• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

毛白杨微核心种质构建方法的探讨

毛秀红, 闫少波, 葛磊, 王丽, 张锋, 董玉峰, 臧真荣, 李善文

毛秀红, 闫少波, 葛磊, 王丽, 张锋, 董玉峰, 臧真荣, 李善文. 毛白杨微核心种质构建方法的探讨[J]. 北京林业大学学报, 2023, 45(2): 58-67. DOI: 10.12171/j.1000-1522.20210150
引用本文: 毛秀红, 闫少波, 葛磊, 王丽, 张锋, 董玉峰, 臧真荣, 李善文. 毛白杨微核心种质构建方法的探讨[J]. 北京林业大学学报, 2023, 45(2): 58-67. DOI: 10.12171/j.1000-1522.20210150
Mao Xiuhong, Yan Shaobo, Ge Lei, Wang Li, Zhang Feng, Dong Yufeng, Zang Zhenrong, Li Shanwen. Study on construction method of microcore germplasm of Populus tomentosa[J]. Journal of Beijing Forestry University, 2023, 45(2): 58-67. DOI: 10.12171/j.1000-1522.20210150
Citation: Mao Xiuhong, Yan Shaobo, Ge Lei, Wang Li, Zhang Feng, Dong Yufeng, Zang Zhenrong, Li Shanwen. Study on construction method of microcore germplasm of Populus tomentosa[J]. Journal of Beijing Forestry University, 2023, 45(2): 58-67. DOI: 10.12171/j.1000-1522.20210150

毛白杨微核心种质构建方法的探讨

基金项目: 山东省重点研发计划(2021SFGC0205),林木遗传育种国家重点实验室开放基金项目(K2020203),林业科技发展项目(KJZXZZ2019015、KJZXSA202003)
详细信息
    作者简介:

    毛秀红,博士,正高级工程师。主要研究方向:林木遗传育种。Email:xiuhongmao@163.com 地址:250014 山东省济南市历下区文化东路42号山东省林业科学研究院

    责任作者:

    臧真荣,正高级工程师。主要研究方向:林木遗传育种。Email:mollion@126.com 地址:同上

    李善文,博士,研究员。主要研究方向:林木遗传育种。Email:lishanwen66@163.com 地址:同上

  • 中图分类号: S718.46;S718.49

Study on construction method of microcore germplasm of Populus tomentosa

  • 摘要:
      目的  探讨构建微核心种质的方法,旨在为精准选择毛白杨杂交亲本或研究材料提供科学依据,为其他物种构建微核心种质提供参考。
      方法  本研究利用荧光SSR分子标记对272份毛白杨样本进行分子基因型检测,计算每个样本对总体遗传多样性的贡献值,从大到小全部排序,计算新排序的前25%、20%、15%、10%、5%、2.5%、2%和1.5%共8个取样比例的平均有效等位基因数(Ne)、平均Shannon信息指数(I),平均期望杂合度(He)和平均多态信息指数(PIC)值等,分析微核心种质的代表性,通过与前面的取样比例以及原始种质的相应参数进行比较,确定合适的微核心种质取样比例。利用t检验进行统计学验证。根据所有引物的峰值,构建每份微核心种质的指纹图谱。基于指纹图谱的差异,分析挖掘特异等位基因。
      结果  (1)当取样比例由25%逐渐降为2%时,Ne、He和PIC这3个重要的遗传多样性参数分别逐渐达到最大值,而I在取样比例为10%时达到最大值。(2)当取样比例为2%时,Ne、I、He和PIC值分别是3.513、1.254、0.643和0.597,均大于272份原始种质的相应值2.075、0.825、0.432和0.364,表明构建的微核心种质有效去除了遗传冗余,具有丰富的遗传多样性。(3)t检验结果表明:所构建的微核心种质与原始种质的遗传多样性无显著差异,具有可靠的代表性,可以作为微核心种质。(4)不论10%、5%还是2%取样比例,杂交种质所占比例均大于50%。(5)218号样品在11号位点拥有特异等位基因,261号样品在16号位点拥有特异等位基因,263号样品在7号位点拥有特异等位基因。
      结论  毛白杨微核心种质最为科学、可信、简约和高效的取样比例为2% ~ 10%,其中最精准的取样比例为2%。如果种质资源数目较大,可以根据遗传多样性适当降低取样比例;如果基数较小,可以适当升高。建议以后构建核心种质或者微核心种质时,不要先人为进行分组,而是先根据每个样品对总体遗传多样性的贡献从大到小排序。本研究从分子水平证明杂交种质在种质资源保存和林木遗传育种中占有重要地位,将为其他物种微核心种质构建提供参考。
    Abstract:
      Objective  The method of constructing microcore germplasm was discussed to provide scientific basis for precise selection of hybrid parents or research materials of P. tomentosa, and to provide reference for other species to construct microcore germplasm.
      Method  In this study, molecular genotypes of 272 P. tomentosa samples were detected by fluorescent SSR molecular markers. The contribution value of each sample to the overall genetic diversity was calculated and sorted from large to small. Then, the representativity of microcore germplasm was analyzed and the appropriate sampling proportion was determined by comparing the average effective number of alleles Ne, the average Shannon’s information index I, the average expected heterogenicity He and the average polymorphic information content PIC values obtained by sampling proportion of top 25%, 20%, 15%, 10%, 5%, 2.5%, 2% and 1.5%. Finally, t test was used for statistical verification. According to the band-shaped results of all SSR primers, fingerprints of each microcore germplasm were formed. According to the difference of fingerprint, the specific alleles were analyzed and excavated.
      Result  When the sampling proportion gradually decreased from 25% to 2%, three important genetic diversity parameters of Ne, He and PIC gradually reached the maximum values, respectively, while I reached the maximum value when the sampling proportion was 10%. When the sampling ratio was 2%, the values of Ne, I, He and PIC were 3.513, 1.254, 0.643 and 0.597, respectively, which were all greater than 2.075, 0.825, 0.432 and 0.364 of the original germplasm, indicating that we had effectively removed the genetic redundancy, and the constructed microcore germplasm had abundant genetic diversity. The t test results showed that there was no significant difference in genetic diversity between the constructed microcore germplasm and the original germplasm, which was reliable and representative and could be used as the microcore germplasm. The proportion of hybrid germplasm was more than 50% regardless of the sampling proportion of 10%, 5% or 2%. Sample 218 had a specific allele at locus 11, sample 261 had a specific allele at locus 16, and sample 263 had a specific allele at locus 7.
      Conclusion  When the sampling ratio of microcore germplasm of poplar is 2%−10%, it is the most scientific, reliable, simple and efficient, among which the most accurate sampling ratio is 2%. If the number of germplasm resources is large, it can be appropriately reduced according to the genetic diversity, and on the contrary, it can be increased appropriately. It is suggested that when constructing core germplasm or microcore germplasm in the future, rather than grouping, each sample is firstly ranked from largest to smallest according to its contribution to overall genetic diversity. It is proved from the molecular level that hybrid germplasm plays an important role in the conservation of germplasm resources and the genetic breeding of trees. At the same time, this study also provides reference for the construction of microcore germplasm of similar species.
  • 表  1   产地样本数及无性系编号

    Table  1   Sample number from provenances and clone No.

    产地
    Provenance
    样本数
    Sample number
    无性系编号
    Clone No.
    北京 Beijing 25 1 ~ 25
    河北 Hebei 56 26 ~ 81
    山东 Shandong 19 82、83、221、222、232、234、235、237、242 ~ 249、251、254、255
    河南 Henan 41 84 ~ 114、223、225 ~ 230、257 ~ 259
    山西 Shanxi 44 115 ~ 157、260
    陕西 Shaanxi 49 158 ~ 203、238、239、261
    甘肃 Gansu 5 204 ~ 208
    安徽 Anhui 9 209 ~ 217
    江苏 Jiangsu 4 218 ~ 220、263
    下载: 导出CSV

    表  2   毛白杨核心种质排序表

    Table  2   Rank of core germplasm of P. tomentosa

    顺序
    Order
    无性系编号
    Clone No.
    顺序
    Order
    无性系编号
    Clone No.
    顺序
    Order
    无性系编号
    Clone No.
    顺序
    Order
    无性系编号
    Clone No.
    1156182653522752161
    2258192633626453113
    3236202333721154160
    4253212253819655259
    5266222673920856203
    6262232184017657158
    7261242224119558110
    8231252704213859155
    934261974319360272
    10241272564415261202
    11271282694518462154
    12242292204618063255
    13252302504718164151
    1418631191488965201
    152403221949266647
    1623733725017867147
    17268342155112668109
    下载: 导出CSV

    表  3   不同取样比例种质总数及不同来源份数

    Table  3   Total number of germplasms with different sampling ratios and the number of samples from different sources

    比例
    Ratio/%
    北京
    Beijing
    河北
    Hebei
    山东
    Shandong
    河南
    Henan
    山西
    Shanxi
    陕西
    Shaanxi
    甘肃
    Gansu
    安徽
    Anhui
    江苏
    Jiangsu
    新疆
    Xinjiang
    杂种
    Hybrid
    总计
    Total
    100.0255619414449594119272
    25.0044881812411868
    20.0033641412411755
    15.002331712411741
    10.001321300211427
    5.00111120000814
    2.5000111000047
    2.0000110000035
    1.5000110000024
    下载: 导出CSV

    表  4   不同取样比例微核心种质遗传多样性分析

    Table  4   Genetic diversity analysis of microcore germplasm with different sampling ratios

    样本量
    Sample
    number (N)
    取样比例
    Sampling ratio/%
    等位基因数
    Allele
    number (Na)
    有效等位基因数
    Effective number
    of allele (Ne)
    Shannon信息指数
    Shannon
    information
    index (I)
    观测杂合度
    Observed
    heterozygosity
    (Ho)
    期望杂合度
    Expected
    heterozygosity
    (He)
    平均多态信息指数
    Average polymorphic
    information index (PIC)
    272100.06.6252.0750.8250.5610.4320.364
    6825.06.0632.7611.0940.6050.5390.499
    5520.06.0632.9161.1410.6050.5570.519
    4115.05.8753.1451.2050.6010.5840.547
    2710.05.8133.3171.2710.5810.6140.578
    145.04.9383.3851.2340.5890.6160.576
    72.54.6253.4041.2540.5540.6380.594
    52.04.4383.5131.2540.5500.6430.597
    41.53.6253.0031.0480.6250.5630.512
    下载: 导出CSV

    表  5   微核心种质(10%)与初始种质的遗传多样性比较

    Table  5   Comparison of genetic diversity between microcore germplasm (10%) and primary germplasm

    群体 PopulationNNaNeIHoHePIC
    初始种质 Primary germplasm2726.6252.0750.8250.5610.4320.364
    微核心种质 Microcore germplasm275.8133.3171.2710.5810.6140.578
    保留率 Retention rate/%1087.743159.855154.061103.565142.130158.791
    t0.993 8
    P 0.358 7 > 0.05
    下载: 导出CSV

    表  6   微核心种质(2%)与初始种质的遗传多样性比较

    Table  6   Comparison of genetic diversity between the microcore germplasm (2%) and primary germplasm

    群体 PopulationNNaNeIHoHePIC
    初始种质 Primary germplasm2726.6252.0750.8250.5610.4320.364
    微核心种质 Microcore germplasm54.4383.5131.2540.5500.6430.597
    保留率 Retention rate/%266.989169.301152.00098.039148.843164.011
    t0.999 4
    P0.356 2 > 0.05
    下载: 导出CSV

    表  7   微核心种质(15%)与初始种质的遗传多样性比较

    Table  7   Comparison of genetic diversity between the microcore germplasm (15%) and primary germplasm

    群体 PopulationNNaNeIHoHePIC
    初始种质 Primary germplasm2726.6252.0750.8250.5610.4320.364
    微核心种质 Microcore germplasm415.8753.1451.2050.6010.5840.547
    保留率 Retention rate/%1588.679151.566146.061107.130135.185150.275
    t0.994 6
    P0.358 4 > 0.05
    下载: 导出CSV

    表  8   微核心种质(1.5%)与初始种质遗传多样性比较

    Table  8   Comparison of genetic diversity between the microcore germplasm (1.5%) and primary germplasm

    群体 PopulationNNaNeIHoHePIC
    初始种质 Primary germplasm2726.6252.0750.8250.5610.4320.364
    微核心种质 Microcore germplasm43.6253.0031.0480.6250.5630.512
    保留率 Retention rate/%1.554.717144.723127.030111.408130.324140.659
    t1.006 5
    P0.353 0 > 0.05
    下载: 导出CSV

    表  9   16个SSR位点27份微核心种质的多态性分析

    Table  9   Polymorphism analysis of 27 accessions of microcore germplasm at 16 SSR locus

    引物
    Primer
    位点
    Locus
    NNaNeIHoHe
    PIC
    1 Ptr_1_SSR2 27 5.000 3.291 1.300 0.593 0.696 0.640
    2 Ptr_7_SSR14 27 7.000 4.500 1.649 0.815 0.778 0.744
    3 Ptr_1_SSR1 27 3.000 1.573 0.655 0.333 0.364 0.327
    4 Ptr_9_SSR3 27 4.000 2.282 1.040 0.222 0.562 0.512
    5 Ptr_11_SSR1 27 7.000 4.084 1.595 0.556 0.755 0.718
    6 Ptr_10_SSR1 27 4.000 2.809 1.136 0.852 0.644 0.574
    7 Ptr_11_SSR8 27 5.000 1.421 0.653 0.148 0.296 0.283
    8 Ptr_14_SSR12 27 7.000 4.166 1.636 0.852 0.760 0.726
    9 Ptr_14_SSR7 27 5.000 3.827 1.465 0.852 0.739 0.698
    10 Ptr_16_SSR3 27 6.000 1.369 0.651 0.111 0.270 0.263
    11 Ptr_3_SSR13 27 7.000 3.044 1.364 0.259 0.671 0.615
    12 Ptr_14_SSR11 27 6.000 2.553 1.239 0.778 0.608 0.566
    13 Ptr_18_SSR17 27 10.000 6.568 2.032 0.815 0.848 0.830
    14 Ptr_7_SSR15 27 9.000 6.688 2.015 0.926 0.850 0.833
    15 Ptr_13_SSR6 27 5.000 3.539 1.401 0.889 0.717 0.672
    16 Ptr_19_SSR1 27 3.000 1.353 0.503 0.296 0.261 0.241
    平均值 Mean 27 5.813 3.317 1.271 0.581 0.614 0.578
    下载: 导出CSV

    表  10   前8对引物构建的27份毛白杨微核心种质指纹图谱

    Table  10   Fingerprint map of 27 microcore germplasms of P. tomentosa constructed using the top 8 pairs of primers bp

    顺序
    Order
    无性系编号
    Clone No.
    引物 Primer
    12345678
    1 156 378/378 393/396 185/185 369/372 271/281 241/244 332/332 333/345
    2 258 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    3 236 374/382/390 360/363/399 185/185 369/369 269/283 238/241 332/332 335/337
    4 253 378/378 360/396 185/185 372/372 271/287 238/241 294/294 333/337
    5 266 390/390 357/363 183/183 269/269 275/275 238/238 330/330 333/333
    6 262 374/378 360/396 185/185 372/372 271/283 241/244 332/332 333/333
    7 261 382/390 363/396 185/187 269/269 269/269 238/241/250 332/332 337/337
    8 231 376/378 393/396 185/185 369/372 271/271 241/244 332/332 333/345
    9 34 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    10 241 378/378 393/396 185/185 372/372 271/271 238/244 332/332 333/353
    11 271 374/382/390 360/363/399 185/185 369/369 269/269 238/241 332/332 333/337
    12 242 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    13 252 378/378 396/396 185/185 369/372 271/281 241/244 332/332 333/345
    14 186 382/390 363/396 185/187 369/369 269/269 238/241/250 332/332 335/337
    15 240 378/378 393/396 185/185 372/372 271/271 238/244 332/332 333/353
    16 237 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    17 268 378/378 360/396 185/185 369/372 271/271 241/244 332/332 333/345
    18 265 378/382 360/399 185/185 372/372 283/287 238/241 294/332 333/337
    19 263 382/390 360/363 185/185 372/372 269/281 238/250 332/338 333/337
    20 233 378/378 396/396 185/185 366/369 271/271 241/241 332/332 331/333
    21 225 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    22 267 390/390 363/363 185/187 269/269 285/285 238/238 330/334 333/333
    23 218 378/378 360/360 185/185 366/366 271/271 241/241 332/332 331/353
    24 222 382/390 363/366/399 185/187 372/372 269/283 238/241/244 332/332 337/355
    25 270 378/378 396/396 185/185 369/372 271/271 241/244 332/332 333/345
    26 197 382/390 360/363 185/185 372/372 269/281 238/250 332/332 333/337
    27 256 378/382/390 360/363/399 185/185 372/372 271/283 238/241 294/332 335/337
    下载: 导出CSV

    表  11   后8对引物构建的27份毛白杨微核心种质指纹图谱

    Table  11   Fingerprint map of 27 microcore germplasms of P. tomentosa constructed using the last 8 pairs of primers bp

    顺序
    Order
    无性系编号
    Clone No.
    引物 Primer
    910111213141516
    1 156 253/262 356/356 373/373 327/348 177/179 347/355 339/345 289/292
    2 258 250/259 356/356 353/373 327/336 175/179 345/361/363 339/342/348 289/289
    3 236 259/259 356/356 353/353 327/327 171/181 355/361/363 342/345 280/289
    4 253 253/259 356/356 373/373 327/336 173/177 339/365 339/339 289/289
    5 266 259/259 340/340 371/371 321/330 193/203 363/363 336/342 289/289
    6 262 262/262 356/356 353/353 327/327 179/181 339/365 336/345 280/289
    7 261 256/259 356/356 353/353 327/336 171/173/175 359/363 339/342 280/289
    8 231 253/262 356/356 373/373 327/348 177/181 347/355 339/345 289/292
    9 34 250/259 356/356 353/373 327/336 175/179 345/361/363 339/348 289/289
    10 241 253/259 356/356 375/375 306/327 173/173 347/373 336/342 289/289
    11 271 256/262 356/356 353/353 327/327 171/171 355/361/363 342/345 280/289
    12 242 250/259 356/356 353/373 327/336 175/179 345/361/363 339/342/348 289/289
    13 252 253/262 356/356 373/373 327/348 177/179 347/355 339/345 289/289
    14 186 256/259 356/356 353/353 327/336 171/173/175 359/363 339/342 280/289
    15 240 253/259 356/356 375/375 306/327 173/173 347/373 336/342 289/289
    16 237 250/259 356/356 353/373 327/336 175/179 345/361/363 339/342/348 289/289
    17 268 253/262 356/356 373/373 327/348 177/177 347/355 342/345 280/289
    18 265 259/262 356/356 387/387 327/327 173/179 361/365 336/339 289/289
    19 263 256/262 356/356 353/353 327/336 173/191 361/363 339/342 289/289
    20 233 259/262 326/334 373/373 327/327 179/181 347/355 339/345 289/289
    21 225 250/259 356/356 353/373 327/336 175/179 345/361/363 339/342/348 289/289
    22 267 259/262 316/328 369/369 321/330 201/201 363/365 342/348 289/289
    23 218 259/259 326/334 353/377 327/327 177/179 355/355 339/339 289/289
    24 222 250/259 356/356 353/373 327/336 175/179 345/361/363 339/342/348 289/289
    25 270 253/262 356/356 373/373 327/348 177/179 347/355 339/345 289/289
    26 197 256/262 356/356 353/353 327/336 173/191 361/363 339/342 289/289
    27 256 259/262 356/356 353/353 327/336 171/173 361/363/365 339/339 289/289
    下载: 导出CSV
  • [1] 徐纬英. 杨树[M]. 哈尔滨: 黑龙江人民出版社, 1988.

    Xu W Y. Populus[M]. Harbin: Heilongjiang People’s Publishing House, 1988.

    [2] 李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37−41. doi: 10.3969/j.issn.1001-4241.2004.02.010

    Li S W, Zhang Z Y, He C Z, et al. Advances in hybrid breeding of poplar in China[J]. World Forestry Research, 2004, 17(2): 37−41. doi: 10.3969/j.issn.1001-4241.2004.02.010

    [3]

    Frankel O H, Brown A H D. Plant genetic resources today: a critical appraisal[C]//Holden J H W, Williams J T. Crop genetic resources: conservation and evaluation. London: George Allan and Unwin, 1984: 249−257.

    [4] 张兴伟. 烟草微核心种质构建及相关性状数量遗传分析[D]. 北京: 中国农业科学院, 2013.

    Zhang X W. Construction and quantitative genetic analysis of tobacco mini core collection[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.

    [5]

    Upadhyaya H D, Ortiz R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement[J]. Theoretical and Applied Genetics, 2001, 102: 1292−1298. doi: 10.1007/s00122-001-0556-y

    [6] 刘亚男. 野生大豆微核心种质的遗传多样性分析[D]. 北京: 中国农业科学研究院, 2008.

    Liu Y N. Analysis of genetic diversity in a mini-core collection of wild soybean (G. soja) in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.

    [7] 邱丽娟, 李英慧, 关荣霞, 等. 大豆核心种质和微核心种质的构建、验证与研究进展[J]. 作物学报, 2009, 35(4): 571−579. doi: 10.3724/SP.J.1006.2009.00571

    Qiu L J, Li Y H, Guan R X, et al. Establishment, representative testing and research progress of soybean core collection and mini core collection[J]. Acta Agronomica Sinica, 2009, 35(4): 571−579. doi: 10.3724/SP.J.1006.2009.00571

    [8] 姜俊烨. 蚕豆微核心种质构建及 SSR 遗传连锁图谱加密[D]. 北京: 中国农业科学院, 2014.

    Jiang J Y. Mini-core collection construction and genetic linkage map density enhancement of faba bean (Vicia faba L.) with SSR markers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.

    [9] 连帅. 黍稷种质资源遗传多样性研究及微核心种质的构建[D]. 太谷: 山西农业大学, 2017.

    Lian S. Genetic diversity assessment of broomcorn (Panicum miliaceum L.) and construction of a mini core collection in China[D]. Taigu: Shanxi Agricultural University, 2017.

    [10] 毛秀红, 朱士利, 李善文, 等. 基于荧光SSR标记的毛白杨核心种质构建[J]. 北京林业大学学报, 2020, 42(7): 40−47. doi: 10.12171/j.1000-1522.20190413

    Mao X H, Zhu S L, Li S W, et al. Core germplasm construction of Populus tomentosa based on the fluorescent SSR markers[J]. Journal of Beijing Forestry University, 2020, 42(7): 40−47. doi: 10.12171/j.1000-1522.20190413

    [11]

    Peakall R, Smouse P E. GenAlEx6.5[J]. Bioinformatics, 2012, 28: 2537−2539. doi: 10.1093/bioinformatics/bts460

    [12]

    Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment[J]. Molecular Ecology, 2007, 16: 1099−1106. doi: 10.1111/j.1365-294X.2007.03089.x

    [13]

    Maria M A, Alfonso C M, Jefferey B E, et al. The USDA barley core collection genetic diversity, population structure, and potential for genome-wide association studies[J]. PLoS ONE, 2014, 9(4): 1−4.

    [14]

    Upadhyaya H D, Bramel P J, Ortiz R, et al. Developing a mini core of peanut for utilization of genetic resources[J]. Crop Science, 2002, 42: 2150−2156. doi: 10.2135/cropsci2002.2150

    [15] 陈存, 丁昌俊, 张静, 等. 美洲黑杨群体结构分析及核心种质库构建[J]. 林业科学, 2020, 56(9): 67−76. doi: 10.11707/j.1001-7488.20200908

    Chen C, Ding C J, Zhang J, et al. Population structure analysis and core collection construction of Populus deltoides[J]. Scientia Silvae Sinicae, 2020, 56(9): 67−76. doi: 10.11707/j.1001-7488.20200908

    [16] 林惠斌, 朱之悌. 毛白杨杂交育种战略的研究[J]. 北京林业大学学报, 1988, 10(3): 97−101. doi: 10.13332/j.1000-1522.1988.03.014

    Lin H B, Zhu Z T. Studies on breeding strategies of Populus tomentosa[J]. Journal of Beijing Forestry University, 1988, 10(3): 97−101. doi: 10.13332/j.1000-1522.1988.03.014

    [17] 姚俊修, 毛秀红, 李善文, 等. 基于荧光SSR标记的白杨派种质资源遗传多样性研究[J]. 北京林业大学学报, 2018, 40(6): 92−100. doi: 10.13332/j.1000-1522.20170429

    Yao J X, Mao X H, Li S W, et al. Genetic diversity of germplasm resources of Leuce based on SSR fluorescent marker[J]. Journal of Beijing Forestry University, 2018, 40(6): 92−100. doi: 10.13332/j.1000-1522.20170429

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

表(11)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  126
  • PDF下载量:  58
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-07-11
  • 网络出版日期:  2022-11-18
  • 发布日期:  2023-02-24

目录

    /

    返回文章
    返回