Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China
-
摘要:目的 模拟阴燃过程,研究土壤表层温度变化规律和气体释放特征,为阴燃燃烧动力学、阴燃蔓延机制和阴燃火灾监测等研究提供理论支持。方法 以大兴安岭地区兴安落叶松人工林土壤为研究对象,通过阴燃炉实验,分析测定不同燃烧时间下的土壤温度和气体(CO2、CO)释放量,及不同含水率(20%、30%、40%)对气体释放量的影响。结果 阴燃过程中土壤表层温度呈现先快速增加,然后保持平稳,最后快速下降直至熄灭的变化趋势;根据土壤表层温度变化特征,将阴燃过程分为点燃期、上升期、稳定期和熄灭期4个阶段,各阴燃阶段校正燃烧效率(MCE)均小于0.75;阴燃过程中CO2平均释放量为316.23 mg/m3,CO平均释放量为101.25 mg/m3;阴燃过程中CO呈现持续性释放状态,CO2呈现间歇性释放状态;燃烧时间对CO2和CO释放量存在显著性影响,但CO2和CO释放量不存在相关关系;不同含水率下,CO2释放量呈现显著性差异(P ˂ 0.05),但CO释放量无显著性差异(P ˃ 0.05)。结论 根据阴燃中的温度和气体变化,阴燃在14 h 后出现向明燃转化的趋势,但由于土壤中可燃物含量下降,最终未转化为明燃;由于含水率升高导致土壤氧气含量下降和热量损失增加,因此CO2释放量降低;在含水率20% ~ 40%的条件下,阴燃均可以维持蔓延传播,因此CO释放量无显著性差异。Abstract:Objective This paper simulates the smouldering combustion process, and discusses the characteristics of soil surface temperature and main emissions in order to provide scientific reference for smouldering combustion kinetics, spread mechanism and fire monitoring.Method Taking the forest soil in the Larix gmelinii plantations of the Daxing’an Mountains as the research object, the temperature variation, main emissions and the effect of moisture content (20%, 30%, 40%) on emissions were analyzed by the results of smouldering furnace experiment.Result The soil surface temperature firstly increased rapidly, then remained stable, and finally decreased rapidly until extinguished during the smouldering combustion process; according to the characteristics of soil surface temperature, the smouldering combustion was divided into four stages, i.e. ignition stage, rise stage, steady stage and extinguishing stage, and the modified combustion efficiency (MCE) of each smoldering stage was less than 0.75; the average concentration of CO2 was 316.23 mg/m3, and the average concentration of CO was 101.25 mg/m3; in the smouldering combustion process, CO2 emission was intermittent, but CO emission was continuous; combustion time had a significant effect on CO2 and CO, but there was no correlation between CO2 and CO; there was significant difference between the concentration of CO2 under different moisture contents (P < 0.05), but there was no significant difference between the concentrations of CO (P > 0.05).Conclusion The smouldering combustion shows a trend of conversion to flaming combustion after 14 h, according to the temperature and emission variation during the smouldering furnace experiment, but the combustion burnt out in the end for the decrease of combustible content; the concentration of CO2 decreases with the increase of water content, resulting from the decrease of oxygen content and the increase of heat loss; smoldering combustion could maintain spread with moisture content of 20%−40%, so the concentration of CO has no significant difference.
-
近年来,木材被广泛应用于室外领域,如木结构建筑、木栈道、木围栏等。然而在室外应用时,木材会不可避免地受到自然环境因素的影响,产生腐朽等生物劣化现象[1],不仅缩短了其使用寿命,还会造成安全隐患。目前,户外木材主要采用南方松(Pinus spp.)和欧洲赤松(Pinus sylvestris)等松木为原料。并且有研究表明:相比于采绒革盖菌(Coriolus versicolor)等白腐菌,松木等针叶材更易受密黏褶菌(Gloeophyllum trabeum)和绵腐卧孔菌(Poria vaporaria)等褐腐菌侵害,且褐腐菌能够在较短时间内快速降解木材,在质量损失较低的情况下导致木材力学强度急剧下降[2],严重影响其使用价值。因此,阐明木材在褐腐初期的微观结构和化学成分变化对于木材防腐保护具有重要意义。
在褐腐过程中,轴向排列的细胞有利于真菌沿木材的顺纹方向蔓延生长,但实际应用中,木材通常要经过封端处理以防止端裂、腐朽等劣化发生。而对于花纹美观且直接暴露的弦切面与径切面,菌丝进入木材内部的通道主要为射线薄壁组织、细胞壁纹孔等[3-5]。随着褐腐的进行,木材中的纤维素和半纤维素被陆续降解,而木质素基本不被破坏[6],因此残留的木质素使得木材在宏观上通常呈现出红褐色[7]。研究表明:在褐腐过程中半纤维素首先发生降解,其降解速度比纤维素更快[8-9]。此外,腐朽材中纤维素的结晶度也明显降低,有研究显示:褐腐15周后的马尾松(Pinus massoniana)相对结晶度下降了60.05%[10],这表明结晶纤维素在褐腐过程中遭到破坏,原本排列有序的分子链被打乱,分子间作用力减小,进而导致分子间间隙增加。褐腐初期对于木材性能的影响非常显著。Witomski等[11]利用粉孢革菌(Coniophora puteana)对欧洲赤松进行腐朽试验,发现褐腐初期纤维素的聚合度由6 000降至1 800,而此时的质量损失仅为7%。尽管褐腐初期木材的质量损失较低(通常不超过10%[12]),但会使木材力学强度急剧下降[13]。
综上所示,以往研究的褐腐周期一般较长(12周),且大多关注腐朽带来的最终结果。对腐朽各阶段,尤其是褐腐初期,木材组分及宏、微观变化的研究并不深入。因此,本研究对户外常用的南方松边材进行不同时长的褐腐处理,重点关注腐朽初期木材的各项变化,揭示褐腐菌进入木材内部的通道,并阐明其对木材微观结构和化学成分变化的影响,为深入探究木材褐腐机理奠定理论基础。
1. 材料与方法
1.1 材 料
南方松边材,试件尺寸为10 mm (轴向) × 20 mm (弦向) × 20 mm (径向);饲木选用南方松边材,尺寸为3 mm(轴向) × 20 mm (弦向) × 20 mm(径向)。褐腐菌采用密黏褶菌,购自中国普通微生物菌种保藏管理中心。
1.2 褐腐试验
参照GB/T 13942.1—2009 《木材耐久性能第一部分:天然耐腐性实验室试验方法》[14]进行土壤木块法测试,腐朽时长分别为0、10、20、40 d。试件在腐朽过程中的质量损失率(L)按公式(1)计算:
L=m0−m1m0×100% (1) 式中:L为试件质量损失率,%;m0为试件腐朽前的绝干质量,g;m1为试件腐朽后的绝干质量,g。
1.3 颜色测定
利用色差仪(三恩施NH310,中国)对木材腐朽前后弦切面的颜色进行表征,测得CIE色度系统中的参数L*、a*和b*。L*为明度值(白色为100,黑色为0),a*为红绿色品指数(a*值越大,颜色越偏红,反之偏绿),b*为黄蓝色品指数(b*值越大,颜色越偏黄,反之偏蓝)。每块试件选取5个点位进行测试,并计算平均值。腐朽过程中的总色差(ΔE)按式(2)计算:
ΔE=√ΔL∗2+Δa∗2+Δb∗2 (2) 式中:ΔE为腐朽前后木材的总色差;ΔL*、Δa*、Δb*分别为不同腐朽时间后腐朽材与健康材的L*、a*、b*差值。
1.4 化学成分测定
试件的苯−乙醇抽提物、酸不溶木质素、综纤维素、纤维素含量,分别根据GB/T 2677.6—94《造纸原料有机溶剂抽出物含量的测定》[15]、ASTM D 1106—96 “Standard Test Method for Acid-Insoluble Lignin in Wood”[16]、Browning(1967)的综纤维素改进测定法[17]、硝酸−乙醇纤维素测定法[18]进行测试。半纤维素含量由综纤维素与纤维素含量之差得到。
1.5 微观形貌表征
收集不同腐朽时长的试件,并在其弦切面与横切面上分别制取5 mm × 5 mm薄片,利用场发射扫描电子显微镜(FE-SEM,日立SU8010,日本)进行观察。同时,使用ImageJ软件测量木材在腐朽过程中细胞壁厚度的变化。
1.6 红外光谱表征
利用傅里叶红外光谱仪(FTIR,Nicolet IS 10,美国),通过KBr法测定试件的红外光谱,扫描范围为400 ~ 4 000 cm−1,扫描次数为64次,分辨率为4 cm−1。
1.7 相对结晶度测定
利用X射线衍射仪(XRD,Bruker D8 ADVANCE,德国)、Jade 6.0软件对试件进行测试与分析。扫描角度范围为5° ~ 40°(2θ),扫描速率为2.0°/min,步长0.02°。
根据Scherrer公式计算微晶尺寸[19]:
Cs=Kλβcosθ (3) 式中:Cs为微晶尺寸,Å;K为校正系数,取0.90;λ为X射线衍射波长,取1.54 Å;β为衍射峰的半高宽,°;θ为布拉格角,°。
根据Segal公式计算相对结晶度[20]:
Cr=I200−IamI200×100% (4) 式中:Cr为相对结晶度,%;I200为(200)晶格衍射角的总强度,2θ = 22.4°,即结晶区的衍射强度;Iam为(110)与(200)晶格之间最小强度,即非结晶区衍射的散射强度,2θ = 18.4°。
2. 结果与讨论
2.1 宏观颜色变化分析
由图1可知:经褐腐菌侵染后,木材的表面(弦切面)颜色发生明显变化,从原来的偏黄色变为灰褐色。随着腐朽的进行,木材表面的ΔL*值持续降低,表明木材颜色变暗(图1b)。同时,Δa*与Δb*值总体呈增加趋势,表明腐朽后木材表面更偏向红褐色。随着腐朽程度的深入,木材中的综纤维素被大量脱除,残留的木质素使木材呈现为红褐色,色差值进一步增大。
2.2 微观形貌变化分析
图2和图3分别为南方松边材在腐朽不同时长后的弦切面和横切面电镜照片。在此过程中,木材的质量变化和细胞壁厚度变化情况如图4所示。由图2可知:未经腐朽的试件显示出较为光滑平整的弦切面(图2a),然而其横切面表面(图3a)还残留着一些破碎的木材组织,这主要由试件的锯切加工过程导致。腐朽10 d后,这些残留的木材组织被逐步降解,在横切面上裸露出木材的细胞腔与细胞壁(图3b)。同时,对于径向排列的射线薄壁细胞,可以观察到其内部菌丝已经穿透细胞壁(矩形框线内的截取图像),并横穿细胞腔,有延伸到下一个细胞的趋势。此外,在弦切面上(图2b)可以发现,木材表面被菌丝附着,同时细胞壁上部分具缘纹孔的纹孔膜被降解并发生破裂(矩形框内的放大图像),菌丝穿透纹孔进入木材细胞腔。研究表明,纹孔膜的主要成分为半纤维素与少量纤维素[21],为褐腐菌降解木材的主要成分。褐腐10 d后,木材内部残留的菌丝较少,结合图4可知,此时的木材质量损失率较低,仅为2.77%。腐朽20 d后,木材的质量损失率增大为16.60%,表明褐腐菌的生长迅速,对营养物质的代谢更剧烈,加快了对木材的降解进程。此时,在木材的管胞内(图2c、图3c)观察到大量交叉缠绕的菌丝,部分菌丝正从纹孔处进入细胞腔(图2c箭头位置),并在细胞腔内蔓延生长,表明褐腐菌逐步完成初期定植。此外,从横切面上可以观察到,木材的S2层被严重降解,细胞壁厚度损失率高达18.24%(图4b)。随着腐朽天数的延长,菌丝的数量不断增加,木材的质量和细胞壁厚度进一步降低。腐朽40 d后,木材的弦切面基本被菌丝覆盖(图2d),而横切面上的木材细胞壁也不再完整,由于纤维素的降解,细胞壁结构逐渐失去支撑作用,出现溃烂瓦解的现象(图3d)。此时,木材的质量损失率和细胞壁厚度损失率分别为20.35%和20.86%(图4),相比于之前,木材的降解速度有所减缓,据此推测腐朽20 d时菌丝已基本完成初期定植。
2.3 化学成分变化分析
腐朽过程中,木材中各组分的变化如表1所示,其对应的FTIR谱图如图5所示。由图5可知:相比于健康材,腐朽10 d后,木材中各特征峰的强度变化较小,质量损失率较低(仅为2.77%),表明褐腐初期木材的降解速度缓慢。由表1可知:此时的质量损失主要来源于抽提物和半纤维素含量的减少,两者的质量损失率分别为47.55%和49.19%。木材中抽提物的绝对含量很少,且成分复杂,除能够被腐朽菌利用外,部分还具有抑菌作用[22],因此其在褐腐初期的变化还有待进一步探讨。由此推测,在腐朽初期,褐腐菌主要降解木材中的半纤维素。随着腐朽时间的延长,木材中综纤维素相对质量分数不断降低,而木质素的相对质量分数有所增加。褐腐20 d时,腐朽材在1 736 cm−1(半纤维素中的乙酰基和羰基的C=O伸缩振动)、1 372 cm−1(纤维素中的C—H变形振动)、897 cm−1(纤维素中的C—H变形振动)和810 cm−1(半纤维素中的葡甘露聚糖)[23-26]处的峰强开始明显降低,表明木材中的碳水化合物发生了严重的降解。碳源作为营养物质被真菌代谢,以及大分子解聚导致3 342 cm−1(纤维素中的O—H伸缩振动)和2 860 cm−1(对称CH2的伸缩振动)[27]处的峰强增加。此时,半纤维素的质量损失率高达85.88%,而纤维素质量分数仅下降了3.54%。相反,木质素特征峰的强度显著增加,如1 510 cm−1(芳环的C=C骨架振动)、1 225 cm−1(C—O伸缩振动)处[23-26],此时木质素相对质量分数增加了16.07%。
表 1 不同腐朽时间后木材的质量损失及化学成分变化Table 1. Mass loss and chemical composition of wood samples at different decay times腐朽时间
Decay
time/d质量损失率
Mass loss
rate/%抽提物质量分数
Extract mass
fraction/%木质素质量分数
Lignin mass
fraction/%综纤维素质量分数
Holocellulose mass
fraction/%纤维素质量分数
Cellulose mass
fraction/%半纤维素质量分数
Hemicellulose mass
fraction/%0 0 3.26 28.07 68.67 50.05 18.62 10 2.77 1.71 28.11 60.12 50.66 9.46 20 16.60 2.77 31.29 50.91 48.28 2.63 40 20.35 3.04 32.58 48.91 46.68 2.23 综上可知,腐朽10 ~ 20 d内是褐腐菌定植木材的重要阶段,此时木材的质量急剧降低,其中的半纤维素和纤维素被迅速降解,细胞壁和纹孔的结构发生破坏,为褐腐菌深入木材进行后续降解奠定了基础。
2.4 相对结晶度分析
由化学成分变化分析可知,褐腐初期半纤维素的降解优先于纤维素,且降解程度更加剧烈。尽管纤维素在这一过程中的损失较少,但其结构也发生了不同程度的变化。本研究对腐朽不同时长后,木材中纤维素的晶格间距d200、微晶尺寸Cs、相对结晶度Cr变化进行了表征,结果如表2所示。总体而言,各阶段的腐朽材的(200)晶面均位于22.4°附近(介于22.30° ~ 22.45°之间),说明腐朽过程对纤维素结晶区的影响相对较小。相比于健康材,腐朽材的晶格间距减小,这主要是因为纤维素结晶区外部松散的非晶区域或不完全结晶的物质被脱除,导致剩余的结晶区更加有序地排列[28]。褐腐20 d后,由于半纤维素含量急剧降低,结晶区在氢键作用下紧密靠拢,因而此时晶格间距d200最小(3.962 Å),相对结晶度Cr从原来的38.63%增加到47.02%。结晶度的增加及晶格间距的减小将阻碍褐腐菌的代谢产物渗透进入纤维素结晶区,因此20 d后木材的腐朽降解速率变缓。然而,随着半纤维素的大量脱除,木材中的孔隙结构增多,褐腐菌将以酶降解的方式进一步对木材细胞壁进行破坏[29]。因此,腐朽40 d后,褐腐菌对半纤维素的降解速度减缓,逐步开始降解纤维素,因而导致其相对结晶度有所降低(降低为44.21%),晶格间距逐渐变大(3.972 Å)。此外,在腐朽过程中,由于微纤丝的不断聚集,使得其微晶尺寸逐渐增加。
表 2 不同腐朽时间后木材的微晶尺寸和相对结晶度变化Table 2. Changes in crystallite sizes and relative crystallinity of wood samples at different decay times腐朽时间
Decay
time/d2θ/(°) 晶格间距
Lattice distance
(d200)/Å微晶尺寸
Crystallite size
(Cs)/Å相对结晶度
Relative crystallinity
(Cr)/%0 22.31 3.982 75.29 38.63 10 22.33 3.979 78.97 39.61 20 22.42 3.962 80.79 47.02 40 22.37 3.972 81.93 44.21 3. 结 论
本研究主要聚焦于褐腐初期阶段,通过表征南方松边材内部的化学成分变化及宏观、微观结构变化等,阐明褐腐菌进入木材内部的路径及初步降解进程,得出以下结论:
(1)木材腐朽后表面颜色有偏红褐色的趋势。
(2)菌丝通过横向排列的射线薄壁细胞和轴向排列的管胞进入木材,并穿透细胞壁上的纹孔膜,从而抵达木材内部的细胞腔,并于20 d时基本完成初期定植;此时木材的质量损失速率增速最大,同时细胞壁S2层发生严重降解,细胞壁厚度损失率达到18.24%。
(3)腐朽初期,木材细胞壁中的半纤维素最先发生降解,木质素的相对含量增加。对于褐腐初期尚未发生显著降解的纤维素而言,其结晶结构发生变化;褐腐20 d时,纤维素的晶格间距最小,相对结晶度最大,可能会阻碍褐腐菌代谢产物对纤维素的分解。
-
图 4 不同含水率下CO2和CO释放量差异性分析
不同小写字母表示CO2释放量存在显著差异(P ˂ 0.05);不同大写字母表示CO释放量存在显著差异(P ˂ 0.05)。Different lowercase letters indicate significant differences in CO2 emission (P ˂ 0.05);varied capital letters indicate significant differences in CO emission(P ˂ 0.05).
Figure 4. Difference analysis on the emission of CO2 and CO of different water contents
表 1 样地基本信息
Table 1 Basic information of sample plots
编号
No.树种组成
Tree species composition海拔
Altitude/m经纬度
Longitude and latitude胸径
DBH/cm林龄/a
Forest age/year郁闭度
Canopy density1 8兴安落叶松
8 Larix gmelinii
1白桦
1 Betula platyphylla
1 蒙古栎
1 Quercus mongolica566.0 124°02′24″E
50°20′24″N22.4 22 0.7 2 兴安落叶松
Larix gmelinii406.3 124°05′24″E
50°19′05″N22.5 27 0.5 3 9兴安落叶松
9 Larix gmelinii
1白桦
1 Betula platyphylla379.7 124°06′36″E
50°18′00″N21.2 26 0.8 4 兴安落叶松
Larix gmelinii407.2 124°04′48″E
50°18′00″N20.6 28 0.8 5 8兴安落叶松
8 Larix gmelinii
1 白桦
1 Betula platyphylla
1蒙古栎
1 Quercus mongolica553.8 124°01′12″E
50°21′00″N14.8 16 0.7 表 2 阴燃过程及基本情况
Table 2 Process of the smouldering combustion and basic information
阴燃阶段
Smouldering stage燃烧时间
Combustion
time/h燃烧过程
Combustion process平均校正燃烧效率
Average modified combustion
efficiency (MCE)平均温度
Average temperature/℃点燃期
Ignition stage (Ⅰ)0 ~ 2 地表温度快速上升至 100 ℃ 以上
Soil surface temperature rises rapidly to more than 100 ℃0.34 ± 0.47 100.71 ± 114.14 上升期
Rise stage (Ⅱ)2 ~ 6 地表温度逐渐上升至 400 ℃ 左右
Soil surface temperature rises gradually to about 400 ℃0.58 ± 0.13 281.25 ± 94.03 稳定期
Steady stage (Ⅲ)6 ~ 12 地表温度稳定在400 ~ 500 ℃
Soil surface temperature stays around 400−500 ℃0.31 ± 036 425.81 ± 41.99 熄灭期
Extinguishing stage (Ⅳ)> 12 地表温度快速下降
Soil surface temperature decreases rapidly0.17 ± 0.33 253.31 ± 146.12 表 3 燃烧时间对CO2和CO释放量的影响(单因素分析)
Table 3 Effects of combustion time on the emission of CO2 and CO (one-way ANOVA test)
气体种类
Gas typedf F P CO2 8 2.946 0.013 CO 8 2.843 0.017 -
[1] El-Sayed S A, Abdel-Latif A M. Smoldering combustion of dust layer on hot surface[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 509−517. doi: 10.1016/S0950-4230(00)00004-8
[2] Drysdale D. An introduction to fire dynamics [M]. Chichester: John Wiley & Sons, 2011.
[3] Hatch L E, Luo W, Pankow J F, et al. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatogra-phy-time-of-flight mass spectrometry[J]. Atmospheric Chemistry and Physics, 2015, 15: 1865−1899. doi: 10.5194/acp-15-1865-2015
[4] Rein G. Smouldering combustion//The SFPE handbook of fire protection engineering [M]. New York: Springer, 2015: 581−603.
[5] Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997[J]. Nature, 2002, 420: 61−65.
[6] 王明霞,王雅钧,汪凤琴, 等. 基于模拟点烧不同加热时间和腐殖质粒径对森林地下火垂直燃烧的影响[J]. 北京林业大学学报, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047 Wang M X, Wang Y J, Wang F Q, et al. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047
[7] 舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4): 62−67. Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Disasters, 2003, 12(4): 62−67.
[8] 杨玖玲. 泥炭阴燃及阴燃气体生成规律的实验与机理研究[D]. 合肥: 中国科学技术大学, 2017. Yang J L. Experimental and theoretical study on the behavior and gas products of smoldering of peat[D]. Hefei: University of Science and Technology of China, 2017.
[9] Cancellieri D, Leroy-Cancellieri V, Leoni E, et al. Kinetic investigation on the smouldering combustion of boreal peat[J]. Fuel, 2012, 93: 479−485. doi: 10.1016/j.fuel.2011.09.052
[10] Huang X, Rein G. Smouldering combustion of peat in wildfires: inverse modeling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion and Flame, 2014, 161(6): 1633−1644. doi: 10.1016/j.combustflame.2013.12.013
[11] Huang X, Rein G. Computational study of critical moisture and depth of burn in peat fires[J]. International Journal of Wildland Fire, 2015, 24(6): 798−808. doi: 10.1071/WF14178
[12] He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
[13] Benscoter B, Thompson D, Waddington J, et al. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils[J]. International Journal of Wildland Fire, 2011, 20(3): 418−429. doi: 10.1071/WF08183
[14] Prat-Guitart N, Rein G, Hadden R M, et al. Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions[J]. International Journal of Wildland Fire, 2016, 25(4): 456−465. doi: 10.1071/WF15103
[15] Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308: 169−177. doi: 10.1016/j.foreco.2013.07.051
[16] Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply[J]. International Journal of Wildland Fire, 2017, 26: 907−918.
[17] 尹赛男, 杜帅, 单延龙, 等. 兴安落叶松人工林腐殖质阴燃燃烧温度变化特征研究[J]. 生态学报, 2021, 42(8): 3123−3130. Yin S N, Du S, Shan Y L, et al. Characteristics of humus smoldering combustion temperature changes in Larix gmelinii plantation[J]. Acta Ecologica Sinica, 2021, 42(8): 3123−3130.
[18] 尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10): 95−101. Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
[19] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Ecology and Management, 2006, 222(1−3): 9−16.
[20] Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19167−19170. doi: 10.1073/pnas.1003669107
[21] Akagis S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011, 11(9): 27523−27602.
[22] Hu Y Q, Christensen E, Restuccia F, et al. Transient gas and particle emissions from smouldering combustion of peat[J]. Proceedings of the Combustion Institute, 2018, 37: 1−8.
[23] Hu Y Q, Fernandez-Anez N, Smith T E L, et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes[J]. International Journal of Wildland Fire, 2018, 27: 293−313.
[24] Ohlemiller T. Modeling of smoldering combustion propagation[J]. Progress in Energy and Combustion Science, 1985, 11: 277−310. doi: 10.1016/0360-1285(85)90004-8
[25] 韩喜越, 李旗, 高博, 等. 兴安落叶松人工林浅层地下火燃烧特征及发生概率研究[J]. 北京林业大学学报, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353 Han X Y, Li Q, Gao B, et al. Combustion characteristics and occurrence probability of shallow underground fire in Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353
[26] Surawskin N C, Sullivan A L, Meyer C P, et al. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion[J]. Atmospheric Chemistry and Physics, 2014, 14(16): 23125−23160.
[27] Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
[28] Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts[J]. Proceedings of the Combustion Institute, 2009, 32: 2489−2496. doi: 10.1016/j.proci.2008.07.008
[29] 辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9): 1162−1166. Xin Y, Wang X R, Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[J]. Fire Science and Technology, 2018, 37(9): 1162−1166.
[30] 王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010. Wang Q H. Study on fire behaviors in forest burning[D]. Beijing: Chinese Academy of Forestry, 2010.
[31] Sikkink P G, Jain T B, Rearrdon J, et al. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel[J]. Forest Ecology and Management, 2017, 405: 150−165. doi: 10.1016/j.foreco.2017.09.008
[32] Frandsen W H. Heat evolved from smoldering peat[J]. International Journal of Wildland Fire, 1991, 1(3): 197−204. doi: 10.1071/WF9910197
[33] 李禹洁. 森林腐殖质由阴燃向明火转变的实验研究[D]. 哈尔滨: 东北林业大学, 2018. Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[D]. Harbin: Northeast Forestry University, 2018.
[34] Frandsen W H. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff[J]. Canadian Journal of Forest Research, 1987, 17(12): 1540−1544. doi: 10.1139/x87-236
[35] 者香, 赵伟涛, 陈海翔. 含水率对泥炭阴燃速率的影响[J]. 燃烧科学与技术, 2016, 22(2): 136−140. Zhe X, Zhao W T, Chen H X. Influence of moisture content on spreading rate of peat smoldering[J]. Journal of Combustion Science and Technology, 2016, 22(2): 136−140.
[36] Huang X, Restuccia F, Gramola M, et al. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires[J]. Combustion and Flame, 2016, 168(26): 393−402.
[37] 者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015. Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering [D]. Hefei: University of Science and Technology of China, 2015.
[38] Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
-
期刊类型引用(2)
1. 李建建,贺宸靖,黄小平,向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展. 生物技术通报. 2023(01): 48-58 . 百度学术
2. 黄杰,陈勇,高日芳,毛莹莹,郑柏艳,张帆涛,谢建坤. 长链非编码RNA:与植物发育和胁迫响应相关的新型调控因子. 江西师范大学学报(自然科学版). 2023(06): 615-625 . 百度学术
其他类型引用(3)