高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京山区栓皮栎对土壤水分吸收与利用

牛云明 贾国栋 刘子赫 王欣 刘自强

牛云明, 贾国栋, 刘子赫, 王欣, 刘自强. 北京山区栓皮栎对土壤水分吸收与利用[J]. 北京林业大学学报, 2022, 44(7): 16-24. doi: 10.12171/j.1000-1522.20210208
引用本文: 牛云明, 贾国栋, 刘子赫, 王欣, 刘自强. 北京山区栓皮栎对土壤水分吸收与利用[J]. 北京林业大学学报, 2022, 44(7): 16-24. doi: 10.12171/j.1000-1522.20210208
Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. doi: 10.12171/j.1000-1522.20210208
Citation: Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. doi: 10.12171/j.1000-1522.20210208

北京山区栓皮栎对土壤水分吸收与利用

doi: 10.12171/j.1000-1522.20210208
基金项目: 北京林业大学大学生创新创业训练计划(S202010022203、X202010022266),国家自然科学基金面上项目(41877152)
详细信息
    作者简介:

    牛云明。主要研究方向:生态水文。Email:niuyunming1@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    贾国栋,副教授。主要研究方向:同位素生态水文学。 Email:jiaguodong@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学67号信箱

  • 中图分类号: S792.18;S152.7

Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area

  • 摘要:   目的  探究北京山区优势树种之一栓皮栎林的液流特征、水分利用策略及二者之间的关系,为树木吸水过程的研究提供理论参考,为北京山区人工林管护提供科学依据。  方法  基于热扩散原理(插针式)茎流计和稳定氢氧同位素测定了2015—2017年间栓皮栎不同季节的液流速率与水分利用来源,并分析二者的相关性。  结果  (1)栓皮栎非生长季不同阶段(11—12月和1—3月)液流活动存在显著差异,随着休眠期逐渐结束日均液流速率逐渐升高,液流速率范围为2 × 10−4 ~ 3 × 10−4 cm/s;生长季液流速率日波动较大,为1.5 × 10−3 ~ 1.7 × 10−3 cm/s。在观测期间,不同年份的展叶期4—5月栓皮栎液流速率不存在显著差异,而6—10月栓皮栎液流速率存在显著差异;(2)栓皮栎对不同深度土壤水分利用比例随季节性发生变化较小,各土层对该树种水分活动的供给较为平均。非生长季栓皮栎对0 ~ 40 cm、40 ~ 80 cm、80 ~ 100 cm土层土壤水的吸收利用比例分别为(36.0 ± 3.5)%、(41.0 ± 1.6)%、(23.0 ± 2.3)%。生长季栓皮栎对0 ~ 40 cm土壤水利用比例增加,为(39.3 ± 2.6)%。对40 ~ 80 cm土壤水利用比例基本没有变化,为(40.0 ± 1.5)%,对80 ~ 100 cm土壤水利用比例减少,为(20.7 ± 1.8)%;(3)日蒸腾量与栓皮栎在生长季对40 ~ 80 cm土壤水的利用比例呈负相关,与对80 ~ 100 cm土壤水的利用呈正相关。  结论  在栓皮栎现有的季节性水分利用格局下,生长季的蒸腾量的增加会使其扩大对深层土壤水的吸收比例,对栓皮栎维持蒸腾具有重要意义。

     

  • 图  2  2015—2017年栓皮栎日均液流速率

    Figure  2.  Average daily sap flow velocity of Quercus variabilis from 2015 to 2017

    图  1  2015—2017年日降水量与土壤含水率

    Figure  1.  Daily rainfall and soil moisture content from 2015 to 2017

    图  3  2015—2017年不同深度土壤对栓皮栎的水分贡献率

    Figure  3.  Water contribution rates of Quercus variabilis in different soil layers in 2015−2017

    图  4  生长季各土层水分贡献率与栓皮栎日蒸腾量的相关关系

    Figure  4.  Correlation between water contribution rate of soil layers and daily transpiration of Quercus variabilis in growing season

    图  5  栓皮栎各种土层根系生物量分布

    Figure  5.  Distribution of root biomass of Quercus variabilis in various soil layers

    表  1  2015—2017年栓皮栎日蒸腾量

    Table  1.   Daily transpiration of Quercus variabilis from 2015 to 2017 mm

    年份
    Year
    1—3月
    From January to March
    4—5月
    From April to May
    6—8月
    From June to August
    9—10月
    From September to October
    11—12月
    From November to December
    20150.31 ± 0.19a2.73 ± 1.91a2.96 ± 1.13a1.56 ± 1.23a0.26 ± 0.13a
    20160.48 ± 0.27b2.54 ± 1.09a2.57 ± 1.04b1.97 ± 1.54ab0.36 ± 0.17b
    20170.56 ± 0.34c2.55 ± 1.27a2.75 ± 1.09ab2.27 ± 0.89b0.51 ± 0.32c
    注:相同的字母代表年际间差异不显著,不同字母代表年际间差异显著。Notes: the same letters represent no significant differences between years, and different letters represent significant differences between years.
    下载: 导出CSV

    表  2  栓皮栎对不同土层土壤水的利用状况

    Table  2.   Utilization of soil water in different soil layers by Quercus variabilis

    月份
    Month
    日蒸腾量
    Daily transpiration/mm
    土层
    Soil depth/cm
    水分贡献率
    Moisture contribution rate/%
    日利用量
    Daily utilization/mm
    1—30.45 ± 0.300 ~ 4036.00.16 ± 0.11
    40 ~ 8041.00.18 ± 0.12
    80 ~ 10023.00.10 ± 0.07
    4—102.48 ± 1.200 ~ 4039.30.97 ± 0.47
    40 ~ 8040.00.99 ± 0.48
    80 ~ 10020.70.51 ± 0.25
    11—120.38 ± 0.200 ~ 4037.10.14 ± 0.07
    40 ~ 8040.80.16 ± 0.08
    80 ~ 10022.10.08 ± 0.04
    下载: 导出CSV
  • [1] 刘自强. 华北地区典型林木水分运移过程与利用机制研究[D]. 北京: 北京林业大学, 2019.

    Liu Z Q. Water migration process and utilization mechanism of typical trees in North China[D]. Beijing: Beijing Forestry University, 2019.
    [2] 贾国栋, 余新晓, 邓文平, 等. 北京山区典型树种土壤水分利用特征[J]. 应用基础与工程科学学报, 2013, 21(3): 403−411. doi: 10.3969/j.issn.1005-0930.2013.03.002

    Jia G D, Yu X X, Deng W P, et al. Soil water use of typical tree species in Beijing mountain area[J]. Journal of Basic Science and Engineering, 2013, 21(3): 403−411. doi: 10.3969/j.issn.1005-0930.2013.03.002
    [3] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7): 16−23. doi: 10.11707/j.1001-7488.20180702

    Liu Z Q, Yu X X, Jia G D, et al. Response to precipitation in water sources for Platycladus orientalis in Beijing mountain area[J]. Scientia Silvae Sinicae, 2018, 54(7): 16−23. doi: 10.11707/j.1001-7488.20180702
    [4] 温林生, 邓文平, 邓力维, 等. 庐山不同海拔植物季节水分利用策略[J]. 水土保持学报, 2021, 35(4): 341−348.

    Wen L S, Deng W P, Deng L W, et al. Seasonal water utilization strategies of plants at different altitudes in the Lushan Mountain[J]. Journal of Soil and Water Conservation, 2021, 35(4): 341−348.
    [5] Ewe S M, Sternberg D L. Seasonal water-use by the invasive exotic, Schinus terebinthifolius, in native and disturbed communities[J]. Oecologia, 2002, 133: 441−448. doi: 10.1007/s00442-002-1047-9
    [6] Nippert J B, Knapp A K. Soil water partitioning contributes to species coexistence in tallgrass prairiee[J]. Oikos, 2007, 116: 1017−1029. doi: 10.1111/j.0030-1299.2007.15630.x
    [7] Amy A M, Libby A S. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water[J]. Journal of Hydrology, 2007, 342(3): 238−248.
    [8] Su P Y, Zhang M J, Qu D Y, et al. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China[J/OL]. Water, 2020, 12(10): 2791[2022−02−01]. https://doi.org/10.3390/w12102791.
    [9] 张菊, 江朝晖, 李博, 等. 基于热扩散探针的便携式植物液流监测仪研究[J]. 农业机械学报, 2020, 51(7): 237−243. doi: 10.6041/j.issn.1000-1298.2020.07.027

    Zhang J, Jiang C H, Li B, et al. Design and experiment of portable plant sap flow meter based on TDP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 237−243. doi: 10.6041/j.issn.1000-1298.2020.07.027
    [10] 赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望[J]. 西北林学院学报, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16

    Zhao C Y, Si J H, Feng Q, et al. Stem sap flow research: progress and prospect[J]. Journal of Northwest Forestry University, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16
    [11] 李新宇, 李延明, 孙林, 等. 银杏蒸腾耗水与环境因子的关系研究[J]. 北京林业大学学报, 2014, 36(4): 23−29.

    Li X Y, Li Y M, Sun L, et al. Characteristics of transpiration water consumption and its relationship with environmental factors in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2014, 36(4): 23−29.
    [12] 刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏和栓皮栎的水分利用特征[J]. 林业科学, 2016, 52(9): 22−30.

    Liu Z Q, Yu X X, Jia G D, et al. Water use characteristic of Platycladus orientails and Quercus variabilis in Beijing mountain area[J]. Scientia Silvae Sinicae, 2016, 52(9): 22−30.
    [13] 贾国栋, 余新晓, 朱建刚, 等. 北京山区刺槐、栓皮栎生长旺季液流特性及影响因子[J]. 水土保持通报, 2010, 30(5): 50−56.

    Jia G D, Yu X X, Zhu J G, et al. Sap flow characteristic and influencing factors of Robinia pseudoacacia and Quercus variabilis in rapid growth season in mountain area of Beijing City[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 50−56.
    [14] 王小菲, 孙永玉, 李昆, 等. 山合欢树干液流的季节变化[J]. 生态学杂志, 2013, 32(3): 597−603.

    Wang X F, Sun Y Y, Li K, et al. Seasonal dynamics of Albizia kalkora stem sap flow in Yunmou dry-hot valley of Southwest China[J]. Chinese Journal of Ecology, 2013, 32(3): 597−603.
    [15] 刘朋飞, 郭浩, 辛智鸣. 乌兰布和沙漠沙枣树干液流与环境因子关系[J]. 干旱区资源与环境, 2021, 35(9): 177−184.

    Liu P F, Guo H, Xin Z M. The relationship between the stem sap flow of Elaeagnus angustifolia Linn. and environmental factors in Wulan Buhe Desert[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 177−184.
    [16] 夏银华, 章新平, 戴军杰, 等. 亚热带季风区樟树树干液流对降水的响应[J]. 水土保持研究, 2021, 28(6): 144−152.

    Xia Y H, Zhang X P, Dai J J, et al. Response of stem sap flow of Cinnamomum Camphora to precipitation under different environment in subtropical monsoon region[J]. Research of Soil and Water Conservation, 2021, 28(6): 144−152.
    [17] 徐军亮, 章异平. 春季侧柏树干边材液流的滞后效应分析[J]. 水土保持研究, 2009, 16(4): 109−112.

    Xu J L, Zhang Y P. Analysis on sap flow time lag effect of Platycladus orientails in spring[J]. Research of Soil and Water Conservation, 2009, 16(4): 109−112.
    [18] 杨芝歌, 史宇, 余新晓, 等. 北京山区典型树种树干液流特征及其对环境因子的响应研究[J]. 水土保持研究, 2012, 19(2): 195−200.

    Yang Z G, Shi Y, Yu X X, et al. Characteristic of stem sap flow velocity of individual trees and its response to environment factors in the Beijing mountain area[J]. Research of Soil and Water Conservation, 2012, 19(2): 195−200.
    [19] 吴晓莆, 王志恒, 崔海亭, 等. 北京山区栎林的群落结构与物种组成[J]. 生物多样性, 2004, 12(1): 155−163. doi: 10.3321/j.issn:1005-0094.2004.01.019

    Wu X P, Wang Z H, Cui H T, et al. Community structures and species composition of oak forests in mountainous area of Beijing[J]. Biodiversity Science, 2004, 12(1): 155−163. doi: 10.3321/j.issn:1005-0094.2004.01.019
    [20] 樊登星, 余新晓. 北京山区栓皮栎林优势种群点格局分析[J]. 生态学报, 2016, 36(2): 318−325.

    Fan D X, Yu X X. Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis population in a mountainous area of Beijing[J]. Acta Ecologica Sinica, 2016, 36(2): 318−325.
    [21] 邓文平, 余新晓, 贾国栋, 等. 雨季北京山区3种典型植物的水分来源[J]. 干旱区研究, 2014, 31(4): 649−657.

    Deng W P, Yu X X, Jia G D, et al. Water sources of threes typical plants in the Beijing mountain areas in rainy season[J]. Arid Zone Research, 2014, 31(4): 649−657.
    [22] Lin G H, Phillips S L, Ehleringer J R. Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau[J]. Oecologia, 1996, 106: 8−17. doi: 10.1007/BF00334402
    [23] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147: 13−31. doi: 10.1046/j.1469-8137.2000.00681.x
    [24] 苏文旭, 贾德彬, 高瑞忠, 等. 浑善达克沙地南缘人工固沙植被水分利用特征[J]. 应用生态学报, 2021, 32(6): 1980−1988.

    Su W X, Jia D B, Gao R Z, et al. Water use characteristics of artificial sand-fixing vegetation on the southern edge of Hunshan Dake Sandy Land, Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1980−1988.
    [25] Wu Z, Behzad H M, He Q F, et al. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China[J/OL]. Journal of Hydrology, 2021, 597: 126199[2022−02−01]. https://doi.org/10.1016/j.jhydrol.2021.126199.
    [26] Zhao Y, Wang L, Knighton J, et al. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem[J/OL]. Agricultural and Forest Meteorology, 2021, 300: 108323[2022−02−01]. https://doi.org/10.1016/j.agrformet.2021.108323.
    [27] 蔡鲁, 朱婉芮, 王华田, 等. 鲁中南山地6个造林树种根系形态的比较[J]. 中国水土保持科学, 2015, 13(2): 83−91. doi: 10.3969/j.issn.1672-3007.2015.02.013

    Cai L, Zhu W R, Wang H T, et al. Root morphology of six tree species in mountain area of middle south Shandong[J]. Science of Soil and Water Conservation, 2015, 13(2): 83−91. doi: 10.3969/j.issn.1672-3007.2015.02.013
    [28] 颜成正, 郑文革, 贾剑波, 等. 控水条件下侧柏冠层气孔导度对土壤水的响应[J]. 应用生态学报, 2020, 31(12): 4017−4026.

    Yan C Z, Zheng W G, Jia J B, et al. Responses of canopy stomatal conductance of Platycladus orientalis to soil water under control[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4017−4026.
    [29] 高娅, 贾志清, 李清雪, 等. 降雨对高寒沙地不同林龄中间锦鸡儿的水分利用特征的影响[J]. 应用生态学报, 2021, 32(6): 1935−1942.

    Gao Y, Jia Z Q, Li Q X, et al. Effect of precipitation on water use characteristics of Caragana intermedia plantations with different ages in alpine sandy land[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1935−1942.
    [30] Jackson P C, Meinzer F C, Bustamante M, et al. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem[J]. Tree Physiology, 1999, 19(11): 717−724. doi: 10.1093/treephys/19.11.717
    [31] Oliveira R S, Bezerra L, Davidson E A, et al. Deep root function in soil water dynamics in cerrado savannas of central Brazil[J]. Functional Ecology, 2005, 19(4): 574−581. doi: 10.1111/j.1365-2435.2005.01003.x
    [32] Nepstad D C, Decarvalho C R, Davidson E A, et al. The role of deep roots in the hydrological and carbon cycles of amazonian forests and pastures[J]. Nature, 1994, 372: 666−669. doi: 10.1038/372666a0
    [33] Bruno R D, da Rocha H R, de Freitas H C, et al. Soil moisture dynamics in an eastern Amazonian tropical forest[J]. Hydrological Processes, 2006, 20: 2477−2489. doi: 10.1002/hyp.6211
    [34] Alton P B. Reconciling simulations of seasonal carbon flux and soil water with observations using tap roots and hydraulic redistribution: a multi-biome FLUXNET study[J]. Agricultural and Forest Meteorology, 2014, 198: 309−319.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  5
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-08-09
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回