Prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of venom-allergen proteins from Bursaphelenchus xylophilus
-
摘要:
目的 类毒素过敏原蛋白(VAPs)是松材线虫侵染松树过程中分泌的一类蛋白。此类蛋白可通过抑制松树的防卫反应,从而利于松材线虫在松树内的定殖与扩散。本研究对4种类毒素过敏原蛋白进行原核表达、多抗制备和基因的表达模式分析,明确松材线虫Bx-VAPs蛋白的结构与功能,为阐明该类蛋白在松材线虫与寄主松树互作中的作用机理提供基础支撑。 方法 本研究利用聚合酶链式反应(PCR)扩增松材线虫4个Bx-VAPs基因,通过实时荧光定量(RT-qPCR)方法检测不同龄期松材线虫4个Bx-VAPs基因的表达量。同时,将扩增的4个基因全长产物分别转化至pET32b原核表达载体,构建重组质粒pET-32b-VAPs,经鉴定正确后的重组质粒转化至大肠杆菌BL21DE3进行诱导表达。利用纯化的Bx-VAPs蛋白分别免疫Balb/c鼠,4次免疫后获得多克隆抗体;采用间接酶联免疫吸附法ELISA测定抗体血清效价;利用聚丙烯酰胺凝胶电泳(SDS-PAGE)和免疫印迹法(Western-blot)进行蛋白鉴定。最后,应用生物信息学方法分析这四个蛋白的理化性质、二级结构和表面特性,预测B细胞抗原表位。 结果 松材线虫4个Bx-VAPs基因在不同龄期的表达量存在显著差异,其中Bx-VAP1和Bx-VAP2基因在成虫期表达量较高,Bx-VAP3和Bx-VAP4基因在繁殖型L3时期表达量较高。构建获得的重组质粒pET-32b-VAPn诱导表达的蛋白分子量介于21 ~ 31 kDa之间,纯化后的多克隆抗体anti-VAP1、anti-VAP2和anti-VAP3均对松材线虫蛋白液具有较高的特异性,但anti-VAP4抗体未能与松材线虫蛋白液结合反应。4个Bx-VAP蛋白的二级结构均以α螺旋和无规则卷曲为主,存在信号肽,具有SCP结构域,无跨膜结构域,Bx-VAP1潜在的优势B细胞抗原表位较多。 结论 重组质粒pET-32b-VAPn诱导表达的蛋白大小与预测的蛋白大小一致,均为包涵体表达,制备的多克隆抗体anti-VAP1、anti-VAP2和anti-VAP3效价高,特异性良好,Bx-VAP1具有潜在的B细胞抗原表位优势,为进一步研究松材线虫VAPs蛋白的功能及其相关致病机制研究提供了实验材料和基础。 Abstract:Objective Venom-allergen proteins (VAPs) are proteins secreted by pine wood nematode during the process of infesting pine trees. Such proteins may inhibit the defense response of pine trees, thereby facilitating the colonization and spread of pine wood nematodes in pine trees. In this study, the prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of four VAPs were conducted to clarify the structures and functions of the VAPs of Bursaphelenchus xylophilus (Bx-VAPs), in order to provide basic support for elucidating the mechanism of this kind of protein in the interaction between pine wood nematode and the host pine. Method Polymerase chain reaction (PCR) was used to amplify the fourBx-VAPs genes, and the expression levels of the four Bx-VAPs genes were detected by real-time quantitative polymerase chain reaction (RT-qPCR) method. At the same time, the amplified full-length products of the four genes were cloned into the pET32b prokaryotic expression vector separately, and the recombinant plasmid pET-32b-VAPS were constructed. After the identification, the correct recombinant plasmids were transformed into Escherichia coli BL21DE3 for induced expression. The purified Bx-VAPs were used to immunize Balb/c mice respectively, and polyclonal antibodies were obtained after four immunizations; the antibody serum titer was determined by indirect enzyme-linked immunosorbent assay (ELISA); the proteins were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western-blot (WB). Finally, bioinformatics methods were used to analyze and predict the physical and chemical properties, secondary structure, surface properties and B cell epitopes of the proteins encoded by these four genes. Result There were significant differences in the expression levels of the four Bx-VAPs genes of B. xylophilus during different developmental stages. Among them, the Bx-VAP1 and Bx-VAP2 genes were expressed in high level in the adult stage, and the Bx-VAP3 and Bx-VAP4 genes were expressed in high level in propagative third-larval instar (L3). The constructed recombinant plasmid pET-32b-VAPn induced and expressed the proteins with a molecular weight between 21 kDa and 31 kDa. The three purified polyclonal antibodies anti-VAP1, anti-VAP2 and anti-VAP3 all had higher effect on the B. xylophilus protein solution specificity, but the anti-VAP4 antibody failed to react with the protein solution of B. xylophilus. The secondary structures of the four Bx-VAPs were dominated by alph-helix and random coils, all had signal peptides, SCP domains, and no transmembrane domains. Bx-VAP1 had many potential dominant B cell epitopes. Conclusion The protein size induced by recombinant plasmid pET-32b-VAPn is consistent with the predicted protein size. All are expression of inclusion bodies, the prepared polyclonal anti-VAP1, anti-VAP2 and anti-VAP3 have high titer and good specificity. Bx-VAP1 has potential B cell epitope advantages. This study provides experimental materials and basis for further research on the function of B. xylophilus VAPs protein and related pathogenic mechanisms. -
图 2 不同发育阶段松材线虫Bx-VAPs的相对表达量
E代表卵,L2 ~ L4 代表繁殖型2 ~ 4龄幼虫,A代表成虫。不同小写字母表示不同发育阶段基因表达量差异显著性(P < 0.05)。下同。E indicates egg stage, L2 − L4 indicate propagative 2nd to 4th instar larvae, A indicates adult. Different lowercase letters indicate significant differences in gene expression at different developmental stages (P < 0.05). The same below.
Figure 2. Relative expression level of Bx-VAPs in B. ylophilus at various developmental stages
图 3 重组蛋白在大肠杆菌BL21DE3中表达的SDS-PAGE分析
1. 无IPTG诱导的BL21DE3-BxVAPn全菌;2. IPTG诱导的BL21DE3-BxVAPn 全菌;3. 上清液;4. 包涵体;5. 纯化的BxVAPn蛋白;6. 低分子量蛋白标记。1, BL21DE3–BxVAP1 without IPTG; 2, BL21DE3- BxVAP1 induced with IPTG; 3, supernatant; 4, inclusion body; 5, purified BXVAP1 protein; 6, low molecular mass protein marker.
Figure 3. SDS-PAGE analysis of the expression of recombinant protein in E. coli BL21DE3
图 9 Bx-VAPs蛋白的B细胞抗原表位预测
A. Bx-VAP1蛋白的B细胞表位预测;B. Bx-VAP2蛋白的B细胞表位预测;C. Bx-VAP3蛋白的B细胞表位预测;D. Bx-VAP4蛋白的细胞表位预测。A, B cell epitope prediction of Bx-VAP1 protein; B, B cell epitope prediction of Bx-VAP2 protein; C, B cell epitope prediction of Bx-VAP3 protein; D, B cell epitope prediction of Bx-VAP4 protein.
Figure 9. B cell antigenic epitope prediction of Bx-VAPs protein
表 1 引物信息
Table 1. Primer information
引物名称
Primer name引物序列
Primer sequence引物用途
Primer usageBx-VAP1-F ATGTTCGGTCTACTGTTAGT 全长克隆
Full-length gene cloneBx-VAP1-R TCAGGCGCTACACAGACTGT Bx-VAP2-F ATGGTTCGAGTATTAGTTCT Bx-VAP2-R TCAGGCACTGCACAAACTGT Bx-VAP3-F ATGTTCCGAGTTCTCCTGAC Bx-VAP3-R CTATTCGGCACTGCAGAGTG Bx-VAP4-F ATGATAACTAAATTCCTGTG Bx-VAP4-R TTAAGCGACGCACAATCCCT EX-VAP1-F GTATTTTCAGGGATCCGAATTCGACAGGTTCAGCAACAGCCAA 添加双酶切位点
Addition of double cleavage sitesEX-VAP1-R GGTGGTGGTGGTGGTGCTCGAGTCAGGCGCTACACAGACTGT EX-VAP2-F GTATTTTCAGGGATCCGAATTCACCAAATTCAGCGAAAGCCAA EX-VAP2-R GGTGGTGGTGGTGGTGCTCGAGTCAGGCGCTACACAGACTGT EX-VAP3-F GTATTTTCAGGGATCCGAATTCGCCAGGTTAAGCGACGATGAG EX-VAP3-R GGTGGTGGTGGTGGTGCTCGAGCTATTCGGCACTGCAGAGTG EX-VAP4-F GTATTTTCAGGGATCCGAATTCGAAAAGTTGAATAGCGCTGAG EX-VAP4-R GGTGGTGGTGGTGGTGCTCGAGTTAAGCGACGCACAATCCCT RT-VAP1-F AATGTGATGGAGGCTGAC 实时荧光定量PCR
Real-time quantitative polymerase chain reactionRT-VAP1-R GCTACACAGACTGTCACT RT-VAP2-F GCTGTGCCATTCAGAACT RT-VAP2-R GCTCCCATCATGTTTCCA RT-VAP3-F TTGGACCTTCACCGTCTG RT-VAP3-R CTTCTTCTTCCTCGCACTG RT-VAP4-F CTCCGACCTGGAAGACAA RT-VAP4-R CGCTCTCATGGCAATGTT β-actin -F TCCGTACCCTGAAGTTGGCTAACC β-actin -R AAGTGGAGACGAGGGAATGGAACC 表 2 松材线虫的Bx-VAPs蛋白序列及理化性质
Table 2. Protein sequence and physicochemical properties of Bx-VAPs in B. xylophilus
蛋白名称
Protein name基因库登录号
GenBank ID氨基酸数
Number of
amino acid分子量
Molecular
mass/Da理论等电点
Theoretical pI信号肽的位置
Signal peptide
location/aa跨膜结构域
Transmembrane
domain磷酸化位点数量
Number of phosphorylation site丝氨酸
Serine苏氨酸
Threonine络氨酸
ComplexinBx-VAP1 ADG86237.1 204 22 434.86 4.93 17 ~ 18 无 No 12 17 4 Bx-VAP2 ADG86238.1 206 22 418.83 4.68 17 ~ 18 无 No 15 15 4 Bx-VAP3 ADG86239.1 202 22 446.27 4.31 18 ~ 19 无 No 16 11 8 Bx-VAP4 CAD5147609.1 201 22 038.58 5.19 17 ~ 18 无 No 14 17 7 -
[1] Cantacessi C, Gasser R B. SCP/TAPS proteins in helminths: where to from now [J]? Molecular & Cellular Probes, 2012, 26(1): 54−59. [2] Jasmer D P, Goverse A, Smant G. Parasitic nematodeinteractions with mammals and plants[J]. Annual Review of Phytopathology, 2003, 41(1): 245−270. doi: 10.1146/annurev.phyto.41.052102.104023 [3] Wilbers R H P, Schneiter R, Holterman M H M, et al. Secreted venom allergen-like proteins of helminths: conserved modulators of host responses in animals and plants [J/OL]. PLoS Pathogens, 2018, 14(10): e1007300 [2021−03−15]. https://doi.org/10.1371/journal.ppat.1007300. [4] Ding X, Shields J, Allen R, et al. Molecular cloning and characterisation of a venom allergen AG5-like cDNA from Meloidogyne incognita[J]. International Journal for Parasitology, 2000, 30(1): 77−81. doi: 10.1016/S0020-7519(99)00165-4 [5] Wang X, Li H, Hu Y, et al. Molecular cloning and analysis of a new venom allergen-like protein gene from the root-knot nematode Meloidogyne incognita[J]. Experimental Parasitology, 2007, 117(2): 133−140. doi: 10.1016/j.exppara.2007.03.017 [6] Gao B, Allen R, Maier T, et al. Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines[J]. International Journal for Parasitology, 2002, 31(14): 1617−1625. [7] 王秉宇, 彭德良, 黄文坤, 等. 马铃薯腐烂茎线虫类毒液过敏原蛋白基因cDNA全长的克隆与序列分析[J]. 华中农业大学学报, 2011, 30(2):182−186.Wang B Y, Peng D L, Huang W K, et al. Cloning and sequence analysis of a venom allergen-like proteins gene from Ditylenchus destructoron potato in China[J]. Journal of Huazhong Agricultural University, 2011, 30(2): 182−186. [8] Lin S, Jian H, Zhao H, et al. Cloning and characterization of a venom allergen-like protein gene cluster from the pinewood nematode Bursaphelenchus xylophilus[J]. Experimental Parasitology, 2011, 127(2): 440−447. doi: 10.1016/j.exppara.2010.10.013 [9] Lozano-Torres J L, Wilbers R H P, Gawronski P, et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 10119−10124. doi: 10.1073/pnas.1202867109 [10] Luo S J, Liu S M, Kong L G, et al. Two venom allergen-like proteins, HaVAP1 and HaVAP2, are involved in the parasitism of Heterodera avenae[J]. Molecular Plant Pathology, 2019, 20(4): 471−484. doi: 10.1111/mpp.12768 [11] Li J Y, Xu C L, Yang S H, et al. A venom allergen-like protein, RsVAP, the first discovered effector protein of Radopholus similis that inhibits plant defense and facilitates parasitism[J/OL]. International Journal of Molecular Sciences, 2021, 22: 4782 [2021−03−15]. https://doi.org/10.3390/ijms22094782. [12] Franchini G, Porfido J, Shimabukuro M, et al. The unusual lipid binding proteins of parasitic helminths and their potential roles in parasitism and as therapeutic targets[J]. Prostaglandins Leukotrienes & Essential Fatty Acids, 2015, 93: 31−36. [13] Duarte A, Curtis R, Maleita C, et al. Characterization of the venom allergen—like protein (VAP-1) and the fatty acid and retinol binding protein (far-1) genes in Meloidogyne hispanica[J]. European Journal of Plant Pathology, 2014, 139(4): 825−836. doi: 10.1007/s10658-014-0436-3 [14] Kang J S, Koh Y H, Moon Y S, et al. Molecular properties of a venom allergen-like protein suggest a parasitic function in the pinewood nematode Bursaphelenchus xylophilus[J]. International Journal for Parasitology, 2012, 42(1): 63−70. doi: 10.1016/j.ijpara.2011.10.006 [15] Somvanshi V S, Phani V, Banakar P, et al. Transcriptomic changes in the pre-parasitic juveniles of Meloidogyne incognita induced by silencing of effectors Mi-msp-1 and Mi-msp-20[J]. 3 Biotech, 2020, 10: 360. doi: 10.1007/s13205-020-02353-8 [16] Nickle W R, Golden A M, Mamiya Y, et al. On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer 1934) Nickle 1970[J]. Journal of Nematology, 1981, 13(3): 385. [17] 理永霞, 张星耀. 我国中温带面临的松材线虫入侵扩张高风险[J]. 温带林业研究, 2018, 1(1):3−6. doi: 10.3969/j.issn.2096-4900.2018.01.002Li Y X, Zhang X Y. High risk of invasion and expansion of pine wood nematode in middle temperate zone of China[J]. Journal of Temperate Forestry Research, 2018, 1(1): 3−6. doi: 10.3969/j.issn.2096-4900.2018.01.002 [18] 叶建仁. 松材线虫病在中国的流行现状, 防治技术与对策分析[J]. 林业科学, 2019, 55(9):1−10.Ye J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Scientia Silvae Sinicae, 2019, 55(9): 1−10. [19] Yan X, Cheng X Y, Wang Y S, et al. Comparative transcriptomics of two pathogenic pinewood nematodes yields insights into parasitic adaptation to life on pine hosts[J]. Gene, 2012, 505(1): 81−90. doi: 10.1016/j.gene.2012.05.041 [20] 林世锋, 简恒, 赵海娟, 等. 松材线虫类毒过敏原蛋白的原核表达及多克隆抗体的制备[J]. 植物病理学报, 2013, 43(2):128−135. doi: 10.3969/j.issn.0412-0914.2013.02.003Lin S F, Jian H, Zhao H J, et al. Prokaryotic expression of venom allergen-like protein of Bursaphelenchus xylophilus and preparation of its polyclonal antibody[J]. Acta Phytopathologica Sinica, 2013, 43(2): 128−135. doi: 10.3969/j.issn.0412-0914.2013.02.003 [21] 王颖.松材线虫Bx-VAP-1基因在昆虫细胞中的表达及功能分析[D].哈尔滨: 东北林业大学, 2014.Wang Y. Functional analysis of venom allergen-like protein gene from the pinewood nematode Bursaphelenchus xylophilus using insect cell expression system [D]. Harbin: Northeast Forestry University, 2014. [22] Li Y X, Wang Y, Liu Z Y, et al. Functional analysis of the venom allergen-like protein gene from pine wood nematode Bursaphelenchus xylophilus using a baculovirus expression system[J]. Physiological and Molecular Plant Pathology, 2016, 93: 58−66. doi: 10.1016/j.pmpp.2015.12.006 [23] Schatz G, Dobberstein B. Common principles of protein translocation across membranes[J]. Science, 1996, 271: 1519−1526. doi: 10.1126/science.271.5255.1519 [24] Rose J K, Shaferman A. Conditional expression of vesicular stomatitis virus glycoprotein gene in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(11): 6670−6674. doi: 10.1073/pnas.78.11.6670 -