高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单磨粒的中密度纤维板磨削特性比较研究

张健 罗斌 刘红光 李黎

张健, 罗斌, 刘红光, 李黎. 基于单磨粒的中密度纤维板磨削特性比较研究[J]. 北京林业大学学报, 2021, 43(8): 98-106. doi: 10.12171/j.1000-1522.20210182
引用本文: 张健, 罗斌, 刘红光, 李黎. 基于单磨粒的中密度纤维板磨削特性比较研究[J]. 北京林业大学学报, 2021, 43(8): 98-106. doi: 10.12171/j.1000-1522.20210182
Zhang Jian, Luo Bin, Liu Hongguang, Li Li. Comparative study on grinding characteristics of medium density fiberboard based on single grit[J]. Journal of Beijing Forestry University, 2021, 43(8): 98-106. doi: 10.12171/j.1000-1522.20210182
Citation: Zhang Jian, Luo Bin, Liu Hongguang, Li Li. Comparative study on grinding characteristics of medium density fiberboard based on single grit[J]. Journal of Beijing Forestry University, 2021, 43(8): 98-106. doi: 10.12171/j.1000-1522.20210182

基于单磨粒的中密度纤维板磨削特性比较研究

doi: 10.12171/j.1000-1522.20210182
基金项目: “十三五”国家重点研发计划(2018YFD0600304)
详细信息
    作者简介:

    张健。主要研究方向:木工机械与加工自动化。Email:zhangjianbjfu@163.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    李黎,教授,博士生导师。主要研究方向:木材加工装备与自动化。Email:lili630425@sina.com 地址:同上

  • 中图分类号: TS652

Comparative study on grinding characteristics of medium density fiberboard based on single grit

  • 摘要:   目的  探究圆锥形磨粒和棱锥形磨粒对中密度纤维板(MDF)的磨削特性差异,考察切削刃对于纤维材料磨削去除的作用机制,为实现MDF高效磨削提供理论依据。  方法  采用球头圆锥磨粒和五棱锥磨粒,采用楔形式划擦法,分别对MDF开展磨削试验。使用高速摄像机、三维测力仪、3D轮廓仪测定动态磨削过程、动态磨削力变化以及磨削表面的形貌轮廓等评价指标。  结果  球头圆锥磨粒在沟壑两侧形成更多的材料隆起,但沟壑边沿区域的初始表面完整性更好。当沟壑体积相近时,五棱锥磨粒产生更多的磨屑,且在单道磨削痕迹中产生磨屑的相对时点更早,更明显的磨屑流沿着切削方向从两个前刀面流出。五棱锥磨粒的切向磨削力达到最大值的相对时间点要早于球头圆锥磨粒。两种磨粒磨削MDF时的磨削力与磨削深度均呈现二次幂增加趋势,但五棱锥磨粒对应的磨削力比更大。两种磨粒切削时比磨削能与沟壑体积呈先降低后增大的二次幂关系,并存在一个转折点即临界沟壑体积(对应一个临界磨削深度);在沟壑体积基本相同时,球头圆锥磨粒真实的比磨削能较五棱锥磨粒更大。  结论  具有明显切削刃特征的五棱锥磨粒在磨削MDF时具有更优的磨削性能,具体表现为更高的材料去除率以及更高的能量利用率。可见,切削刃对于由纤维组成的材料具有重要的磨削去除作用。

     

  • 图  1  单磨粒磨削试验装置和磨粒示意图

    Figure  1.  Experimental setup of single grit cutting and the schematic of single grit

    图  2  单磨粒磨削过程中的磨削力分解

    Figure  2.  Force resolution in the process of single grit cutting

    图  3  切向磨削力的积分处理

    Δt为磨粒切入试件与切出试件的时间差。 Δt refers to the lasting time between grit cutting into workpiece and grit leaving workpiece.

    Figure  3.  Integration processing of voltage curve of tangential cutting force

    图  4  磨削表面三维形貌

    Figure  4.  Three-dimensional topography of sanded surface

    图  5  磨削表面二维轮廓

    Figure  5.  Two-dimensional profile of sanded surface

    图  6  球头圆锥磨粒划擦MDF试件时的动态成屑过程

    t1为磨粒切入时间点,t2为磨粒切出时间点。此道划痕的最大磨削深度为0.180 mm,沟壑体积为0.593 mm3t1 is the time point when the grit penetrates into workpiece and t2 is the time point when the grit penetrates out workpiece. Maximum cutting depth of this scratch is 0.180 mm, and the groove volume is 0.593 mm3.

    Figure  6.  Dynamic chip formation process of MDF workpiece scratching by single spherical cone grit

    图  7  五棱锥磨粒划擦MDF试件时的动态成屑过程

    t1为磨粒切入时间点,t2为磨粒切出时间点。此道划痕的最大磨削深度为0.240 mm,沟壑体积为0.574 mm3t1 is the time point when the grit penetrates into workpiece and t2 is the time point when the grit penetrates out workpiece. Maximum cutting depth of this scratch is 0.240 mm, and the groove volume is 0.574 mm3.

    Figure  7.  Dynamic chip formation process of MDF workpiece scratching by single pentagonal pyramid grit

    图  8  单道划痕形成时的切向磨削力特征分析

    Figure  8.  Analysis of the characteristics of tangential cutting force in the process of single scratch creation

    图  9  磨削力与磨削深度之间的线性回归分析

    Figure  9.  Linear regression analysis between cutting force and cutting depth

    图  10  磨削力与磨削深度之间的二次多项式回归分析

    Figure  10.  Quadratic polynomial regression analysis between cutting force and cutting depth

    图  11  磨削力比随磨削深度变化

    Figure  11.  Variation of cutting force ratio with cutting depth

    图  12  比磨削能随沟壑体积变化

    Figure  12.  Variation of specific energy with groove volume

  • [1] 陈玲. 中密度纤维板和刨花板全球前景[J]. 国际木业, 2014, 44(12):12−13.

    Chen L. Global prospects for MDF and particleboard[J]. International Wood Industry, 2014, 44(12): 12−13.
    [2] 高鹏威, 高远, 杨建华, 等. 中密度纤维板表面缺陷实时检测系统[J]. 林业和草原机械, 2020, 1(1):47−50.

    Gao P W, Gao Y, Yang J H, et al. Design of detection system for MDF surface defects[J]. Forestry and Grassland Machinery, 2020, 1(1): 47−50.
    [3] 李黎. 木材加工装备: 木工机械[M]. 北京: 中国林业出版社, 2005: 255−285.

    Li L. Wood-working equipment: wood-working machine[M]. Beijing: China Forestry Publishing House, 2005: 255−285.
    [4] Luo B, Li L, Liu H G, et al. Effects of sanding parameters on sanding force and normal force in sanding wood-based panels[J]. Holzforschung, 2015, 69(2): 241−245. doi: 10.1515/hf-2014-0012
    [5] 刘博, 李黎, 杨永福. 木材与中密度纤维板的磨削力研究[J]. 北京林业大学学报, 2009, 31(增刊 1):197−201.

    Liu B, Li L, Yang Y F. Sanding force of wood and medium density fiberboard[J]. Journal of Beijing Forestry University, 2009, 31(Suppl. 1): 197−201.
    [6] Bao X, Ying J H, Cheng F, et al. Research on neural network model of surface roughness in belt sanding process for Pinus koraiensis[J]. Measurement, 2018, 115: 11−18. doi: 10.1016/j.measurement.2017.10.013
    [7] 黄云. 砂带磨削技术的研究现状和发展方向简介[J]. 金刚石与磨料磨具工程, 2020, 40(3):1−4. doi: 10.3969/j.issn.1006-852X.2020.03.001

    Huang Y. Summary of research status and development direction of belt grinding technology[J]. Diamond & Abrasive Engineering, 2020, 40(3): 1−4. doi: 10.3969/j.issn.1006-852X.2020.03.001
    [8] 唐忠荣, 喻云水, 陈哲. 人造板磨削机理及磨削缺陷分析[J]. 林业机械与木工设备, 2003, 31(10):18−21. doi: 10.3969/j.issn.2095-2953.2003.10.006

    Tang Z R, Yu Y S, Chen Z. Analysis of wood-based panel grinding mechanism and grinding defects[J]. Forestry Machinery & Woodworking Equipment, 2003, 31(10): 18−21. doi: 10.3969/j.issn.2095-2953.2003.10.006
    [9] Zhang L B, Zhang T, Guo B C, et al. Research on the single grit scratching process of oxygen-free copper (OFC)[J]. Materials, 2018, 11(5): 676. doi: 10.3390/ma11050676
    [10] Setti D, Kirsch B, Aurich J C. Experimental investigations and kinematic simulation of single grit scratched surfaces considering pile-up behaviour: grinding perspective[J]. International Journal of Advanced Manufacturing Technology, 2019, 103: 471−485. doi: 10.1007/s00170-019-03522-7
    [11] Dornfeld D A. Single grit simulation of the abrasive machining of wood[J]. Journal of Engineering for Industry, 1981, 103(1): 1−12. doi: 10.1115/1.3184456
    [12] Anderson D, Warkentin A, Bauer R. Comparison of spherical and truncated cone geometries for single abrasive-grain cutting[J]. Journal of Materials Processing Technology, 2012, 212(9): 1946−1953. doi: 10.1016/j.jmatprotec.2012.04.021
    [13] 言兰, 姜峰, 融亦鸣. 基于数值仿真技术的单颗磨粒切削机理[J]. 机械工程学报, 2012, 48(11):172−182. doi: 10.3901/JME.2012.11.172

    Yan L, Jiang F, Rong Y M. Grinding mechanism based on single grain cutting simulation[J]. Journal of Mechanical Engineering, 2012, 48(11): 172−182. doi: 10.3901/JME.2012.11.172
    [14] 李伯民, 赵波, 李清. 磨料、磨具与磨削技术[M]. 北京: 化学工业出版社, 2016.

    Li B M, Zhao B, Li Q. Abrasive, abrasive tools and grinding technology[M]. Beijing: Chemical Industry Press, 2016.
    [15] 应俊华, 成锋, 张健, 等. 磨削参数对木材砂带磨削能耗的影响[J]. 林业工程学报, 2019, 4(3):38−45.

    Ying J H, Cheng F, Zhang J, et al. Effect of sanding parameters on energy consumption in wood belt sanding[J]. Journal of Forestry Engineering, 2019, 4(3): 38−45.
    [16] 罗斌. 木质材料砂带磨削磨削力及磨削参数优化研究[D]. 北京: 北京林业大学, 2015.

    Luo B. Study on sanding force and optimal sanding parameters in the belt sanding process of wood materials[D]. Beijing: Beijing Forestry University, 2015.
    [17] Wang H, Subhash G, Chandra A. Characteristics of single-grit rotating scratch with a conical tool on pure titanium[J]. Wear, 2001, 249(7): 566−581. doi: 10.1016/S0043-1648(01)00585-3
    [18] 陈勇平, 唐进元. 磨削加工中的尺寸效应机理研究[J]. 中国机械工程, 2007, 17:2033−2036. doi: 10.3321/j.issn:1004-132x.2007.17.005

    Chen Y P, Tang J Y. Research on the size effect involved in grinding[J]. China Mechanical Engineering, 2007, 17: 2033−2036. doi: 10.3321/j.issn:1004-132x.2007.17.005
    [19] Zhang T, Jiang F, Yan L, et al. Research on the size effect of specific cutting energy based on numerical simulation of single grit scratching[J]. Journal of Manufacturing Science & Engineering, 2018, 140(7): 1−10.
  • 加载中
图(12)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  46
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回