Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

松针鞘瘿蚊气味结合蛋白TjapOBP1的同源模建及活性气味分子的筛选

朱蕊, 焦继鹏, 孙慧敏, 武海卫, 陶静

朱蕊, 焦继鹏, 孙慧敏, 武海卫, 陶静. 松针鞘瘿蚊气味结合蛋白TjapOBP1的同源模建及活性气味分子的筛选[J]. 北京林业大学学报, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188
引用本文: 朱蕊, 焦继鹏, 孙慧敏, 武海卫, 陶静. 松针鞘瘿蚊气味结合蛋白TjapOBP1的同源模建及活性气味分子的筛选[J]. 北京林业大学学报, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188
Zhu Rui, Jiao Jipeng, Sun Huimin, Wu Haiwei, Tao Jing. Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules[J]. Journal of Beijing Forestry University, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188
Citation: Zhu Rui, Jiao Jipeng, Sun Huimin, Wu Haiwei, Tao Jing. Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules[J]. Journal of Beijing Forestry University, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188

松针鞘瘿蚊气味结合蛋白TjapOBP1的同源模建及活性气味分子的筛选

基金项目: 森林重要生物危害因子的监测预警和检疫技术与产品研发(2018YFC1200404)
详细信息
    作者简介:

    朱蕊。主要研究方向:森林保护。Email:zhurui0311@sina.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    陶静,副教授。主要研究方向:森林保护。Email:taojing1029@hotmail.com 地址:同上

  • 中图分类号: S718.7

Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules

  • 摘要:
      目的  松针鞘瘿蚊是近几年新发现入侵我国的林业有害生物,已经在山东省青岛市黄岛区造成了以黑松为主的沿海防护林大面积衰弱枯死。作为新入侵种对于松针鞘瘿蚊的防控基础研究极为薄弱,为了研发有效的防控技术,尽快遏制该虫的严重危害,避免进一步扩散,本文从松针鞘瘿蚊的寄主识别机制出发,以期开发针对性的引诱剂来进行监测诱杀。
      方法  本研究基于松针鞘瘿蚊触角转录组数据筛选到的气味结合蛋白TjapOBP1的序列,通过同源模建的方法,得到了蛋白三维结构模型,利用Procheck、Verify_3D和ERRAT程序评估模型的可靠性。通过AutoDock软件将TjapOBP1与黑松针叶挥发物中测得的67种气味分子进行分子对接。
      结果  同源模建结果显示,模建蛋白的氨基酸有95.5%落在最佳合理区,83.3%的氨基酸评分大于0.2,模建结构的误差值在73.2%,这表明此次构建的松针鞘瘿蚊气味结合蛋白TjapOBP1三维模型有很高的可靠性。分子对接结果显示,β-月桂烯与TjapOBP1的结合效果最好,结合能为−5.26;另外,2,6-二甲基辛-1,5,7-三烯-3-醇、乙酸橙花酯、桧烯、乙酸薰衣草酯和1-异丙基-4-亚甲基二环[3.1.0]己-2-烯,这5种化合物与TjapOBP1的结合能依次升高,但均在−5.0以下。上述6种化学物质均有可能是能够被松针鞘瘿蚊TjapOBP1识别并结合的气味物质。
      结论  三维结构模型的构建,为进一步研究松针鞘瘿蚊OBP的功能奠定基础。分子对接初步筛选了可能与TjapOBP1特异性结合的寄主挥发物,从而为引诱剂的开发提供支撑。
    Abstract:
      Objective  Thecodiplosis japonensis is a newly discovered forest pest invading China in recent years. It has caused a large area of the weakening and dying of the coastal shelter forest of Pinus thunbergii in Huangdao District, Qingdao City, Shandong Province of eastern China. As a new invasive species, basic research on the prevention and control of Thecodiplosis japonensis is extremely weak. In order to develop effective prevention and control technologies to contain the serious harm of Thecodiplosis japonensis as soon as possible and avoid further spread, this paper starts from the host identification mechanism, so as to develop targeted attractants for monitoring and killing.
      Method  In this study, the sequence of the odorant binding protein TjapOBP1 was screened from the antennal transcriptome data of Thecodiplosis japonensis, and the 3D structure model of the protein was obtained by homology modeling. We evaluated the reliability of the model with Procheck, Verify_3D and ERRAT. TjapOBP1 was docked with 67 ligand molecules measured in the volatiles of Pinus thunbergii by AutoDock software.
      Result  Procheck analysis showed that 95.5% of the amino acids of TjapOBP1 fell in the optimal reasonable region. Verify_3D analysis showed that 83.3% of the amino acid score was greater than 0.2. The ERRAT values of TjapOBP1 were 73.2%. To sum up, the modeling results had high reliability. Molecular docking results showed that β-Myrcene had the best binding effect with TjapOBP1, and the binding energy was −5.26. In addition, the binding energies of 2,6-dimethylocta-1,5,7-trien-3-ol, neryl acetate, sabinene, lavandulyl acetate and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene with TjapOBP1 increased successively, but were all below −5.0. All these 6 chemicals may be the odors that can be recognized and bound by TjapOBP1.
      Conclusion  The establishment of 3D structural model laid a foundation for further study of the function of OBP in Thecodiplosis japonensis. Molecular docking screened the host volatiles that may bind specifically to this OBP, thus providing support for the development of attractants.
  • 现如今城市居住空间紧张,小户型的比例在逐渐加大。中国政府出台规定建筑面积90平方米以下户型占比必须达到70%以上[1],这预示着更多的家庭面临功能空间不足的情况,就有大量家庭有一房两用的需求,即一个房间除了卧室的主要功能外,还可通过功能家具实现客厅或书房等功能,而其中翻转床则是实现睡眠–休闲、学习空间转换的功能家具的典型代表产品。

    虽然翻转床有着可观的市场需求,但对于其力学性能的检测还是依赖整体破坏性试验为主要手段,目前其设计和分析尚缺乏科学的理论指导[2]。20世纪90年代气弹簧作为新型支撑出现,张琦等[3]对气弹簧的力学性能进行了计算分析;王殿武[4]研究了气弹簧力学特性并将其运用到汽车尾盖上;刘迎林等[5]对全塑车身后备箱气撑杆进行运动仿真并验证其安装位置;王定虎[6]运用力矩平衡原理和理想气体方程对汽车背门撑杆的选择及布置进行校核。截止目前,气弹簧的研究主要集中在汽车领域,而鲜有在家具领域内的研究,为了弥补翻转床气弹簧机构设计和性能分析的理论欠缺,本文从实际应用需求出发,运用静力学和力矩平衡原理对气弹簧机构进行结构分析计算和选型。

    翻转床床体翻转的目的是实现床体的收纳,以便满足房间睡眠–休闲、学习空间转换的用户功能需求。根据使用场景分析,翻转床运动功能示意图如图1所示。因为翻转床的床体框架、床板、床垫和床上用品等零部件加起来质量较大,如仅凭借人手部力量支撑则翻转困难,且在操作过程中存在砸到人的风险,所以实际翻转床产品均需要借助辅助结构实现翻转和随停的功能。由于气弹簧具有支撑、缓冲的作用,因此恰好适用于翻转床的运动功能需求。

    图  1  床体翻转功能示意图
    Figure  1.  Diagram of turnover function of foldable bed

    壁柜式翻转床的翻转功能主要由气弹簧机构实现,分析翻转床的运动本质就是分析气弹簧机构。壁柜式翻转床结构和气弹簧机构简图如图2所示,翻转床左右两侧具有相同连杆结构,其中A点为翻转床的翻转中心,由螺栓将床体翻转框架和固定柜体铰接;BC为气弹簧,气弹簧两端分别和固定柜体及床体翻转框架铰接;床体翻转存在两个极限状态,即收纳状态(图2a)和使用状态(图2b),处于收纳状态时气弹簧处在伸展状态,即B1C,处于使用状态时气弹簧处在压缩状态,即BC

    图  2  翻转床结构和气弹簧机构简图
    1. 固定柜体;2. 气弹簧;3. 床体翻转框架;A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端; l. A点到床头距离。 1, fixed cabinet; 2, gas spring; 3, rotate frame; A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring; l, the distance from A point to the head of the bed.
    Figure  2.  Diagram of foldable bed structure and gas spring mechanism

    根据国家标准GB 25751—2010压缩气弹簧技术条件、GB/T 1805—2001弹簧术语和JB/T 10418—2004气弹簧设计计算为依据,对气弹簧特性进行研究。对极限位置的床体进行平面力系的简化,并结合力矩平衡原理对床体和气弹簧机构进行受力分析。运用有限元的优化思路对气弹簧安装位置进行列表格寻最优解。运用静力学知识分析床体运动规律。

    图2所示,翻转床在收纳时气弹簧处于伸展过程,气弹簧的伸展力辅助床体的上翻过程。床体完全收纳进柜体时,此时床体重力矢量经过翻转中心A,在无外力情况下床体静止不动。翻转床展开过程中气弹簧处于压缩过程,气弹簧的压缩力为床体下翻过程提供缓冲力。

    图3为气弹簧展开长度与压缩、伸展过程曲线示意图,其中F1为最小伸展力,F2为最大伸展力,F3为最小压缩力,F4为最大压缩力,S为气弹簧的行程,t为端头长度,结合图2气弹簧初始长度BC = S + t,展开长度L = B1C = S + t + S = 2S + tt的取值一般为10 mm。

    图  3  气弹簧展开长度与压缩、伸展过程曲线示意图
    d. 活塞杆直径;D1. 缸筒内径;D2. 缸筒外径;S. 行程;L. 伸展长度;t. 端头长度;F0. 启动力;F1. 最小伸展力;F2. 最大伸展力;F3. 最小压缩力;F4. 最大压缩力;Fa. 公称力a;Fb. 公称力b;C. 采力点。图引自文献[7]。d, piston rod diameter; D1, cylinder inner diameter; D2, cylinder outer diameter; S, stroke; L, extended length; t, end length; F0, star-up force; F1, minimum extension force; F2, maximum extension force; F3, minimum compress force; F4, maximum compress force; Fa, nominal force a; Fb, nominal force b; C, measuring point. Diagram is cited from reference [7].
    Figure  3.  Diagram of expansion length of gas spring and curve of compression and stretching process

    气弹簧的选型需要的参数为气弹簧的伸展长度L和行程S以及气弹簧最小伸展力F1[8]。现以翻转床两个极限位置进行受力分析。使用状态下,当人手抬起床的边沿时以A点为旋转中心,能够将床体抬起。此时受力分析如图4所示。

    图  4  使用状态手抬床体时床体受力分析简图
    A. 翻转中心;B. 气弹簧压缩末端;C. 气弹簧固定端;F2. 气弹簧最大伸展力;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;l. A点到床头距离;FL. 手对床体的抬力;A, rotation center;B, compression end of gas spring;C, fixed end of gas spring;F2, maximum extension force;G1, bed weight on the left side of point AG2, bed weight on the right side of point AFAx, x component of point AFAy, y component of point Al, A point to the head of the bed;FL, hand lift on the bed.
    Figure  4.  Diagram of foldable bed force analysis when hand up the bed in using state

    由力矩平衡可得:

    xF2l+G1l2G2LBl2+FL(LBl)=0 (1)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;G1A点左侧床体质量与重力加速度之积,单位N;G2A点右侧床体质量与重力加速度之积,单位N;lA点到床头距离,单位mm。

    设床体和床垫总质量为mG1=lLBmgG2=LBlLBmg,则可将式(1)简化得:

    xF2l(LB2l)mg+FL(LBl)=0 (2)

    式中:F2为气弹簧最大伸展力,单位N;x为气弹簧个数;FL为手对床体的抬力,单位N;LB为床体总长,单位mm;lA点到床头距离,单位mm;m为床体和床垫总质量,单位kg;g为重力加速度,单位N/kg。

    收纳状态下,拉手与AB1点视作在同一竖直线上。拉动床体时,人手拉动拉手的力矩能够平衡气弹簧对A点的弹力矩,此时受力分析简图如图5所示。

    图  5  收纳状态手拉床体时床体受力分析简图
    A. 翻转中心;B1. 气弹簧伸展末端;C. 气弹簧固定端;FAx. A点沿x轴方向分力;FAy. A点沿y轴方向分力;F0. 启动力;F0x. F0沿x轴方向分力;F0y. F0沿y轴方向分力;l. A点到床头距离;θ. F0与垂直方向夹角;FP. 手对拉手拉力。A, rotation center;B1, stretching end of gas spring;C, fixed end of gas spring;FAx, x component of point AFAy, y component of point AF0, star-up force; F0x, x component of F0; F0y. y component of F0; l, A point to the head of the bed; θ, angle of F0 with vertical direction; FP, hand pull on the handle.
    Figure  5.  Diagram of foldable bed force analysis when hand drag the bed in storage state

    因为F0yA点在水平方向上没有距离,所以F0y轴方向上的力矩为0。由力矩平衡可得:

    x(F0xl+F0y0)FP(lPl)=0 (3)

    式中:F0为气弹簧启动力,单位N;lP为拉手高度,单位mm;FP为手对拉手拉力,单位N;lA点到床头距离,单位mm;x为气弹簧个数;F0xF0沿x轴方向分力,单位N;F0yF0沿y轴方向分力,单位N。

    图5中,依据压缩气弹簧技术条件,气弹簧启动力F0略大于气弹簧最小压缩力F3,取F3值近似为F0值,由三角函数可知:

    F0=F0xsinθ=F3 (4)

    式中:θF0与垂直方向夹角,单位°;F0为气弹簧启动力,单位N;F0xF0沿x轴方向分力,单位N;F3为气弹簧最小压缩力,单位N。

    在符合人机工程的情况下,使lP尽量大可以加大手拉开床体的力矩,减小手部力量,取lP = 1 750 mm。依据人机工程学,为使得操作力比较恰当,收纳床体时推荐的操作力范围为50 ~ 80 N[9],此处取手对床体的抬力FL = 80 N,手拉拉手的力FP = 80 N。

    F1F3之间有一段由于摩擦力产生的差值,依据GB25751—2010其计算公式为Fr =(F3F1)/2,即动态摩擦力Fr是最小压缩力和最小伸展力之差的平均值[10]。气弹簧摩擦力所产生的阻力与杆的运动方向相反,其与标称力值(图样及产品上标注的力,包括F1FaF3)极限偏差应符合下表1的规定。

    表  1  标称力值极限偏差与动态摩擦力
    Table  1.  Nominal force limit deviation and dynamic friction
    标称力值 Nominal force标称力值的极限偏差 Nominal force limit deviation最大动态摩擦力 Maximum dynamic friction
    ≤ 100+ 15 − 5 25
    101 ~ 200+ 20 − 10 30
    201 ~ 400+ 30 − 15 40
    401 ~ 600+ 40 − 20 60
    601 ~ 800+ 50 − 25 80
    801 ~ 1 000+ 60 − 30100
    1 001 ~ 1 200+ 70 − 35130
    > 1 200+ 80 − 40150
    注:表1引自文献[7]。Note: Tab.1 is cited from reference [7].
    下载: 导出CSV 
    | 显示表格

    F1F2的关系可由弹性系数求得。弹性系数k表示的是单位压缩力变化的弹簧常数[10],单位为N/mm,行程S的单位是mm。伸展阶段气弹簧弹性系数公式[11]为:

    k=(F2F1)/S (5)

    其中,k的大小可由厂家进行调节,其具体值可通过实验得出。一般商家提供的气弹簧的弹性系数k介于1.05和1.8之间,弹性系数越小意味着制造难度越高。

    以市场常见的床体规格为准,此处选取宽900 mm、长1 900 mm、质量为25 kg的床垫。选取匹配的床体框架结构的材质为钢,其质量约为25 kg。刨花板密度为650 kg/m3,则18 mm(厚) × 900 mm(宽) × 1 900 mm(长)的床板质量为20 kg。则床体总重力为:(25 + 25 + 20) × 9.8 = 686 N。如固定柜体目标深度为300 mm,为了保证AC两点安装位置距离柜体板前后两边有足够的距离保证强度,则取l = 160 mm。

    依据式(2),xF2 = 2 517.1 N,选取气弹簧个数x = 4,则F2 = 629.3 N。

    图4图5可知:取l为160 mm时,以BB1为圆心,以(S + 10)、(2S + 10)为半径作圆,作交点可得C点安装位置。并结合式(3)、式(4)、表1以及k的计算方程,可将相关参数整理成表2

    表  2  气弹簧相关参数及安装位置与行程S的关系
    Table  2.  Relationship between gas spring stroke and relevant parameters and installation position
    S/mmθF3/NFr/NF1/Nk
    17018643.2
    18020581.160461.10.934
    19023508.040428.01.059
    20026453.440373.41.280
    注:S为行程;θF0与垂直方向夹角;F3为最小压缩力;Fr为最大动态摩擦力;F1为最小伸展力;k为气弹簧弹性系数。表3同此。Notes:S, stroke; θ, angle of F0 with vertical direction; F3, minimum compress force; Fr, maximum dynamic friction; F1, minimum extension force; k, gas spring modulus coefficient. Same as Tab.3.
    下载: 导出CSV 
    | 显示表格

    表2可知:θ角越大,k则越大,气弹簧的制作难度越小。为减小安装宽度,选择S为190 mm,F1 = 428 N作为最小伸展力的气弹簧,则要求厂家提供的气弹簧弹性系数k为1.06。参考表3可知F1S的参数符合设计要求。

    表  3  气弹簧活塞杆直径与最小伸展力大小选择范围推荐表
    Table  3.  Recommended table of minimum extension force range and stroke range of gas spring
    序号
    No.
    活塞杆
    直径 Diameter of piston rod/mm
    最小伸展力
    Minimum extension force (F1)/N
    行程范围
    Stroke range/mm
    推荐范围
    Recommended
    range
    可选范围
    Optional
    range
    1650 ~ 25050 ~ 35050 ~ 400
    28200 ~ 450100 ~ 700100 ~ 700
    310300 ~ 700100 ~ 1 200150 ~ 1 100
    412450 ~ 1 000150 ~ 1 500150 ~ 1 600
    514600 ~ 1 400200 ~ 2 5001 600 ~ 2 200
    6201 250 ~ 3 1001 000 ~ 5 2002 200 ~ 4 500
    注:表3引自文献[12]。Note: Tab.3 is cited from reference [12].
    下载: 导出CSV 
    | 显示表格

    此时C点的安装位置如图6所示,BC = S + 10 = 200 mm,B1C = 2S + 10 = 390 mm。如果床体总质量加大,可以适当改变固定柜体深度以加大l的取值,使气弹簧机构获得更大的力臂。

    图  6  C点安装位置示意图
    A. 翻转中心;B. 气弹簧压缩末端;B1. 气弹簧伸展末端;C. 气弹簧固定端。A, rotation center; B, compression end of gas spring; B1, stretching end of gas spring; C, fixed end of gas spring.
    Figure  6.  Diagram of installation location of point C

    翻转床旋转到任意角度时的受力图如图7所示。取气弹簧对床体弹力FB与矩心A点的力臂为aG1与矩心A点的力臂为bG2与矩心A点的力臂为c。矩心A点右侧力矩减去左侧合力矩可列式:

    图  7  任意位置下床架受力图
    A. 翻转中心;B′. 在β旋转角度下的床尾位置;C. 气弹簧固定端;β. 床体翻转框架翻转角度;G1. A点左侧床体质量与重力加速度之积;G2. A点右侧床体质量与重力加速度之积;a. FB对矩心A点的力臂;b. G1对矩心A点的力臂;c. G2对矩心A点的力臂。A, rotation center; B′, bed tail position at β rotation angle; C, fixed end of gas spring; β, flip angle of rotate frame; G1, bed mass on the left side of point A multiply gravity acceleration; G2, bed mass on the right side of point A multiply gravity acceleration; a, FB force arm to point A; b, G1 force arm to point A; c, G2 force arm to point A.
    Figure  7.  Diagram of foldable bed force at arbitrary degree
    MA=MA(xFB)+MA(G1)MA(G2)=xFBa+G1bG2c (6)

    式中:MA为合力对A点的力矩,单位N;x为气弹簧个数;FB为气弹簧对床体弹力,单位N;G1A点左侧床体重力,单位N;G2A点右侧床体重力,单位N;aFB对矩心A点的力臂,单位mm;bG1对矩心A点的力臂,单位mm;cG2对矩心A点的力臂,单位mm;MAxFB)为单边气弹簧对A点力矩,单位N·mm;MAG1)为G1A点力矩,单位N·mm;MAG2)为G2A点力矩,单位N·mm。

    气弹簧压缩和伸展两个过程曲线中任意点的值可以用伸展长度和k值求出,在不同旋转角度β下分别量取abc的值代入式(6),并作出βMA的关系曲线如图8所示。图8两条曲线为分别代入了弹簧伸展过程力值和压缩过程力值后的曲线。由图 8可知:床体在打开18°以内会弹回收纳状态;18° ~ 24°之间床体可悬停;大于24°以后,A点右侧力矩大于A点左侧合力矩。

    图  8  βMA关系曲线
    MA. 合力对A点的力矩;β. 床体翻转框架翻转角度。MA, torque to point Aβ, flip angle of rotate frame.
    Figure  8.  Diagram of β and MA curve

    基于静力学和力矩平衡原理完成了翻转床两个极限位置的受力分析,构建了翻转床气弹簧分析计算理论,运用该理论能够通过翻转床的床身质量和尺寸得到气弹簧的最小伸展力、行程和弹性系数,从而完成气弹簧选型;运用CAD工具做两圆相交的几何法得出气弹簧安装位置的确立方法;基于力矩平衡原理构建合力矩和翻转角度β的关系式,得出翻转床悬停范围。设定床体尺寸宽900 mm、长1 900 m、固定柜体目标深度300 mm,则可得气弹簧最小伸展力为428 N,行程为190 mm,弹性系数为1.06,悬停角度范围为18° ~ 24°,翻转角大于24°后则为自由下翻。本文构建的分析方法和结果可为家具行业的壁柜式翻转床设计、选型和性能分析提供理论支撑和实践指导。

  • 图  1   松针鞘瘿蚊TjapOBP1与模板冈比亚按蚊AgamOBP20(ID:3VB1_A)的序列比对

    完全相同的残基以黄色背景显示,6个半胱氨酸位点以红色字体显示,连接符表示此位氨基酸在对齐比较中不存在。Strictly identical residues are highlighted with yellow background;six cysteine sites are indicated with red color;the hyphen indicates that the amino acid does not exist in alignment comparison.

    Figure  1.   Sequence alignment of TjapOBP1 with AgamOBP20 (PDB ID: 3VB1_A) from Anopholes gambiae

    图  2   松针鞘瘿蚊气味结合蛋白TjapOBP1三维结构图

    Figure  2.   3D structures of odorant binding protein TjapOBP1 of Thecodiplosis japonensis

    图  3   松针鞘瘿蚊气味结合蛋白模建结构的拉式构象图分析

    红色:最佳合理区,A、B、L区域;高亮黄色:较合适区,a、b、l、p区域;浅黄色:勉强接受区,~a、~b、~l、~p区域;白色:不合理区。Red, the best region, including A, B and L areas; bright yellow, the appropriate region, including a, b, l, p areas; pale yellow, the barely permitted region, including ~a, ~b, ~l, ~p areas; white, the disallowed region.

    Figure  3.   Ramachandran plot analysis of modeled T. japonensis OBP structure

    图  4   松针鞘瘿蚊气味结合蛋白模建结构的Verify_3D打分结果

    Figure  4.   Scoring of modeled T. japonensis OBP structure by Verify_3D

    图  5   ERRAT计算的松针鞘瘿蚊气味结合蛋白模建结构残基误差值

    白色表示误差值 < 95%,灰色表示95% ≤ 误差值 < 99%,黑色表示误差值 ≥ 99%。White color indicates the error value < 95%; gray color indicates 95% ≤ the error value < 99%,and black color indicates the error value ≥ 99%.

    Figure  5.   Error value of ERRAT calculation of modeled T. japonensis OBP structure

    图  6   松针鞘瘿蚊TjapOBP1与β-月桂烯的结合模式

    A1. TjapOBP1(螺旋模型)与β-月桂烯(灰色模型)结合的三维结构;B1、C1. β-月桂烯(灰色模型)与蛋白末端口袋的详细结合模式。A1, 3D structure of the combined model between TjapOBP1 (the spiral model) and β-myrcene (the gray model);B1 and C1, detailed binding mode of β-myrcene (the gray model) with the protein distal pocket.

    Figure  6.   Binding pattern of TjapOBP1 and β-myrcene

    图  7   松针鞘瘿蚊TjapOBP1与2,6-二甲基辛-1,5,7-三烯-3-醇的结合模式

    A2. TjapOBP1(螺旋模型)与2,6-二甲基辛-1,5,7-三烯-3-醇(灰色模型)结合的三维结构;B2、C2. 2,6-二甲基辛-1,5,7-三烯-3-醇(灰色模型)与蛋白末端口袋的详细结合模式。A2, 3D structure of the combined model between TjapOBP1 (the spiral model) and 2,6-dimethylocta-1,5,7-trien-3-ol (the gray model); B2 and C2, detailed binding mode of 2,6-dimethylocta-1,5,7-trien-3-ol (the gray model) with the protein distal pocket.

    Figure  7.   Binding pattern of TjapOBP1 and 2,6-dimethylocta-1,5,7-trien-3-ol

    图  8   松针鞘瘿蚊TjapOBP1与乙酸橙花酯的结合模式

    A3. TjapOBP1(螺旋模型)与乙酸橙花酯(灰色模型)结合的三维结构;B3、C3. 乙酸橙花酯(灰色模型)与蛋白末端口袋的详细结合模式。A3, 3D structure of the combined model between TjapOBP1 (the spiral model) and neryl acetate (the gray model);B3 and C3, detailed binding mode of neryl acetate (the gray model) with the protein distal pocket.

    Figure  8.   Binding pattern of TjapOBP1 and neryl acetate

    图  9   松针鞘瘿蚊TjapOBP1与桧烯的结合模式

    A4. TjapOBP1(螺旋模型)与桧烯(灰色模型)结合的三维结构;B4、C4. 桧烯(灰色模型)与蛋白末端口袋的详细结合模式。A4, 3D structure of the combined model between TjapOBP1 (the spiral model) and sabinene (the gray model);B4 and C4, detailed binding mode of sabinene (the gray model) with the protein distal pocket.

    Figure  9.   Binding pattern of TjapOBP1 and sabinene

    图  10   松针鞘瘿蚊TjapOBP1与乙酸薰衣草酯的结合模式

    A5. TjapOBP1(螺旋模型)与乙酸薰衣草酯(灰色模型)结合的三维结构;B5、C5. 乙酸薰衣草酯(灰色模型)与蛋白末端口袋的详细结合模式。A5, 3D structure of the combined model between TjapOBP1 (the spiral model) and lavandulyl acetate (the gray model);B5 and C5, detailed binding mode of lavandulyl acetate (the gray model) with the protein distal pocket.

    Figure  10.   Binding pattern of TjapOBP1 and lavandulyl acetate

    图  11   松针鞘瘿蚊TjapOBP1与1-异丙基-4-亚甲基二环[3.1.0]己-2-烯的结合模式

    A6. TjapOBP1(螺旋模型)与1-异丙基-4-亚甲基二环[3.1.0]己-2-烯(灰色模型)结合的三维结构;B6、C6. 1-异丙基-4-亚甲基二环[3.1.0]己-2-烯(灰色模型)与蛋白末端口袋的详细结合模式。A6, 3D structure of the combined model between TjapOBP1 (the spiral model) and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene (the gray model);B6 and C6, detailed binding mode of 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene (the gray model) with the protein distal pocket.

    Figure  11.   Binding pattern of TjapOBP1 and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene

    表  1   分子对接结果

    Table  1   Molecular docking results

    序号
    No.
    化合物名称
    Compound name
    CAS号
    CAS No.
    化学式
    Chemical formula
    结合能
    Binding energy
    1 β-月桂烯 β-myrcene 123-35-3 C10H16 −5.26
    2 2,6-二甲基辛-1,5,7-三烯-3-醇 2,6-dimethylocta-1,5,7-trien-3-ol 29414-56-0 C10H16O −5.24
    3 乙酸橙花酯 Neryl acetate 141-12-8 C12H20O2 −5.21
    4 桧烯 Sabinene 3387-41-5 C10H16 −5.14
    5 乙酸薰衣草酯 Lavandulyl acetate 25905-14-0 C12H20O2 −5.05
    6 1-异丙基-4-亚甲基二环[3.1.0]己-2-烯 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene 36262-09-6 C10H14 −5.04
    7 橙花醇 Nerol 106-25-2 C10H18O −4.93
    8 萜品油烯 Terpinolene
    586-62-9 C10H16 −4.72
    9 1-氯-5-甲基己烷 1-chloro-5-methylhexane 33240-56-1 C7H15Cl −4.67
    10 β-苧烯 β-thujene 28634-89-1 C10H16 −4.65
    11 α-蒎烯 α-pinene 80-56-8 C10H16 −4.58
    12 α-萜烯 α-terpinene 99-86-5 C10H16 −4.58
    13 1-亚甲基-4-(1-甲基乙烯基)环己烷 1-methylene-4-(1-methylvinyl) cyclohexane 499-97-8 C10H16 −4.51
    14 β-萜烯 β-terpinene 99-84-3 C10H16 −4.49
    15 β-水芹烯 β-phellandrene 555-10-2 C10H16 −4.46
    16 (-)-β-蒎烯 (-)-β-pinene 18172-67-3 C10H16 −4.44
    17 α-水芹烯 α-phellandrene 99-83-2 C10H16 −4.44
    18 香叶基丙酸 Geranyl propionate 105-90-8 C13H22O2 −4.41
    19 M-甲异丙苯 M-cymene 535-77-3 C10H14 −4.37
    20 (E)-2-己烯醛 (E)-2-hexenal 6728-26-3 C6H10O −4.30
    21 2-己烯醛 2-hexenal 505-57-7 C6H10O −4.28
    22 莰烯 Camphene 79-92-5 C10H16 −4.24
    23 d-柠檬烯 d-limonene 5989-27-5 C10H16 −4.20
    24 己醛 Hexanal 66-25-1 C6H12O −4.12
    25 对伞花烃 p-cymene 99-87-6 C10H14 −3.96
    26 荜澄茄油烯 Cubenene 29837-12-5 C15H24 −3.91
    27 三环烯 Tricyclene 508-32-7 C10H16 −3.89
    28 松香芹酮 Pinocarvone 30460-92-5 C10H14O −3.88
    29 γ-萜品烯 γ-terpinene 99-85-4 C10H16 −3.68
    30 环戊烯 Cyclofenchene 488-97-1 C10H16 −3.55
    31 3-蒈烯 3-carene 13466-78-9 C10H16 −3.18
    32 桃金娘烯醇 Myrtenol 515-00-4 C10H16O −3.11
    33 α-香柠檬烯 α-bergamotene 17699-05-7 C15H24 −2.59
    34 2-异丙基-5-甲基苯甲醚 2-isopropyl-5-methylanisole 1076-56-8 C11H16O −2.29
    35 顺-β-胡椒烯,立体异构体 cis-β-copaene, stereoisomer C15H24 −1.16
    36 顺-β-胡椒烯 cis-β-copaene 18252-44-3 C15H24 −1.14
    37 胡椒烯 Copaene 3856-25-5 C15H24 −0.58
    38 衣兰烯 Ylangene 14912-44-8 C15H24 −0.01
    39 乙酸龙脑酯 Bornyl acetate 76-49-3 C12H20O2 0.31
    40 (-)-冰片基乙酸酯 (-)-bornyl acetate 5655-61-8 C12H20O2 0.33
    41 β-甲基紫罗酮 β-methylionone 127-43-5 C14H22O 0.42
    42 1,2,3,4,4A,7-六氢-1,6-二甲基-4-(1-甲基乙基)-萘
    1,2,3,4,4A,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)-naphthalene
    16728-99-7 C15H24 2.63
    43 α-荜澄茄油烯 α-cubebene 17699-14-8 C15H24 4.12
    44 γ-衣兰油烯 γ-muurolene 30021-74-0 C15H24 5.04
    45 α-衣兰油烯 α-muurolene 10208-80-7 C15H24 5.38
    46 (+)-epi-二环倍半水芹烯 (+)-epi-bicyclosesquiphellandrene C15H24 6.39
    47 (1R,4R)-4-甲基-7-甲亚基-1-丙烷-2-基-2,3,4,4a,5,6-六氢-1H-萘
    (1R,4R)-4-methyl-7-methylidene-1-propan-2-yl-2,3,4,4a,5,6-hexahydro-1H-naphthalene
    C15H24 6.42
    48 (+)-γ-古芸烯 (+)-γ-gurjunene 22567-17-5 C15H24 6.55
    49 3,8一卡达三烯 Cadala-1(10),3,8-triene C15H22 6.87
    50 β-杜松烯 β-cadinene 523-47-7 C15H24 6.96
    51 (+)-α-杜松烯 (+)-α-cadinene 24406-05-1 C15H24 9.10
    52 1-异丙基-4,7-二甲基-1,2,3,5,6,8a-六氢萘
    1-isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene
    16729-01-4 C15H24 9.21
    53 (+)-δ-杜松烯 (+)-δ-cadinene 483-76-1 C15H24 9.25
    54 香橙烯 Aromandendrene 489-39-4 C15H24 10.92
    55 (1S,4S,4aS)-1-异丙基-4,7-二甲基-1,2,3,4,4a,5-六氢萘
    (1S,4S,4aS)-1-isopropyl-4,7-dimethyl-1,2,3,4,4a,5-hexahydronaphthalene
    C15H24 11.71
    56 γ-杜松烯 γ-cadinene 39029-41-9 C15H24 12.53
    57 (S,1Z,6Z)-8-异丙基-1-甲基-5-亚甲基环癸-1,6-二烯
    (S,1Z,6Z)-8-isopropyl-1-methyl-5-methylenecyclodeca-1,6-diene
    317819-80-0 C15H24 12.95
    58 2-亚甲基-5-(1-甲基乙烯基)-8-甲基-二环[5.3.0]癸烷
    2-methylene-5-(1-methylvinyl)-8-methyl-bicyclo[5.3.0]decane
    C15H24 13.86
    59 顺-菖蒲烯 cis-calamenene 72937-55-4 C15H22 14.71
    60 β-愈创木烯 β-guaiene 88-84-6 C15H24 17.04
    61 石竹烯 Caryophyllene 87-44-5 C15H24 18.81
    62 大根香叶烯D Germacrene D 23986-74-5 C15H24 19.24
    63 长(松)叶烯 Longifolene 475-20-7 C15H24 24.28
    64 氧化石竹烯 Caryophyllene oxide 1139-30-6 C15H24O 28.37
    65 葎草烯 Humulene 6753-98-6 C15H24 27.39
    66 十二甲基环六硅氧烷 Cyclohexasiloxane-dodecamethyl 540-97-6 C12H36O6Si6
    67 十甲基环五硅氧烷 Cyclopentasiloxane-decamethyl 541-02-6 C10H30O5Si5
    下载: 导出CSV
  • [1]

    Toichi U, Motonori I. Eine neue Thecodiplosis-Art (Dip., Itonididae)[J]. Insecta Matsumurana, 1955, 19(1−2): 44−50.

    [2] 焦继鹏, 武海卫, 任利利, 等. 入侵种松针鞘瘿蚊在山东省黄岛区的发现与初步研究[J]. 应用昆虫学报, 2017, 54(6):915−923.

    Jiao J P, Wu H W, Ren L L, et al. Reports on the discovery and preliminary studies of the invasive species Thecodiplosis japonensis (Uchida & Inouye) in Huangdao area of Shandong Province[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 915−923.

    [3]

    Ko J H, Lee B Y. Influence of the wind on the dispersion of the pine gall-midge (Thecodiplosis japonensis)-tested in the wind tunnel[J]. Korean Journal of Entomology, 1975, 5(1): 13−16.

    [4]

    Brito N F, Moreira M F, Melo A C. A look inside odorant-binding proteins in insect chemoreception[J]. Journal of Insect Physiology, 2016, 95: 51−65. doi: 10.1016/j.jinsphys.2016.09.008

    [5]

    Pelosi P, Mastrogiacomo R, Iovinella I, et al. Structure and biotechnological applications of odorant-binding proteins[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 61−70. doi: 10.1007/s00253-013-5383-y

    [6] 杜亚丽, 徐凯, 赵慧婷, 等. 昆虫气味结合蛋白的研究进展[J]. 昆虫学报, 2020, 63(3):365−380.

    Du Y L, Xu K, Zhao H T, et al. Research progress in odorant binding proteins of insects[J]. Acta Entomologica Sinica, 2020, 63(3): 365−380.

    [7]

    Zheng W M. Proteins: from sequence to structure[J]. Chinese Physics B, 2014, 23(7): 111−117.

    [8] 刘航玮. 绿盲蝽四个触角特异气味结合蛋白配体结合特征研究[D]. 北京: 中国农业科学院, 2017.

    Liu H W. Binding Characteristics of four antennal-specific odorant binding proteins in Apolygus lucorum (Hemiptera: Miridae)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.

    [9] 刘子楠, 黎河山, 宋枭禹. 蛋白质结构预测综述[J]. 中国医学物理学杂志, 2020, 37(9):1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023

    Liu Z N, Li H S, Song X Y. Survey on protein structure predication[J]. Chinese Journal of Medical Physics, 2020, 37(9): 1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023

    [10] 李敏, 郭美琪, 相伟芳, 等. 分子对接技术在昆虫化学感受研究中的应用进展[J]. 植物保护, 2019, 45(5):121−127.

    Li M, Guo M Q, Xiang W F, et al. Research progress in molecular docking in insect chemosense[J]. Plant Protection, 2019, 45(5): 121−127.

    [11]

    Laskowski R A, MacArthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2): 283−291. doi: 10.1107/S0021889892009944

    [12]

    Laskowski R A, Rullmannn J A, mac Arthur M W, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR[J]. Journal of Biomolecular NMR, 1996, 8(4): 477−486.

    [13]

    Eisenberg D, Luthy R, Bowie J U. VERIFY3D: assessment of protein models with three-dimensional profiles[J]. Methods in Enzymology, 1997, 277: 396−404.

    [14] 汪宇, 孙浩, 朱家颖, 等. 云南切梢小蠹气味结合蛋白的同源模建[J]. 应用昆虫学报, 2015, 52(5):1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145

    Wang Y, Sun H, Zhu J Y, et al. Homology modeling of the odorant binding protein of the pine shoot beetle, Tomicus yunnanensis[J]. Chinese Journal of Applied Entomology, 2015, 52(5): 1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145

    [15] 阎伟, 骆有庆, 李朝绪, 等. 锈色棕榈象气味结合蛋白的同源建模[J]. 应用昆虫学报, 2017, 54(6):909−914.

    Yan W, Luo Y Q, Li C X, et al. Modeling the odorant binding protein of the red palm weevil, Rhynchophorus ferrugineus[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 909−914.

    [16] 相伟芳, 李敏, 林艳平, 等. 白蛾周氏啮小蜂气味结合蛋白OBP1与寄主挥发物的分子对接研究[J]. 生物安全学报, 2018, 27(30):193−199.

    Xiang W F, Li M, Lin Y P, et al. Molecular docking of odorant binding protein1 of Chouioia cunea with host volatiles[J]. Journal of Biosafety, 2018, 27(30): 193−199.

    [17] 郭冰, 郝恩华, 王菁桢, 等. 入侵害虫松树蜂气味结合蛋白与其相关信息化学物质的分子对接[J]. 植物保护学报, 2019, 46(5):1004−1017.

    Guo B, Hao E H, Wang J Z, et al. Molecular docking of odorant binding proteins and its related semiochemicals of sirex woodwasp Sirex noctilio, an invasive insect pest[J]. Journal of Plant Protection, 2019, 46(5): 1004−1017.

    [18]

    Baker D, Sali A. Protein structure prediction and structural genomics[J]. Science, 2001, 294: 93−96. doi: 10.1126/science.1065659

  • 期刊类型引用(2)

    1. 李红晨,杨洋,霍鸿飞,何盛,张仲凤. 水热处理黄杨木的成分变化分析. 林产工业. 2022(04): 14-19 . 百度学术
    2. 邓祥胜,李明蔓,何鹏,杨梅,申露,刘海宇,王超,程飞. 桉树伐桩分解过程中木质纤维素成分的变化特征. 中南林业科技大学学报. 2022(05): 160-169 . 百度学术

    其他类型引用(4)

图(11)  /  表(1)
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  526
  • PDF下载量:  79
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-05-16
  • 修回日期:  2021-06-18
  • 网络出版日期:  2021-07-01
  • 发布日期:  2021-10-14

目录

/

返回文章
返回