晓倩. 北方主要落叶栎类种子形态特征和养分含量的研究[D]. 泰安: 山东农业大学, 2012.

    Tang X Q. Study on the seed morphological characteristics and nutrient content of deciduous oak in northern China[D]. Tai’an: Shandong Agricultural University, 2012.
  • 加载中
图(1) / 表(8)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  17
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-12
  • 网络出版日期:  2022-06-18
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回