高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填缝型微波膨化木基金属复合材料制备及其性能表征

柴媛 陶鑫 梁善庆 傅峰

柴媛, 陶鑫, 梁善庆, 傅峰. 填缝型微波膨化木基金属复合材料制备及其性能表征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210209
引用本文: 柴媛, 陶鑫, 梁善庆, 傅峰. 填缝型微波膨化木基金属复合材料制备及其性能表征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210209
Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and properties characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210209
Citation: Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and properties characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210209

填缝型微波膨化木基金属复合材料制备及其性能表征

doi: 10.12171/j.1000-1522.20210209
基金项目: 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2016MB001)
详细信息
    作者简介:

    柴媛,博士。主要研究方向:木质功能材料。Email:cybei123@163.com 地址:100091 北京市海淀区香山路中国林科院木材工业研究所

    责任作者:

    梁善庆,博士,副研究员。主要研究方向:木质功能材料。Email:liangsq@caf.ac.cn 地址:同上

  • 中图分类号: V257; S781

Preparation and properties characterization of crack-filled type microwave puffed wood based metal composites

  • 摘要:   目的  以高能微波处理后的木材增值利用为研究目标,制备填缝型微波膨化木基金属复合材料(WMC),为微波处理人工林实木增值利用提供参考。  方法  采用抽真空浸渍方法,以锡铋低熔点合金和辐射松微波膨化木为原料,制备填缝型WMC,通过扫描电镜、能谱分析、计算机层析成像、动态热机械分析、热重分析、差示扫描量热分析、X射线衍射分析、红外光谱等测试技术,表征和分析WMC的微观形貌、热稳定性、表面接触角等性能。  结果  锡铋合金填充在微波膨化木的缝隙处,与木材形成“机械互锁”方式的啮合结构,使其在缝隙处紧密结合,提高了界面结合强度。WMC中锡和铋的质量百分比分别为25.97%和31.13%,计算机层析扫描图像重构了锡铋合金在WMC中的空间分布位置,实现了WMC可视化的三维渲染,展示了其独特的纹理。WMC与基材相比具有更高的贮存模量、损耗模量和残炭量,热稳定性得到提高。WMC未出现新的酯类、醚类等官能团特征峰,晶体结构未受到破坏,结晶度呈现上升趋势,由基材的25.9%增加至38.6%。60 s时接触角比基材提高了172%,疏水性显著提高。  结论  本研究制备了填缝型微波膨化木基金属复合材料,观察与模拟了锡铋合金在微波膨化木中的分布,表征了其热稳定性与表面接触角等性能,为基于高能微波处理木材研制新型木质产品提供了新思路。

     

  • 图  1  WMC的扫描电镜图

    Figure  1.  SEM images of WMC

    图  2  WMC中锡铋元素分布图

    Figure  2.  Sn-Bi element distribution in WMC

    图  3  WMC的内部结构图

    Figure  3.  Internal structure diagram of WMC

    图  4  基材、HPW和WMC的DMA变化图

    Figure  4.  Dynamic thermomechanical analysis of untreated samples, HPW and WMC

    图  5  基材、HPW和WMC的差示扫描量热曲线图

    Figure  5.  Differential scanning calorimetry curves of untreated samples, HPW and WMC

    图  6  基材、HPW和WMC的TG和DTG曲线图

    Figure  6.  TG and DTG curves of untreated samples, HPW and WMC

    图  7  基材、HPW、LMA和WMC的XRD曲线和红外光谱图

    Figure  7.  XRD results and FTIR spectra of untreated samples, HPW and WMC

    图  8  基材、HPW和WMC在不同时间的接触角示意图

    Figure  8.  Contact angle image of samples from 5 s to 60 s

    表  1  WMC中主要元素含量

    Table  1.   Main element proportion of WMC

    元素
    Element
    质量百分比
    Mass fraction/%
    原子百分比
    Atomic percentage/%
    C 8.63 28.47
    O 21.74 53.82
    Sn 25.97 8.67
    Bi 31.13 5.90
    下载: 导出CSV

    表  2  不同热分解阶段试件的温度分界点与质量损失

    Table  2.   Temperature split point and mass loss of samples in different thermal degradation stages

    试件 SamplesT1/℃T2/℃T3/℃W1/%W2/%W3/%W4/%残炭率 Char yield/%
    基材 Untreated1502503705.081.0659.7814.4219.66
    HPW1502503703.381.6260.9018.5015.60
    WMC1002503704.121.8249.1720.9823.91
    注:T1T2T3为各阶段的温度分界点;W1W2W3W4为各阶段的质量损失情况。Notes:T1, T2, T3 represent the temperature split points of each stage; W1, W2, W3, W4 represent the mass loss of each stage.
    下载: 导出CSV

    表  3  不同时间点下3种试件的表面接触角

    Table  3.   Contact angle of samples at different time points /(°)

    试件 Samples时间 Time/s
    51525354560
    基材 Untreated 84.4 65.1 55.6 47.6 40.1 28.8
    HPW 91.8 88.0 84.0 82.7 80.5 78.2
    WMC 121.0 96.4 88.7 75.2 67.2 63.7
    下载: 导出CSV
  • [1] 徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J]. 木材工业, 2020, 34(1):25−9, 34.

    Xu E G, Lin L Y, Li S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1): 25−9, 34.
    [2] Torgovnikov G, Vinden P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173−182. doi: 10.13073/0015-7473-60.2.173
    [3] 浙江富得利木业有限公司. 膨化基材: Q/FDL 001—2017[S]. 绍兴: 浙江富得利木业有限公司, 2017.

    Zhejiang Fudeli Flooring Co., Ltd. Puffed wood: Q/FDL 001—2017[S]. Shaoxing: Zhejiang Fudeli Flooring Co., Ltd., 2017.
    [4] Muga M O. Mechanical properties of wood following microwave and resin modification[D]. Melbourne: University of Melbourne, 2002.
    [5] Pan Y F, Yin D W, Yu X F, et al. Multilayer-structured wood electroless Cu–Ni composite coatings for electromagnetic interference shielding[J]. Coatings, 2020, 10(8): 740. doi: 10.3390/coatings10080740
    [6] Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode[J]. Nano Letters, 2017, 17(6): 3792. doi: 10.1021/acs.nanolett.7b01138
    [7] Ge X, Zhang J Y, Zhang G Q, et al. Low melting-point alloy–boron nitride nanosheet composites for thermal management[J]. ACS Applied Nano Materials, 2020, 3(4): 3494−3502. doi: 10.1021/acsanm.0c00223
    [8] Huang Z W, Luo Z G, Gao X N, et al. Preparation and thermal property analysis of Wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management[J]. Applied Thermal Engineering, 2017, 122: 322−329. doi: 10.1016/j.applthermaleng.2017.04.154
    [9] Wan J Y, Song J W, Yang Z, et al. Highly Anisotropic Conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.201703331
    [10] Chai Y, Liang S Q, Zhou Y D, et al. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites[J]. Wood Science and Technology, 2020(54): 637−649.
    [11] 秦理哲, 林兰英, 傅峰. 木材胶合界面微观结构样品制备新方法—激光烧蚀技术[J]. 林业科学, 2018, 54(4):93−99. doi: 10.11707/j.1001-7488.20180411

    Qin L Z, Lin L Y, Fu F. Novel sample preparation methodology of wood/adhesive interphase for microstructure study: laser ablation technique[J]. Scientia Silvae Sinicae, 2018, 54(4): 93−99. doi: 10.11707/j.1001-7488.20180411
    [12] Islam M S, Hamdan S, Hasan M, et al. Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC)[J]. International Biodeterioration and Biodegradation, 2012, 72: 108−113. doi: 10.1016/j.ibiod.2012.05.019
    [13] Cai X L, Riedl B, Zhang S Y, et al. The impact of the nature of nanofillers on the performance of wood polymer nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 727−737. doi: 10.1016/j.compositesa.2008.02.004
    [14] 周志芳, 江涛, 王清文. 高强度微波处理对落叶松木材力学性质的影响[J]. 东北林业大学学报, 2007, 35(2):7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003

    Zhou Z F, Jiang T, Wang Q W. Influence of intensive microwave treatment on mechanical properties of Larch wood[J]. Journal of Northeast Forestry University, 2007, 35(2): 7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003
    [15] Menard K P, Menard N R. Dynamic mechanical analysis[M]. Boca Raton: CRC Press, 2020.
    [16] 史蔷, 鲍甫成, 江京辉, 等. 热处理圆盘豆木材的热分析研究[J]. 木材加工机械, 2012(2):26−30.

    Shi Q, Bao F C, Jiang J H, et al. The thermal analysis of the heat-treated Okan wood[J]. Wood Processing Machinery, 2012(2): 26−30.
    [17] Sun L C, Wu Q L, Xie Y J, et al. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants[J]. RSC Advance, 2016, 6(17): 13890−13897. doi: 10.1039/C5RA23262G
    [18] 江泽慧, 费本华, 杨忠. 光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J]. 光谱学与光谱分析, 2007, 27(3):435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006

    Jiang Z H, Fei B H, Yang Z. Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006
    [19] Tjeerdsma B F, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Roh Werkst, 2005, 63(2): 102−111. doi: 10.1007/s00107-004-0532-8
    [20] Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035
    [21] Herrera R, Erdocia X, Llano-Ponte R, et al. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 256−266. doi: 10.1016/j.jaap.2014.03.010
    [22] Esteves B, Velez Marques A, Domingos I, et al. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR[J]. Maderas Ciencia Y Tecnlogía, 2013, 15(2): 245−258.
    [23] Okon K E, Lin F, Lin X, et al. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment[J]. European Journal of Wood and Wood Products, 2018, 76(1): 221−228. doi: 10.1007/s00107-017-1165-z
    [24] 刘元. 热处理对水与木材接触角的影响[J]. 中南林业科技大学学报, 1993, 13(2):136−141.

    Liu Y. The impact of heat treatment on the contact angle between wood and water[J]. Journal of Central South University of Forestry and Technology, 1993, 13(2): 136−141.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  30
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-06-22
  • 网络出版日期:  2021-08-09

目录

    /

    返回文章
    返回