高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑龙江大兴安岭地区兴安落叶松人工林阴燃过程中的温度变化及主要气体释放特征

唐抒圆 高博 于渤 王晓迪 尹赛男 单延龙 韩喜越 曹丽丽

唐抒圆, 高博, 于渤, 王晓迪, 尹赛男, 单延龙, 韩喜越, 曹丽丽. 黑龙江大兴安岭地区兴安落叶松人工林阴燃过程中的温度变化及主要气体释放特征[J]. 北京林业大学学报, 2022, 44(7): 1-7. doi: 10.12171/j.1000-1522.20210118
引用本文: 唐抒圆, 高博, 于渤, 王晓迪, 尹赛男, 单延龙, 韩喜越, 曹丽丽. 黑龙江大兴安岭地区兴安落叶松人工林阴燃过程中的温度变化及主要气体释放特征[J]. 北京林业大学学报, 2022, 44(7): 1-7. doi: 10.12171/j.1000-1522.20210118
Tang Shuyuan, Gao Bo, Yu Bo, Wang Xiaodi, Yin Sainan, Shan Yanlong, Han Xiyue, Cao Lili. Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 1-7. doi: 10.12171/j.1000-1522.20210118
Citation: Tang Shuyuan, Gao Bo, Yu Bo, Wang Xiaodi, Yin Sainan, Shan Yanlong, Han Xiyue, Cao Lili. Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 1-7. doi: 10.12171/j.1000-1522.20210118

黑龙江大兴安岭地区兴安落叶松人工林阴燃过程中的温度变化及主要气体释放特征

doi: 10.12171/j.1000-1522.20210118
基金项目: 国家自然科学基金项目(31971669)
详细信息
    作者简介:

    唐抒圆,讲师。主要研究方向:森林防火。 Email:slslyess@163.com 地址:132013吉林省吉林市丰满区滨江东路3999号北华大学东校区林学院

    责任作者:

    单延龙,教授,博士生导师。主要研究方向:林火生态与管理。Email:shanyl@163.com 地址:同上

  • 中图分类号: S762

Temperature changes and main gas release characteristics of Larix gmelinii plantations during smoldering in Daxing’anling Mountain region of Heilongjiang Province, northeastern China

  • 摘要:   目的  模拟阴燃过程,研究土壤表层温度变化规律和气体释放特征,为阴燃燃烧动力学、阴燃蔓延机制和阴燃火灾监测等研究提供理论支持。  方法  以大兴安岭地区兴安落叶松人工林土壤为研究对象,通过阴燃炉实验,分析测定不同燃烧时间下的土壤温度和气体(CO2、CO)释放量,及不同含水率(20%、30%、40%)对气体释放量的影响。  结果  阴燃过程中土壤表层温度呈现先快速增加,然后保持平稳,最后快速下降直至熄灭的变化趋势;根据土壤表层温度变化特征,将阴燃过程分为点燃期、上升期、稳定期和熄灭期4个阶段,各阴燃阶段校正燃烧效率(MCE)均小于0.75;阴燃过程中CO2平均释放量为316.23 mg/m3,CO平均释放量为101.25 mg/m3;阴燃过程中CO呈现持续性释放状态,CO2呈现间歇性释放状态;燃烧时间对CO2和CO释放量存在显著性影响,但CO2和CO释放量不存在相关关系;不同含水率下,CO2释放量呈现显著性差异(P ˂ 0.05),但CO释放量无显著性差异(P ˃ 0.05)。  结论  根据阴燃中的温度和气体变化,阴燃在14 h 后出现向明燃转化的趋势,但由于土壤中可燃物含量下降,最终未转化为明燃;由于含水率升高导致土壤氧气含量下降和热量损失增加,因此CO2释放量降低;在含水率20% ~ 40%的条件下,阴燃均可以维持蔓延传播,因此CO释放量无显著性差异。

     

  • 图  1  阴燃炉实验装置图

    Figure  1.  Schematic diagram of smouldering combustion experiment

    图  2  阴燃过程中的土壤表层温度及MCE值变化

    Figure  2.  Surface temperature of soil and MCE in the smouldering combustion process

    图  3  阴燃过程中的CO2和CO释放

    Figure  3.  Emission of CO2 and CO during the smouldering combustion process

    图  4  不同含水率下CO2和CO释放量差异性分析

    不同小写字母表示CO2释放量存在显著差异(P ˂ 0.05);不同大写字母表示CO释放量存在显著差异(P ˂ 0.05)。Different lowercase letters indicate significant differences in CO2 emission (P ˂ 0.05);varied capital letters indicate significant differences in CO emission(P ˂ 0.05).

    Figure  4.  Difference analysis on the emission of CO2 and CO of different water contents

    表  1  样地基本信息

    Table  1.   Basic information of sample plots

    编号
    No.
    树种组成
    Tree species composition
    海拔
    Altitude/m
    经纬度
    Longitude and latitude
    胸径
    DBH/cm
    林龄/a
    Forest age/year
    郁闭度
    Canopy density
    1 8兴安落叶松
    8 Larix gmelinii
    1白桦
    1 Betula platyphylla
    1 蒙古栎
    1 Quercus mongolica
    566.0 124°02′24″E
    50°20′24″N
    22.4 22 0.7
    2 兴安落叶松
    Larix gmelinii
    406.3 124°05′24″E
    50°19′05″N
    22.5 27 0.5
    3 9兴安落叶松
    9 Larix gmelinii
    1白桦
    1 Betula platyphylla
    379.7 124°06′36″E
    50°18′00″N
    21.2 26 0.8
    4 兴安落叶松
    Larix gmelinii
    407.2 124°04′48″E
    50°18′00″N
    20.6 28 0.8
    5 8兴安落叶松
    8 Larix gmelinii
    1 白桦
    1 Betula platyphylla
    1蒙古栎
    1 Quercus mongolica
    553.8 124°01′12″E
    50°21′00″N
    14.8 16 0.7
    下载: 导出CSV

    表  2  阴燃过程及基本情况

    Table  2.   Process of the smouldering combustion and basic information

    阴燃阶段
    Smouldering stage
    燃烧时间
    Combustion
    time/h
    燃烧过程
    Combustion process
    平均校正燃烧效率
    Average modified combustion
    efficiency (MCE)
    平均温度
    Average temperature/℃
    点燃期
    Ignition stage (Ⅰ)
    0 ~ 2 地表温度快速上升至 100 ℃ 以上
    Soil surface temperature rises rapidly to more than 100 ℃
    0.34 ± 0.47 100.71 ± 114.14
    上升期
    Rise stage (Ⅱ)
    2 ~ 6 地表温度逐渐上升至 400 ℃ 左右
    Soil surface temperature rises gradually to about 400 ℃
    0.58 ± 0.13 281.25 ± 94.03
    稳定期
    Steady stage (Ⅲ)
    6 ~ 12 地表温度稳定在400 ~ 500 ℃
    Soil surface temperature stays around 400−500 ℃
    0.31 ± 036 425.81 ± 41.99
    熄灭期
    Extinguishing stage (Ⅳ)
    > 12
    地表温度快速下降
    Soil surface temperature decreases rapidly
    0.17 ± 0.33 253.31 ± 146.12
    下载: 导出CSV

    表  3  燃烧时间对CO2和CO释放量的影响(单因素分析)

    Table  3.   Effects of combustion time on the emission of CO2 and CO (one-way ANOVA test)

    气体种类
    Gas type
    dfFP
    CO282.9460.013
    CO82.8430.017
    下载: 导出CSV
  • [1] El-Sayed S A, Abdel-Latif A M. Smoldering combustion of dust layer on hot surface[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 509−517. doi: 10.1016/S0950-4230(00)00004-8
    [2] Drysdale D. An introduction to fire dynamics [M]. Chichester: John Wiley & Sons, 2011.
    [3] Hatch L E, Luo W, Pankow J F, et al. Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatogra-phy-time-of-flight mass spectrometry[J]. Atmospheric Chemistry and Physics, 2015, 15: 1865−1899. doi: 10.5194/acp-15-1865-2015
    [4] Rein G. Smouldering combustion//The SFPE handbook of fire protection engineering [M]. New York: Springer, 2015: 581−603.
    [5] Page S E, Siegert F, Rieley J O, et al. The amount of carbon released from peat and forest fires in Indonesia during 1997[J]. Nature, 2002, 420: 61−65.
    [6] 王明霞,王雅钧,汪凤琴, 等. 基于模拟点烧不同加热时间和腐殖质粒径对森林地下火垂直燃烧的影响[J]. 北京林业大学学报, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047

    Wang M X, Wang Y J, Wang F Q, et al. Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning[J]. Journal of Beijing Forestry University, 2021, 43(3): 66−72. doi: 10.12171/j.1000-1522.20200047
    [7] 舒立福, 王明玉, 田晓瑞, 等. 大兴安岭林区地下火形成火环境研究[J]. 自然灾害学报, 2003, 12(4): 62−67.

    Shu L F, Wang M Y, Tian X R, et al. Fire environment mechanism of ground fire formation in Daxing’an Mountains[J]. Journal of Natural Disasters, 2003, 12(4): 62−67.
    [8] 杨玖玲. 泥炭阴燃及阴燃气体生成规律的实验与机理研究[D]. 合肥: 中国科学技术大学, 2017.

    Yang J L. Experimental and theoretical study on the behavior and gas products of smoldering of peat[D]. Hefei: University of Science and Technology of China, 2017.
    [9] Cancellieri D, Leroy-Cancellieri V, Leoni E, et al. Kinetic investigation on the smouldering combustion of boreal peat[J]. Fuel, 2012, 93: 479−485. doi: 10.1016/j.fuel.2011.09.052
    [10] Huang X, Rein G. Smouldering combustion of peat in wildfires: inverse modeling of the drying and the thermal and oxidative decomposition kinetics[J]. Combustion and Flame, 2014, 161(6): 1633−1644. doi: 10.1016/j.combustflame.2013.12.013
    [11] Huang X, Rein G. Computational study of critical moisture and depth of burn in peat fires[J]. International Journal of Wildland Fire, 2015, 24(6): 798−808. doi: 10.1071/WF14178
    [12] He F, Yi W, Li Y, et al. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation[J]. Biomass and Bioenergy, 2014, 67: 288−296. doi: 10.1016/j.biombioe.2014.05.003
    [13] Benscoter B, Thompson D, Waddington J, et al. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils[J]. International Journal of Wildland Fire, 2011, 20(3): 418−429. doi: 10.1071/WF08183
    [14] Prat-Guitart N, Rein G, Hadden R M, et al. Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions[J]. International Journal of Wildland Fire, 2016, 25(4): 456−465. doi: 10.1071/WF15103
    [15] Davies G M, Gray A, Rein G, et al. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland[J]. Forest Ecology and Management, 2013, 308: 169−177. doi: 10.1016/j.foreco.2013.07.051
    [16] Huang X, Rein G. Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply[J]. International Journal of Wildland Fire, 2017, 26: 907−918.
    [17] 尹赛男, 杜帅, 单延龙, 等. 兴安落叶松人工林腐殖质阴燃燃烧温度变化特征研究[J]. 生态学报, 2021, 42(8): 3123−3130.

    Yin S N, Du S, Shan Y L, et al. Characteristics of humus smoldering combustion temperature changes in Larix gmelinii plantation[J]. Acta Ecologica Sinica, 2021, 42(8): 3123−3130.
    [18] 尹赛男, 单延龙, 宋光辉, 等. 不同粒径腐殖质火垂直燃烧特征研究[J]. 中南林业科技大学学报, 2019, 39(10): 95−101.

    Yin S N, Shan Y L, Song G H, et al. Study on vertical combustion characteristics of humus fire under different particle sizes[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 95−101.
    [19] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Ecology and Management, 2006, 222(1−3): 9−16.
    [20] Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[J]. Proceedings of the National Academy of Sciences, 2010, 107(45): 19167−19170. doi: 10.1073/pnas.1003669107
    [21] Akagis S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011, 11(9): 27523−27602.
    [22] Hu Y Q, Christensen E, Restuccia F, et al. Transient gas and particle emissions from smouldering combustion of peat[J]. Proceedings of the Combustion Institute, 2018, 37: 1−8.
    [23] Hu Y Q, Fernandez-Anez N, Smith T E L, et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes[J]. International Journal of Wildland Fire, 2018, 27: 293−313.
    [24] Ohlemiller T. Modeling of smoldering combustion propagation[J]. Progress in Energy and Combustion Science, 1985, 11: 277−310. doi: 10.1016/0360-1285(85)90004-8
    [25] 韩喜越, 李旗, 高博, 等. 兴安落叶松人工林浅层地下火燃烧特征及发生概率研究[J]. 北京林业大学学报, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353

    Han X Y, Li Q, Gao B, et al. Combustion characteristics and occurrence probability of shallow underground fire in Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2022, 44(2): 47−54. doi: 10.12171/j.1000-1522.20200353
    [26] Surawskin N C, Sullivan A L, Meyer C P, et al. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion[J]. Atmospheric Chemistry and Physics, 2014, 14(16): 23125−23160.
    [27] Hadden R M, Rein G, Belcher C M. Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2547−2553. doi: 10.1016/j.proci.2012.05.060
    [28] Rein G, Cohen S, Simeoni A. Carbon emissions from smouldering peat in shallow and strong fronts[J]. Proceedings of the Combustion Institute, 2009, 32: 2489−2496. doi: 10.1016/j.proci.2008.07.008
    [29] 辛颖, 王新然, 李禹洁. 森林腐殖质阴燃向明火转变实验研究[J]. 消防科学与技术, 2018, 37(9): 1162−1166.

    Xin Y, Wang X R, Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[J]. Fire Science and Technology, 2018, 37(9): 1162−1166.
    [30] 王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010.

    Wang Q H. Study on fire behaviors in forest burning[D]. Beijing: Chinese Academy of Forestry, 2010.
    [31] Sikkink P G, Jain T B, Rearrdon J, et al. Effect of particle aging on chemical characteristics, smoldering, and fire behavior in mixed-conifer masticated fuel[J]. Forest Ecology and Management, 2017, 405: 150−165. doi: 10.1016/j.foreco.2017.09.008
    [32] Frandsen W H. Heat evolved from smoldering peat[J]. International Journal of Wildland Fire, 1991, 1(3): 197−204. doi: 10.1071/WF9910197
    [33] 李禹洁. 森林腐殖质由阴燃向明火转变的实验研究[D]. 哈尔滨: 东北林业大学, 2018.

    Li Y J. Experimental study on the transformation of forest humus from smoldering to flaming[D]. Harbin: Northeast Forestry University, 2018.
    [34] Frandsen W H. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff[J]. Canadian Journal of Forest Research, 1987, 17(12): 1540−1544. doi: 10.1139/x87-236
    [35] 者香, 赵伟涛, 陈海翔. 含水率对泥炭阴燃速率的影响[J]. 燃烧科学与技术, 2016, 22(2): 136−140.

    Zhe X, Zhao W T, Chen H X. Influence of moisture content on spreading rate of peat smoldering[J]. Journal of Combustion Science and Technology, 2016, 22(2): 136−140.
    [36] Huang X, Restuccia F, Gramola M, et al. Experimental study of the formation and collapse of an overhang in the lateral spread of smouldering peat fires[J]. Combustion and Flame, 2016, 168(26): 393−402.
    [37] 者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Experimental study on the influence of particle size, moisture content and mineral content on the spreading rate of peat smoldering [D]. Hefei: University of Science and Technology of China, 2015.
    [38] Turetsky M R, Benscoter B, Page S, et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 2014, 8(1): 11−14.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  6
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 录用日期:  2022-07-06
  • 修回日期:  2021-06-06
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回