Vibration mode of Guzheng resonance panel with whole board structure
-
摘要:
目的 古筝的演奏效果除了与演奏者的技艺有关,与古筝本身的结构也有密不可分的联系。其中共鸣面板接收琴弦的振动并引起共振发声,是古筝发声过程中至关重要的一部分。本研究以整板结构古筝共鸣面板为研究对象,利用不同分析方法探讨其声学振动性能。 方法 采用ZSDASP信号采集分析软件对整板结构共鸣面板进行实验模态分析,得出各阶次共振频率及对应模态振型的特点和规律;并建立整板结构共鸣面板的三维模型,对其进行计算模态分析,验证计算模态分析应用于本研究的可行性。 结果 通过实验模态分析和计算模态分析均得出,随着振动阶次的升高,整板结构共鸣面板模态振型均趋于复杂,且对应的共振频率也逐渐增大;在实验模态结果中,(0, n)、(1, n)和(2, n)等阶次的共振频率较易识别;(0, n)阶对应的模态振型相对清晰易识别,但(1, n)、(2, n)中较低阶次对应的模态振型不明显;计算模态能够识别到的各阶频率所对应的振型为(1, n)和(2, n)阶,与实验模态结果相比缺少(0, n)阶,但计算模态分析得到的结果更具连续性,能够识别到(1, n)和(2, n)的所有阶次,而实验模态分析时个别阶次不够明显。 结论 将计算模态求解结果与实验模态结果进行对比分析得出,计算模态分析应用于整板结构古筝共鸣面板的振动模态研究具有一定的可行性。 Abstract:Objective The performance effect of Guzheng is not only related to the skill of performer, but also closely related to the structure of Guzheng itself. Among them, the resonance panel receives the vibration of string and causes the resonant sound, which is a crucial part of the sound process of Guzheng. In this study, the acoustic vibration performance of Guzheng resonance panel with whole board structure was studied by different analysis methods. Method The experimental modal analysis of the resonant panel was carried out by ZSDASP signal acquisition and analysis software, and the characteristics and laws of the resonance frequencies of each order and the corresponding mode shapes were obtained. A three-dimensional model of the resonance panel of the whole board structure was established, and the computational modal analysis was carried out to verify the feasibility of the computational modal analysis applied in this study. Result Through modal analysis experiment and computational modal analysis, it was found that with the increase of vibration order, the mode shapes of the resonant panel of the whole board structure tended to be more complicated, and the corresponding resonance frequency gradually increased. In the modal experiment results, the resonance frequencies of (0, n), (1, n) and (2, n) orders were easier to identify; the mode shapes corresponding to the (0, n) order were relatively clear and easy to identify, but the mode shapes corresponding to the lower orders of (1, n) and (2, n) were not obvious. The modes corresponding to each frequency that can be identified by the computational modal were (1, n) and (2, n), which were missing (0, n) compared with the experimental modal results. But the results obtained by computational modal analysis were more continuous, and all orders of (1, n) and (2, n) can be identified. Several orders were not obvious enough in experimental modal analysis. Conclusion The results of computational modal analysis are compared with the experimental modal results, and it is concluded that the computational modal analysis is feasible to be applied to the vibration modal research of the resonant panel of the whole board structure of Guzheng. -
Key words:
- Guzheng /
- soundboard /
- vibration mode /
- whole board structure
-
表 1 共鸣面板的尺寸规格
Table 1. Geometric parameters of soundboard
mm 长度
Length厚度
Thickness首部宽度
Head width尾部宽度
Tail width宽度方向弧长半径
Arc length radius in width direction长度方向弧长半径
Arc length radius in length direction1 630 7 350 295 330 7 300 表 2 计算模态分析与实验所得各阶频率对比
Table 2. Frequency comparison between calculated modal analysis and experimental results
阶数
Order频率 Frequency/Hz 误差
Error/%阶数
Order频率 Frequency/Hz 误差
Error/%实验结果
Experimental result计算结果
Calculated result实验结果
Experimental result计算结果
Calculated result(0,0) (1,5) 608.59 608.59 1.17 (0,1) 238.28 (1,6) 764.21 764.21 (0,2) 347.66 (1,7) 910.29 910.29 2.21 (0,3) 425.78 (1,8) 921.97 921.97 1.73 (0,4) 492.19 (1,9) 1 037.00 1 037.00 (0,5) (1,10) 1 117.20 1 117.20 (0,6) (1,11) 1 281.00 1 281.00 −0.63 (0,7) (2,4) 653.58 653.58 −0.41 (0,8) (2,5) 712.17 712.17 3.00 (0,9) (2,6) 758.96 758.96 1.72 (0,10) (2,7) 941.58 941.58 (1,3) 460.94 462.45 0.33 (2,8) 1 032.50 1 032.50 0.50 (1,4) 537.56 -
[1] 周力, 邓小伟, 余征跃. 从振动与声学的角度研究古筝的制作[J]. 乐器, 2017, 45(9):20−23.Zhou L, Deng X W, Yu Z Y. Research on the production of Guzheng from the perspective of vibration and acoustics[J]. Musical Instruments, 2017, 45(9): 20−23. [2] 刘子尧. 论中国传统乐器与西洋乐器的合作创新—以古筝和钢琴为例[J]. 休闲, 2019(2):47.Liu Z Y. On the cooperation and innovation of Chinese traditional musical instruments and western musical instruments: taking Guzheng and piano as examples[J]. Leisure, 2019(2): 47. [3] 边疆. 古筝的选材与制作[J]. 音乐生活, 2014(10):30−32. doi: 10.3969/j.issn.0512-7920.2014.10.011Bian J. Selection and production of Guzheng[J]. Music Life, 2014(10): 30−32. doi: 10.3969/j.issn.0512-7920.2014.10.011 [4] 陈兴华. 论中国民族乐器的短板及其演奏组合形式[J]. 乐器, 2020, 48(3):16−19.Chen X H. Research the short board of Chinese national musical instruments and their performance combination forms[J]. Musical Instrument Magazine, 2020, 48(3): 16−19. [5] 苗雨昕. 论中国传统古筝的传承与开发[J]. 北方音乐, 2020(1):38−39. doi: 10.3969/j.issn.1002-767X.2020.01.023Miao Y X. Research the inheritance and development of traditional Chinese Guzheng[J]. Northern Music, 2020(1): 38−39. doi: 10.3969/j.issn.1002-767X.2020.01.023 [6] 刘宝利, 韩二中. 钢琴音板振动的试验模态分析[J]. 乐器, 1991, 3(2):8−10.Liu B L, Han E Z. Experimental modal analysis of piano soundboard vibration[J]. Musical Instrument, 1991, 3(2): 8−10. [7] 余征跃, 邓小伟, 姚卫平, 等. 从力学角度研究中国传统民族乐器[J]. 电声技术, 2017, 41(11/12):74−79.Yu Z Y, Deng X W, Yao W P, et al. Research on Chinese traditional national musical instruments from the perspective of mechanics[J]. Electroacoustic Technology, 2017, 41(11/12): 74−79. [8] Curtu I, Stanciu M D, Cretu N C, et al. Modal analysis of different types of classical guitar bodies[C]//WSWAS International Conferences. Brasov: Recent Advances in Acoustics & Music, 2009: 18−23. [9] Nicholas N C, Gruber C, Hartman N. Optimization of acoustic soundboard through modal analysis and material selection[D]. Akron: The University of Akron, 2017. [10] Domnica S M, Ioan C, Camelia C, et al. New concept about stiffness of guitar soundboard based on golden section numbers[C]//Ekinović S, Vivancos J, Yalcin S. 13th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”. Hammamet: [s.n.], 2009. [11] 胡均安, 向在喜, 汤亮. 小提琴共鸣箱面板和底板弧度对振动特性的影响[J]. 黄钟—中国·武汉音乐学院学报, 2005, 10(1):131−135. doi: 10.3969/j.issn.1003-7721.2005.01.022Hu J A, Xiang Z X, Tang L. The influence of the curvature of the front panel and bottom plate of the violin resonance box on the vibration characteristics[J]. Huang Zhong Journal of Wuhan Conservatory of Music China, 2005, 10(1): 131−135. doi: 10.3969/j.issn.1003-7721.2005.01.022 [12] 邓小伟. 民族乐器古筝的结构振动声学特性分析[D]. 上海: 上海交通大学, 2015.Deng X W. Analysis of structure vibration and acoustic characteristics of Chinese musical instrument Guzheng[D]. Shanghai: Shanghai Jiao Tong University, 2015. [13] 于洋, 许震宇. 古琴共鸣体的声固耦合模态分析[J]. 振动与冲击, 2016, 35(16):226−230.Yu Y, Xu Z Y. The acoustic-structure coupling modal analysis of Guqin resonance body[J]. Journal of Vibration and Shock, 2016, 35(16): 226−230. [14] Klimova H, Tippner J. Modal analysis of soundboard of the upright piano by finite element method (FEM)[J]. Wood Research, 2014, 59(1): 123−135. [15] 刘镇波, 李司单, 刘一星, 等. 琵琶共鸣面板的振动模态分析[J]. 北京林业大学学报, 2012, 34(2):125−132.Liu Z B, Li S D, Liu Y X, et al. Vibration mode analysis of Pipa resonant panel[J]. Journal of Beijing Forestry University, 2012, 34(2): 125−132. [16] Corradi R, Miccoli S, Squicciarini G, et al. Modal analysis of a grand piano soundboard at successive manufacturing stages[J]. Applied Acoustics, 2017, 125(10): 113−127. [17] Hossein M. Modal analysis of the Setar: a numerical-experimental comparison[J]. Journal of Vibration and Acoustics, 2015, 137(6): 1007−1014. [18] 雷福娟, 黄腾华, 陈桂丹. 音板声学品质的主要影响因子及其评测方法[J]. 陕西林业科技, 2017, 225(5):85−89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021Lei F J, Huang T H, Chen G D. The main influencing factors and evaluation methods of soundboard acoustic quality[J]. Shaanxi Forestry Science and Technology, 2017, 225(5): 85−89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021 [19] Pedrammehr S, Aghdam N J, Pakzad S, et al. A study on vibration of Setar: stringed Persian musical instrument[J]. Journal of Vibroengineering, 2018, 20(7): 2680−2689. doi: 10.21595/jve.2018.19505 [20] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海: 上海交通大学出版社, 2000: 2−80.Fu Z F, Hua H X. Theory and application of modal analysis[M]. Shanghai: Shanghai Jiaotong University Press, 2000: 2−80. [21] 郑清铭, 左付山, 朱泳旭, 等. 基于模态分析的永磁同步电机振动研究[J]. 森林工程, 2019, 35(5):76−81. doi: 10.3969/j.issn.1006-8023.2019.05.013Zheng Q M, Zuo F S, Zhu Y X, et al. Research on vibration of permanent magnet synchronous motor based on modal analysis[J]. Forest Engineering, 2019, 35(5): 76−81. doi: 10.3969/j.issn.1006-8023.2019.05.013 [22] 陈璇. 古琴共鸣体声学振动特性的研究和分析[D]. 吉林: 长春理工大学, 2011.Chen X. Research and analysis of acoustic vibration characteristics of Guqin resonance body[D]. Jilin: Changchun University of Science and Technology, 2011. [23] Huang J, Patil K, Baqersad J, et al. Extracting vibration characteristics of a guitar using finite element, modal analysis, and digital image correlation techniques[J]. Journal of the Acoustical Society of America, 2016, 140(4): 3211−3212. [24] 宋经纬, 徐子然, 陈家鑫, 等. 我国木材市场供给现状分析与未来发展建议[J]. 中华纸业, 2021, 42(5):43−47, 7. doi: 10.3969/j.issn.1007-9211.2021.05.011Song J W, Xu Z R, Chen J X, et al. China’s timber market supply status analysis and future development proposals[J]. China Paper Industry, 2021, 42(5): 43−47, 7. doi: 10.3969/j.issn.1007-9211.2021.05.011 [25] 金吴亦美. 中国传统古筝的传承与开发设计研究[D]. 南京: 南京艺术学院, 2018.Jin-Wu Y M. Research on the inheritance and development of traditional Chinese kites[D]. Nanjing: Nanjing Academy of Art, 2018. -