Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules
-
摘要:
目的 松针鞘瘿蚊是近几年新发现入侵我国的林业有害生物,已经在山东省青岛市黄岛区造成了以黑松为主的沿海防护林大面积衰弱枯死。作为新入侵种对于松针鞘瘿蚊的防控基础研究极为薄弱,为了研发有效的防控技术,尽快遏制该虫的严重危害,避免进一步扩散,本文从松针鞘瘿蚊的寄主识别机制出发,以期开发针对性的引诱剂来进行监测诱杀。 方法 本研究基于松针鞘瘿蚊触角转录组数据筛选到的气味结合蛋白TjapOBP1的序列,通过同源模建的方法,得到了蛋白三维结构模型,利用Procheck、Verify_3D和ERRAT程序评估模型的可靠性。通过AutoDock软件将TjapOBP1与黑松针叶挥发物中测得的67种气味分子进行分子对接。 结果 同源模建结果显示,模建蛋白的氨基酸有95.5%落在最佳合理区,83.3%的氨基酸评分大于0.2,模建结构的误差值在73.2%,这表明此次构建的松针鞘瘿蚊气味结合蛋白TjapOBP1三维模型有很高的可靠性。分子对接结果显示,β-月桂烯与TjapOBP1的结合效果最好,结合能为−5.26;另外,2,6-二甲基辛-1,5,7-三烯-3-醇、乙酸橙花酯、桧烯、乙酸薰衣草酯和1-异丙基-4-亚甲基二环[3.1.0]己-2-烯,这5种化合物与TjapOBP1的结合能依次升高,但均在−5.0以下。上述6种化学物质均有可能是能够被松针鞘瘿蚊TjapOBP1识别并结合的气味物质。 结论 三维结构模型的构建,为进一步研究松针鞘瘿蚊OBP的功能奠定基础。分子对接初步筛选了可能与TjapOBP1特异性结合的寄主挥发物,从而为引诱剂的开发提供支撑。 Abstract:Objective Thecodiplosis japonensis is a newly discovered forest pest invading China in recent years. It has caused a large area of the weakening and dying of the coastal shelter forest of Pinus thunbergii in Huangdao District, Qingdao City, Shandong Province of eastern China. As a new invasive species, basic research on the prevention and control of Thecodiplosis japonensis is extremely weak. In order to develop effective prevention and control technologies to contain the serious harm of Thecodiplosis japonensis as soon as possible and avoid further spread, this paper starts from the host identification mechanism, so as to develop targeted attractants for monitoring and killing. Method In this study, the sequence of the odorant binding protein TjapOBP1 was screened from the antennal transcriptome data of Thecodiplosis japonensis, and the 3D structure model of the protein was obtained by homology modeling. We evaluated the reliability of the model with Procheck, Verify_3D and ERRAT. TjapOBP1 was docked with 67 ligand molecules measured in the volatiles of Pinus thunbergii by AutoDock software. Result Procheck analysis showed that 95.5% of the amino acids of TjapOBP1 fell in the optimal reasonable region. Verify_3D analysis showed that 83.3% of the amino acid score was greater than 0.2. The ERRAT values of TjapOBP1 were 73.2%. To sum up, the modeling results had high reliability. Molecular docking results showed that β-Myrcene had the best binding effect with TjapOBP1, and the binding energy was −5.26. In addition, the binding energies of 2,6-dimethylocta-1,5,7-trien-3-ol, neryl acetate, sabinene, lavandulyl acetate and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene with TjapOBP1 increased successively, but were all below −5.0. All these 6 chemicals may be the odors that can be recognized and bound by TjapOBP1. Conclusion The establishment of 3D structural model laid a foundation for further study of the function of OBP in Thecodiplosis japonensis. Molecular docking screened the host volatiles that may bind specifically to this OBP, thus providing support for the development of attractants. -
图 1 松针鞘瘿蚊TjapOBP1与模板冈比亚按蚊AgamOBP20(ID:3VB1_A)的序列比对
完全相同的残基以黄色背景显示,6个半胱氨酸位点以红色字体显示,连接符表示此位氨基酸在对齐比较中不存在。Strictly identical residues are highlighted with yellow background;six cysteine sites are indicated with red color;the hyphen indicates that the amino acid does not exist in alignment comparison.
Figure 1. Sequence alignment of TjapOBP1 with AgamOBP20 (PDB ID: 3VB1_A) from Anopholes gambiae
图 3 松针鞘瘿蚊气味结合蛋白模建结构的拉式构象图分析
红色:最佳合理区,A、B、L区域;高亮黄色:较合适区,a、b、l、p区域;浅黄色:勉强接受区,~a、~b、~l、~p区域;白色:不合理区。Red, the best region, including A, B and L areas; bright yellow, the appropriate region, including a, b, l, p areas; pale yellow, the barely permitted region, including ~a, ~b, ~l, ~p areas; white, the disallowed region.
Figure 3. Ramachandran plot analysis of modeled T. japonensis OBP structure
图 5 ERRAT计算的松针鞘瘿蚊气味结合蛋白模建结构残基误差值
白色表示误差值 < 95%,灰色表示95% ≤ 误差值 < 99%,黑色表示误差值 ≥ 99%。White color indicates the error value < 95%; gray color indicates 95% ≤ the error value < 99%,and black color indicates the error value ≥ 99%.
Figure 5. Error value of ERRAT calculation of modeled T. japonensis OBP structure
图 6 松针鞘瘿蚊TjapOBP1与β-月桂烯的结合模式
A1. TjapOBP1(螺旋模型)与β-月桂烯(灰色模型)结合的三维结构;B1、C1. β-月桂烯(灰色模型)与蛋白末端口袋的详细结合模式。A1, 3D structure of the combined model between TjapOBP1 (the spiral model) and β-myrcene (the gray model);B1 and C1, detailed binding mode of β-myrcene (the gray model) with the protein distal pocket.
Figure 6. Binding pattern of TjapOBP1 and β-myrcene
图 7 松针鞘瘿蚊TjapOBP1与2,6-二甲基辛-1,5,7-三烯-3-醇的结合模式
A2. TjapOBP1(螺旋模型)与2,6-二甲基辛-1,5,7-三烯-3-醇(灰色模型)结合的三维结构;B2、C2. 2,6-二甲基辛-1,5,7-三烯-3-醇(灰色模型)与蛋白末端口袋的详细结合模式。A2, 3D structure of the combined model between TjapOBP1 (the spiral model) and 2,6-dimethylocta-1,5,7-trien-3-ol (the gray model); B2 and C2, detailed binding mode of 2,6-dimethylocta-1,5,7-trien-3-ol (the gray model) with the protein distal pocket.
Figure 7. Binding pattern of TjapOBP1 and 2,6-dimethylocta-1,5,7-trien-3-ol
图 8 松针鞘瘿蚊TjapOBP1与乙酸橙花酯的结合模式
A3. TjapOBP1(螺旋模型)与乙酸橙花酯(灰色模型)结合的三维结构;B3、C3. 乙酸橙花酯(灰色模型)与蛋白末端口袋的详细结合模式。A3, 3D structure of the combined model between TjapOBP1 (the spiral model) and neryl acetate (the gray model);B3 and C3, detailed binding mode of neryl acetate (the gray model) with the protein distal pocket.
Figure 8. Binding pattern of TjapOBP1 and neryl acetate
图 9 松针鞘瘿蚊TjapOBP1与桧烯的结合模式
A4. TjapOBP1(螺旋模型)与桧烯(灰色模型)结合的三维结构;B4、C4. 桧烯(灰色模型)与蛋白末端口袋的详细结合模式。A4, 3D structure of the combined model between TjapOBP1 (the spiral model) and sabinene (the gray model);B4 and C4, detailed binding mode of sabinene (the gray model) with the protein distal pocket.
Figure 9. Binding pattern of TjapOBP1 and sabinene
图 10 松针鞘瘿蚊TjapOBP1与乙酸薰衣草酯的结合模式
A5. TjapOBP1(螺旋模型)与乙酸薰衣草酯(灰色模型)结合的三维结构;B5、C5. 乙酸薰衣草酯(灰色模型)与蛋白末端口袋的详细结合模式。A5, 3D structure of the combined model between TjapOBP1 (the spiral model) and lavandulyl acetate (the gray model);B5 and C5, detailed binding mode of lavandulyl acetate (the gray model) with the protein distal pocket.
Figure 10. Binding pattern of TjapOBP1 and lavandulyl acetate
图 11 松针鞘瘿蚊TjapOBP1与1-异丙基-4-亚甲基二环[3.1.0]己-2-烯的结合模式
A6. TjapOBP1(螺旋模型)与1-异丙基-4-亚甲基二环[3.1.0]己-2-烯(灰色模型)结合的三维结构;B6、C6. 1-异丙基-4-亚甲基二环[3.1.0]己-2-烯(灰色模型)与蛋白末端口袋的详细结合模式。A6, 3D structure of the combined model between TjapOBP1 (the spiral model) and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene (the gray model);B6 and C6, detailed binding mode of 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene (the gray model) with the protein distal pocket.
Figure 11. Binding pattern of TjapOBP1 and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene
表 1 分子对接结果
Table 1. Molecular docking results
序号
No.化合物名称
Compound nameCAS号
CAS No.化学式
Chemical formula结合能
Binding energy1 β-月桂烯 β-myrcene 123-35-3 C10H16 −5.26 2 2,6-二甲基辛-1,5,7-三烯-3-醇 2,6-dimethylocta-1,5,7-trien-3-ol 29414-56-0 C10H16O −5.24 3 乙酸橙花酯 Neryl acetate 141-12-8 C12H20O2 −5.21 4 桧烯 Sabinene 3387-41-5 C10H16 −5.14 5 乙酸薰衣草酯 Lavandulyl acetate 25905-14-0 C12H20O2 −5.05 6 1-异丙基-4-亚甲基二环[3.1.0]己-2-烯 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene 36262-09-6 C10H14 −5.04 7 橙花醇 Nerol 106-25-2 C10H18O −4.93 8 萜品油烯 Terpinolene 586-62-9 C10H16 −4.72 9 1-氯-5-甲基己烷 1-chloro-5-methylhexane 33240-56-1 C7H15Cl −4.67 10 β-苧烯 β-thujene 28634-89-1 C10H16 −4.65 11 α-蒎烯 α-pinene 80-56-8 C10H16 −4.58 12 α-萜烯 α-terpinene 99-86-5 C10H16 −4.58 13 1-亚甲基-4-(1-甲基乙烯基)环己烷 1-methylene-4-(1-methylvinyl) cyclohexane 499-97-8 C10H16 −4.51 14 β-萜烯 β-terpinene 99-84-3 C10H16 −4.49 15 β-水芹烯 β-phellandrene 555-10-2 C10H16 −4.46 16 (-)-β-蒎烯 (-)-β-pinene 18172-67-3 C10H16 −4.44 17 α-水芹烯 α-phellandrene 99-83-2 C10H16 −4.44 18 香叶基丙酸 Geranyl propionate 105-90-8 C13H22O2 −4.41 19 M-甲异丙苯 M-cymene 535-77-3 C10H14 −4.37 20 (E)-2-己烯醛 (E)-2-hexenal 6728-26-3 C6H10O −4.30 21 2-己烯醛 2-hexenal 505-57-7 C6H10O −4.28 22 莰烯 Camphene 79-92-5 C10H16 −4.24 23 d-柠檬烯 d-limonene 5989-27-5 C10H16 −4.20 24 己醛 Hexanal 66-25-1 C6H12O −4.12 25 对伞花烃 p-cymene 99-87-6 C10H14 −3.96 26 荜澄茄油烯 Cubenene 29837-12-5 C15H24 −3.91 27 三环烯 Tricyclene 508-32-7 C10H16 −3.89 28 松香芹酮 Pinocarvone 30460-92-5 C10H14O −3.88 29 γ-萜品烯 γ-terpinene 99-85-4 C10H16 −3.68 30 环戊烯 Cyclofenchene 488-97-1 C10H16 −3.55 31 3-蒈烯 3-carene 13466-78-9 C10H16 −3.18 32 桃金娘烯醇 Myrtenol 515-00-4 C10H16O −3.11 33 α-香柠檬烯 α-bergamotene 17699-05-7 C15H24 −2.59 34 2-异丙基-5-甲基苯甲醚 2-isopropyl-5-methylanisole 1076-56-8 C11H16O −2.29 35 顺-β-胡椒烯,立体异构体 cis-β-copaene, stereoisomer C15H24 −1.16 36 顺-β-胡椒烯 cis-β-copaene 18252-44-3 C15H24 −1.14 37 胡椒烯 Copaene 3856-25-5 C15H24 −0.58 38 衣兰烯 Ylangene 14912-44-8 C15H24 −0.01 39 乙酸龙脑酯 Bornyl acetate 76-49-3 C12H20O2 0.31 40 (-)-冰片基乙酸酯 (-)-bornyl acetate 5655-61-8 C12H20O2 0.33 41 β-甲基紫罗酮 β-methylionone 127-43-5 C14H22O 0.42 42 1,2,3,4,4A,7-六氢-1,6-二甲基-4-(1-甲基乙基)-萘
1,2,3,4,4A,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)-naphthalene16728-99-7 C15H24 2.63 43 α-荜澄茄油烯 α-cubebene 17699-14-8 C15H24 4.12 44 γ-衣兰油烯 γ-muurolene 30021-74-0 C15H24 5.04 45 α-衣兰油烯 α-muurolene 10208-80-7 C15H24 5.38 46 (+)-epi-二环倍半水芹烯 (+)-epi-bicyclosesquiphellandrene C15H24 6.39 47 (1R,4R)-4-甲基-7-甲亚基-1-丙烷-2-基-2,3,4,4a,5,6-六氢-1H-萘
(1R,4R)-4-methyl-7-methylidene-1-propan-2-yl-2,3,4,4a,5,6-hexahydro-1H-naphthaleneC15H24 6.42 48 (+)-γ-古芸烯 (+)-γ-gurjunene 22567-17-5 C15H24 6.55 49 3,8一卡达三烯 Cadala-1(10),3,8-triene C15H22 6.87 50 β-杜松烯 β-cadinene 523-47-7 C15H24 6.96 51 (+)-α-杜松烯 (+)-α-cadinene 24406-05-1 C15H24 9.10 52 1-异丙基-4,7-二甲基-1,2,3,5,6,8a-六氢萘
1-isopropyl-4,7-dimethyl-1,2,3,5,6,8a-hexahydronaphthalene16729-01-4 C15H24 9.21 53 (+)-δ-杜松烯 (+)-δ-cadinene 483-76-1 C15H24 9.25 54 香橙烯 Aromandendrene 489-39-4 C15H24 10.92 55 (1S,4S,4aS)-1-异丙基-4,7-二甲基-1,2,3,4,4a,5-六氢萘
(1S,4S,4aS)-1-isopropyl-4,7-dimethyl-1,2,3,4,4a,5-hexahydronaphthaleneC15H24 11.71 56 γ-杜松烯 γ-cadinene 39029-41-9 C15H24 12.53 57 (S,1Z,6Z)-8-异丙基-1-甲基-5-亚甲基环癸-1,6-二烯
(S,1Z,6Z)-8-isopropyl-1-methyl-5-methylenecyclodeca-1,6-diene317819-80-0 C15H24 12.95 58 2-亚甲基-5-(1-甲基乙烯基)-8-甲基-二环[5.3.0]癸烷
2-methylene-5-(1-methylvinyl)-8-methyl-bicyclo[5.3.0]decaneC15H24 13.86 59 顺-菖蒲烯 cis-calamenene 72937-55-4 C15H22 14.71 60 β-愈创木烯 β-guaiene 88-84-6 C15H24 17.04 61 石竹烯 Caryophyllene 87-44-5 C15H24 18.81 62 大根香叶烯D Germacrene D 23986-74-5 C15H24 19.24 63 长(松)叶烯 Longifolene 475-20-7 C15H24 24.28 64 氧化石竹烯 Caryophyllene oxide 1139-30-6 C15H24O 28.37 65 葎草烯 Humulene 6753-98-6 C15H24 27.39 66 十二甲基环六硅氧烷 Cyclohexasiloxane-dodecamethyl 540-97-6 C12H36O6Si6 67 十甲基环五硅氧烷 Cyclopentasiloxane-decamethyl 541-02-6 C10H30O5Si5 -
[1] Toichi U, Motonori I. Eine neue Thecodiplosis-Art (Dip., Itonididae)[J]. Insecta Matsumurana, 1955, 19(1−2): 44−50. [2] 焦继鹏, 武海卫, 任利利, 等. 入侵种松针鞘瘿蚊在山东省黄岛区的发现与初步研究[J]. 应用昆虫学报, 2017, 54(6):915−923.Jiao J P, Wu H W, Ren L L, et al. Reports on the discovery and preliminary studies of the invasive species Thecodiplosis japonensis (Uchida & Inouye) in Huangdao area of Shandong Province[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 915−923. [3] Ko J H, Lee B Y. Influence of the wind on the dispersion of the pine gall-midge (Thecodiplosis japonensis)-tested in the wind tunnel[J]. Korean Journal of Entomology, 1975, 5(1): 13−16. [4] Brito N F, Moreira M F, Melo A C. A look inside odorant-binding proteins in insect chemoreception[J]. Journal of Insect Physiology, 2016, 95: 51−65. doi: 10.1016/j.jinsphys.2016.09.008 [5] Pelosi P, Mastrogiacomo R, Iovinella I, et al. Structure and biotechnological applications of odorant-binding proteins[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 61−70. doi: 10.1007/s00253-013-5383-y [6] 杜亚丽, 徐凯, 赵慧婷, 等. 昆虫气味结合蛋白的研究进展[J]. 昆虫学报, 2020, 63(3):365−380.Du Y L, Xu K, Zhao H T, et al. Research progress in odorant binding proteins of insects[J]. Acta Entomologica Sinica, 2020, 63(3): 365−380. [7] Zheng W M. Proteins: from sequence to structure[J]. Chinese Physics B, 2014, 23(7): 111−117. [8] 刘航玮. 绿盲蝽四个触角特异气味结合蛋白配体结合特征研究[D]. 北京: 中国农业科学院, 2017.Liu H W. Binding Characteristics of four antennal-specific odorant binding proteins in Apolygus lucorum (Hemiptera: Miridae)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. [9] 刘子楠, 黎河山, 宋枭禹. 蛋白质结构预测综述[J]. 中国医学物理学杂志, 2020, 37(9):1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023Liu Z N, Li H S, Song X Y. Survey on protein structure predication[J]. Chinese Journal of Medical Physics, 2020, 37(9): 1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023 [10] 李敏, 郭美琪, 相伟芳, 等. 分子对接技术在昆虫化学感受研究中的应用进展[J]. 植物保护, 2019, 45(5):121−127.Li M, Guo M Q, Xiang W F, et al. Research progress in molecular docking in insect chemosense[J]. Plant Protection, 2019, 45(5): 121−127. [11] Laskowski R A, MacArthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2): 283−291. doi: 10.1107/S0021889892009944 [12] Laskowski R A, Rullmannn J A, mac Arthur M W, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR[J]. Journal of Biomolecular NMR, 1996, 8(4): 477−486. [13] Eisenberg D, Luthy R, Bowie J U. VERIFY3D: assessment of protein models with three-dimensional profiles[J]. Methods in Enzymology, 1997, 277: 396−404. [14] 汪宇, 孙浩, 朱家颖, 等. 云南切梢小蠹气味结合蛋白的同源模建[J]. 应用昆虫学报, 2015, 52(5):1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145Wang Y, Sun H, Zhu J Y, et al. Homology modeling of the odorant binding protein of the pine shoot beetle, Tomicus yunnanensis[J]. Chinese Journal of Applied Entomology, 2015, 52(5): 1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145 [15] 阎伟, 骆有庆, 李朝绪, 等. 锈色棕榈象气味结合蛋白的同源建模[J]. 应用昆虫学报, 2017, 54(6):909−914.Yan W, Luo Y Q, Li C X, et al. Modeling the odorant binding protein of the red palm weevil, Rhynchophorus ferrugineus[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 909−914. [16] 相伟芳, 李敏, 林艳平, 等. 白蛾周氏啮小蜂气味结合蛋白OBP1与寄主挥发物的分子对接研究[J]. 生物安全学报, 2018, 27(30):193−199.Xiang W F, Li M, Lin Y P, et al. Molecular docking of odorant binding protein1 of Chouioia cunea with host volatiles[J]. Journal of Biosafety, 2018, 27(30): 193−199. [17] 郭冰, 郝恩华, 王菁桢, 等. 入侵害虫松树蜂气味结合蛋白与其相关信息化学物质的分子对接[J]. 植物保护学报, 2019, 46(5):1004−1017.Guo B, Hao E H, Wang J Z, et al. Molecular docking of odorant binding proteins and its related semiochemicals of sirex woodwasp Sirex noctilio, an invasive insect pest[J]. Journal of Plant Protection, 2019, 46(5): 1004−1017. [18] Baker D, Sali A. Protein structure prediction and structural genomics[J]. Science, 2001, 294: 93−96. doi: 10.1126/science.1065659 -