Analysis of very volatile organic compounds (VVOC) and odor emission from decorative particleboard
-
摘要:
目的 探究饰面刨花板极易挥发性有机化合物(VVOC)及其中气味特征化合物的释放特性,分析厚度和饰面材料对板材VVOC及气味强度的影响,为人造板VVOC及气味研究提供基础数据。 方法 选用不同厚度三聚氰胺浸渍纸饰面刨花板、PVC饰面刨花板和刨花板素板3种板材为实验对象,利用气相色谱–质谱/嗅觉测量技术(GC-MS/O)对板材释放的VVOC及气味特征化合物进行分析。 结果 两种厚度的3种不同饰面刨花板中,刨花板素板(PB)、三聚氰胺饰面刨花板(MI-PB)、PVC饰面刨花板(PVC-PB)VVOC种类均分别为9种、10种、8种。两种厚度的不同饰面刨花板TVVOC释放浓度均表现为:PB > MI-PB > PVC-PB,18 mm > 8 mm。不同饰面刨花板TVVOC释放浓度大小受厚度影响程度不同,PB受影响最大,MI-PB受影响最小。不同厚度、不同饰面条件下,刨花板各个气味特征化合物释放浓度及气味强度存在差异,且气味强度与释放浓度和气味阈值有关,不同化合物之间不符合“浓度高则气味强度大”的变化规律。饰面刨花板整体气味特征主要由特殊性香味和甜香味决定,辛辣气味作为基本特征气味对整体气味形成起辅助作用。饰面刨花板释放的VVOC主成分是醇、酮;气味强度较高的特征化合物为醇、酮、醚、酯。厚度增大饰面刨花板释放VVOC种类和质量浓度增多,气味特征化合物及气味强度相应增大。 结论 饰面处理在一定程度上可以降低释放物种类和含量,且本试验中PVC作为饰面材料对刨花板VVOC和气味强度的抑制作用优于三聚氰胺浸渍纸饰面。 -
关键词:
- 三聚氰胺饰面刨花板 /
- PVC饰面刨花板 /
- 气相色谱–质谱–嗅闻技术 /
- 极易挥发性有机化合物(VVOC) /
- 气味
Abstract:Objective By analyzing the influence of thickness and decorative materials on very volatile organic compounds (VVOC) and odor intensity of wood-based panels, the released characteristics were explored. Method Melamine-impregnated paper finished particleboard, polyvinyl chloride finished particleboard and particleboard with different thickness were selected as experimental subjects. VVOC and odor characteristic compounds released from these particleboards were analyzed by gas chromatography-mass spectrometry/olfactory. Result In this experiment, the types of VVOC of particleboard (PB), melamine-impregnated paper finished particleboard (MI-PB), and polyvinyl chloride finished particleboard (PVC-PB) were 9, 10 and 8, respectively. The released concentrations of TVVOC were as follows: PB > MI-PB > PVC-PB, 18 mm > 8 mm. TVVOC emission concentration of particleboard with different decorative materials was affected by the thickness to different degrees, with PB being the most affected and MI-PB being the least. Under different thicknesses and different finishes, the released concentration and odor intensity of each odor characteristic compound were different, and the odor intensity was related to the released concentration and odor threshold, different compounds did not conform to the changing rule of “higher concentration leads to higher odor intensity”. The overall odor characteristics of the decorative particleboard were mainly determined by the special fragrance and sweet fragrance, and the pungent odor as the basic characteristic odor plays an auxiliary role in the formation of overall odor. The main components of VVOC released from decorative particleboard were alcohols and ketones. The characteristic compounds with higher odor intensity were alcohols, ketones, ethers and esters. The types and mass concentration of VVOC were increased with the increase of thickness, and the odor characteristic compounds and odor intensity were increased accordingly. Conclusion Decorative treatment can reduce the released species and content to a certain extent, and in this experiment, PVC as a decorative material plays a better inhibiting role on VVOC and odor intensity of particleboard than melamine-impregnated paper. -
表 1 气味强度判别标准(日本)
Table 1. Odor intensity criteria (Japan)
气味强度(级) Odor intensity (grade) 0 1 2 3 4 5 表示内容
Representation content无味
Odorless稍有气味
Slight odor可判断气味
Predictable odor易感知气味
Perceptible odor较强气味
Strong odor强烈气味
Intensive odor注:此表引自日本标准第91号法律:恶臭控制法。Note: this table is quoted from Law No. 91: offensive odor control law. 表 2 不同厚度、不同饰面刨花板VVOC释放组分及其质量浓度
Table 2. Composition and content of VVOC released from particleboards with different thicknesses and decorative treatments
物质
Substance化学式
Chemical
formula化学结构
Chemical structure毒害性
Toxicity沸点
Boiling
point/℃质量浓度均值 Mean mass concentration/(μg·m−3) 8 mm 18 mm PB MI-PB PVC-PB PB MI-PB PVC-PB 二氯甲烷
DichloromethaneCH2Cl2 中等毒
Moderate toxicity39.8 6.82 4.62 4.89 21.64 4.62 15.88 乙酸
Acetic acidC2H4O2 低毒
Low toxicity117.9 10.25 5.50 1.59 31.77 27.51 6.50 乙醇
EthanolC2H5O2 微毒
Slight toxicity78.0 43.30 50.49 25.64 55.99 75.92 35.48 丙酮
AcetoneC3H6O 微毒
Slight toxicity56.53 45.45 55.49 30.34 60.05 78.92 36.28 乙酸乙酯
Ethyl acetateC4H8O2 低毒
Low toxicity77.0 20.17 22.00 22.29 21.93 32.56 26.43 四氢呋喃
TetrahydrofuranC4H8O 低毒
Low toxicity66.0 17.17 14.34 11.29 24.99 15.73 13.37 1-4-二恶烷
1-4-dioxaneC4H8O2 微毒
Slight toxicity101.1 7.00 3.13 1.10 20.12 5.00 2.69 正丁醇
1-butanolC4H10O 低毒
Low toxicity117.7 75.78 57.52 53.12 94.19 74.95 67.69 3-甲基-2-(5H)-呋喃酮
3-methyl-2-(5H)-furanoneC5H6O2 低毒
Low toxicity222.4 12.77 3.95 — 19.73 6.72 — 戊醛
PentanalC5H10O 低毒
Low toxicity103.0 — 6.88 — — 11.11 — 总计
Total238.69 223.92 150.26 350.41 337.80 204.31 注:PB代表刨花板素板,MI-PB代表三聚氰胺饰面刨花板,PVC-PB 代表PVC 饰面刨花。Notes: PB is particleboard, MI-PB is melamine-impregnated paper finished particleboard, and PVC-PB is polyvinyl chloride finished particleboard. -
[1] 卢志刚, 王启繁, 夏可瑜, 等. 模拟室内环境释放舱设备的研制与开发[J]. 林业工程学报, 2020, 5(3):130−137.Lu Z G, Wang Q F, Xia K Y, et al. Development of a simulated indoor environment release cabin equipment[J]. Journal of Forestry Engineering, 2020, 5(3): 130−137. [2] 彭晓瑞, 张占宽, 赵丽媛. 等离子体改性聚丙烯饰面膜的拉曼光谱和XPS分析[J]. 林业工程学报, 2020, 5(4):45−51.Peng X R, Zhang Z K, Zhao L Y. Analysis of Raman spectroscopy and XPS of plasma modified polypropylene decorative film[J]. Journal of Forestry Engineering, 2020, 5(4): 45−51. [3] 王文丽, 彭晋达, 赵子元, 等. 饰面板用三聚氰胺甲醛树脂的改性[J]. 林业工程学报, 2020, 5(2):42−47.Wang W L, Peng J D, Zhao Z Y, et al. Modification of melamine-formaldehyde resin for decoration board[J]. Journal of Forestry Engineering, 2020, 5(2): 42−47. [4] 胡晓珍. AgBB《建筑产品挥发性有机化合物(VOC和SVOC)排放的健康评估程序》标准解析[J]. 涂料技术与文摘, 2015, 36(6):34−38, 46. doi: 10.3969/j.issn.1672-2418.2015.06.008Hu X Z. Analysis of health assessment procedure for VOC and SVOC emitted from construction materials established by AgBB[J]. Coatings Technology & Abstracts, 2015, 36(6): 34−38, 46. doi: 10.3969/j.issn.1672-2418.2015.06.008 [5] 沈隽, 蒋利群. 人造板VOCs释放研究进展[J]. 林业工程学报, 2018, 3(6):1−10.Shen J, Jiang L Q. A review of research on VOCs release from wood-based panels[J]. Journal of Forestry Engineering, 2018, 3(6): 1−10. [6] 李赵京, 沈隽, 蒋利群, 等. 三聚氰胺浸渍纸贴面中纤板气味释放分析[J]. 北京林业大学学报, 2018, 40(12):117−123. doi: 10.13332/j.1000-1522.20180272Li Z J, Shen J, Jiang L Q, et al. Odor emission analysis of melamine faced MDF[J]. Journal of Beijing Forestry University, 2018, 40(12): 117−123. doi: 10.13332/j.1000-1522.20180272 [7] DIN ISO 16000−6−2011, Indoor air. Part 6: determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID (ISO 16000−6−2011)[S]. Beuth Verlag: Copyright International Organization, 2012. [8] Brown V M, Crump D R. An investigation into the performance of a multi-sorbent sampling tube for the measurement of VVOC and VOC emissions from products used indoors[J]. Analytical Methods, 2013, 5(11): 2746−2756. doi: 10.1039/c3ay40224j [9] Schieweck A, Gunschera J, Varol D, et al. Analytical procedure for the determination of very volatile organic compounds (C3–C6) in indoor air[J]. Analytical and Bioanalytical Chemistry, 2018, 410(13): 3171−3183. doi: 10.1007/s00216-018-1004-z [10] Asano K, Onji Y, Ogawa R, et al. Analysis of microbial volatile organic compounds (MVOCs) with canister sampling and microscale purge & trap GC/MS for chemical screening of mold growing[J]. Indoor Environment, 2011, 14(2): 95−101. doi: 10.7879/siej.14.95 [11] Ueta I, Samsudin E L, Mizuguchi A, et al. Double-bed-type extraction needle packed with activated-carbon-based sorbents for very volatile organic compounds[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88(25): 423−428. [12] 朱海欧, 封亚辉, 卢志刚, 等. 装饰材料气味测试标准和方法解析[J]. 涂料工业, 2018, 48(3):50−56. doi: 10.12020/j.issn.0253-4312.2018.3.50Zhu H O, Feng Y H, Lu Z G, et al. Analysis of odor test standards and methods of decorative materials[J]. Paint & Coatings Industry, 2018, 48(3): 50−56. doi: 10.12020/j.issn.0253-4312.2018.3.50 [13] Delahunty C M, Eyres G, Dufour J P. Gas chromatography-olfactometry[J]. Journal of Separation Science, 2015, 29(14): 2107−2125. [14] 张晶晶, 王锡昌, 施文正. 白姑鱼和小黄鱼肉中挥发性风味物质的鉴定[J]. 食品科学, 2019, 40(14):206−213. doi: 10.7506/spkx1002-6630-20180901-001Zhang J J, Wang X C, Shi W Z. Identification of volatile compounds in white croaker and small yellow croaker[J]. Food Science, 2019, 40(14): 206−213. doi: 10.7506/spkx1002-6630-20180901-001 [15] 周文杰, 张芳, 王鹏, 等. 基于GC-MS/GC-O结合化学计量学方法研究库尔勒香梨酒的特征香气成分[J]. 食品科学, 2018, 39(10):222−227. doi: 10.7506/spkx1002-6630-201810034Zhou W J, Zhang F, Wang P, et al. GC-MS/GC-O combined with chemometrics for the screening and identification of aroma characteristics of Korla pear wine[J]. Food Science, 2018, 39(10): 222−227. doi: 10.7506/spkx1002-6630-201810034 [16] Clausen P A, Knudsen H N, Larsen K, et al. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil[J]. Journal of Chromatography A, 2008, 1210(2): 203−211. doi: 10.1016/j.chroma.2008.09.073 [17] 曾彬, 沈隽, 王启繁, 等. 基于GC-O技术分析环境条件对中纤板气味活性组分的影响[J]. 中南林业科技大学学报, 2020, 40(9):164−172.Zeng B, Shen J, Wang Q F, et al. Effect of environmental conditions on odor active components of MDF based on GC-O technology[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 164−172. [18] Cao T, Shen J, Wang Q, et al. Characteristics of VOCs released from plywood in airtight environments[J]. Forests, 2019, 10(9): 709. doi: 10.3390/f10090709 [19] 李慧芳, 沈隽. 油漆涂饰刨花板苯系物分析及健康风险评价[J]. 中南林业科技大学学报, 2019, 39(8):139−146.Li H F, Shen J. Composition analysis and health risk assessment of benzene series for paint lacquered particleboard[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 139−146. [20] Afshari A, Lundgren B, Ekberg L E. Comparison of three small chamber test methods for the measurement of VOC emission rates from paint[J]. Indoor Air, 2010, 13(2): 156−65. [21] 赵政, 沈隽. 不同体积采样舱中密度纤维板装载率对VOCs释放的影响[J]. 林产工业, 2021, 58(4):21−26.Zhao Z, Shen J. The influence of MDF loading rate on VOCs release in different cabins[J]. China Forest Products Industry, 2021, 58(4): 21−26. [22] Wang Q, Shen J, Zeng B, et al. Identification and analysis of odor-active compounds from Choerospondias axillaris (Roxb.) Burtt et Hill with different moisture content levels and lacquer treatments[J]. Scientific Reports, 2020, 10(1): 14856. doi: 10.1038/s41598-020-71698-0 [23] Ministry of the Environment. Law no. 91: offensive odor control law[S]. Tokyo: Government of Japan, 1971. [24] World Health Organization. EURO reports and studies 111-indoor air quality: organic pollutions[R]. Copenhagen: WHO Regional Office for Europe, 1989. [25] 蒋利群, 沈隽, 赵政, 等. 纳米TiO2和ZnO改性水性漆的漆膜性能及其VOCs研究[J]. 林业工程学报, 2019, 4(4):148−155.Jiang L Q, Shen J, Zhao Z, et al. Study on film properties and VOCs of nano-TiO2 and ZnO modified waterborne paints[J]. Journal of Forestry Engineering, 2019, 4(4): 148−155. [26] 李爽, 沈隽, 江淑敏. 不同外部环境因素下胶合板VOC的释放特性[J]. 林业科学, 2013, 49(1):179−184. doi: 10.11707/j.1001-7488.20130126Li S, Shen J, Jiang S M. Characteristics of VOC emission from plywood in different environment factors[J]. Scientia Silvae Sinicae, 2013, 49(1): 179−184. doi: 10.11707/j.1001-7488.20130126 [27] Kim S. The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid (CNSL)[J]. Journal of Hazardous Materials, 2010, 182(1−3): 919−922. doi: 10.1016/j.jhazmat.2010.03.003 [28] Kim S. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing[J]. Journal of Hazardous Materials, 2010, 176(1−3): 14−19. doi: 10.1016/j.jhazmat.2009.03.113 [29] 于海霞, 郑洪连, 方崇荣, 等. 人造板VOCs检测方法与限量规定[J]. 浙江林业科技, 2012, 32(2):65−70. doi: 10.3969/j.issn.1001-3776.2012.02.015Yu H X, Zheng H L, Fang C R, et al. Determination method and criteria for volatile organic compounds emissions from wood based panels[J]. Journal of Zhejiang Forestry Science and Technology, 2012, 32(2): 65−70. doi: 10.3969/j.issn.1001-3776.2012.02.015 [30] 赵瑞, 肖娉娉, 李康曙, 等. 稀释剂对聚氨酯涂料性能和苯系物释放的影响[J]. 森林工程, 2020, 36(5):62−72.Zhao R, Xiao P P, Li K S, et al. The influence of diluent the properties of polyurethane paint and the release of benzene series[J]. Forest Engineering, 2020, 36(5): 62−72. [31] 卢志刚, 王启繁, 孙桂菊, 等. 多种VOC共存评估法对饰面刨花板的危害性研究[J]. 森林工程, 2020, 36(2):49−54. doi: 10.3969/j.issn.1006-8023.2020.02.008Lu Z G, Wang Q F, Sun G J, et al. Research on the harmfulness of different veneer particleboards based on multiple VOC coexistence evaluation method[J]. Forest Engineering, 2020, 36(2): 49−54. doi: 10.3969/j.issn.1006-8023.2020.02.008 [32] 黄天顺, 许可, 尚昱忻, 等. 装载率对饰面胶合板VOCs释放影响的研究[J]. 森林工程, 2020, 36(5):78−84. doi: 10.3969/j.issn.1006-8023.2020.05.011Huang T S, Xu K, Shang Y X, et al. Study on VOCs release from overlaid plywood by loading rate[J]. Forest Engineering, 2020, 36(5): 78−84. doi: 10.3969/j.issn.1006-8023.2020.05.011 [33] 王启繁. 饰面刨花板气味释放特性及环境因素影响研究[D]. 哈尔滨: 东北林业大学, 2018.Wang Q F. Characteristics of odor emissions and effect of environmental factors on odor emissions from overlaid particleboards[D]. Harbin: Northeast Forestry University, 2018. [34] Culleré L, Simón B, Cadahía E, et al. Characterization by gas chromatography-olfactometry of the most odor-active compounds in extracts prepared from acacia, chestnut, cherry, ash and oak woods[J]. LWT-Food Science and Technology, 2013, 53(1): 240−248. doi: 10.1016/j.lwt.2013.02.010 [35] Jaernstroem H, Saarela K, Kalliokoski P, et al. Reference values for structure emissions measured on site in new residential buildings in Finland[J]. Atmospheric Environment, 2007, 41(11): 2290−2302. doi: 10.1016/j.atmosenv.2006.11.033 [36] Faix O, Fortmann I, Bremer J, et al. Thermal-degradation products of wood-gas-chromatographic separation and mass-spectrometric characterization of monomeric lignin derived products[J]. Holz als Roh-und Werkstoff, 1990, 49: 213−219. [37] 韩健. 人造板表面装饰工艺学[M]. 北京: 中国林业出版社, 2014.Han J. Surface finishing technology of wood-based panel[M]. Beijing: China Forestry Publishing House, 2014. [38] 朱丽娴, 陈胜, 林勤保, 等. 再生纸和原纸中挥发性化合物的HS-GC-MS鉴别及检测[J]. 分析试验室, 2020, 39(12):1405−1411.Zhu L X, Chen S, Lin Q B, et al. Detection and discrimination of volatile compounds in recycled and virgin paper by HS-GC-MS[J]. Chinese Journal of Analysis Laboratory, 2020, 39(12): 1405−1411. [39] 李信, 周定国. 人造板挥发性有机物(VOCs)的研究[J]. 南京林业大学学报(自然科学版), 2004, 28(3):19−22.Li X, Zhou D G. Study on VOCs emission of composite panel[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2004, 28(3): 19−22. [40] 赵紫剑. 桉木杉木高温热改性过程中的热响应特性研究[D]. 北京: 北京林业大学, 2017.Zhao Z J. Investigation of thermal response characteristics of eucalyptus and Chinese fir during heat modification[D]. Beijing: Beijing Forestry University, 2017. [41] 杨锐, 徐伟, 梁星宇, 等. 实木床头柜VOC及异味气体释放组分分析[J]. 家具, 2018, 39(2):24−27.Yang R, Xu W, Liang X Y, et al. Analysis of VOC emissions and odor components from solid wood nightstand[J]. Furniture, 2018, 39(2): 24−27. [42] 王鑫, 傅强, 忽波. 基于GC-O和OAV方法的前壁板隔音垫气味物质研究[J]. 汽车零部件, 2018(11):70−74.Wang X, Fu Q, Hu B. Study on odorant components in the front wall insulation mats by GC-O and OAV methods[J]. Automobile Parts, 2018(11): 70−74. [43] Chung H Y, Yung I, Ma W, et al. Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry[J]. Food Research International, 2002, 35(1): 43−53. doi: 10.1016/S0963-9969(01)00107-7 -