Regulation of flowering and protective enzyme gene expression in Mikania micrantha by exogenous hormone CPPU
-
摘要:
目的 薇甘菊是Ⅰ级外来入侵有害植物,依靠种子进行快速蔓延传播,造成了重大生态和经济损失。通过探明N-(2-氯-4-吡啶基)-N-苯基脲(CPPU)对薇甘菊繁殖调控的机理,为遏制薇甘菊快速扩散的趋势提供一种新的策略。 方法 本研究计数CPPU处理后薇甘菊花序和小花的数量,利用RNA-seq分析CPPU抑制薇甘菊成花的机理,并测定薇甘菊开花期保护酶的酶活性。 结果 (1)CPPU能够抑制薇甘菊成花,随着处理浓度的升高,薇甘菊花序和小花的数量均呈下降趋势,其中,5 mg/L CPPU处理后的薇甘菊花序数减少了34.50%,小花数减少了36.70%;75 mg/L CPPU处理后无花。(2)转录组分析揭示了保护酶基因的差异表达,75 mg/L的CPPU处理后,大量与POD和PAL相关的差异基因(DEGs)上调表达。(3)保护酶酶活性测试结果表明:CPPU处理降低了苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和过氧化氢酶(CAT)的酶活性,但提高了多酚氧化酶(PPO)的酶活性。 结论 75 mg/L的CPPU能通过调控薇甘菊保护酶基因的表达,造成膜脂过氧化伤害,抑制薇甘菊成花,从而有效控制薇甘菊的繁殖与传播。 Abstract:Objective Mikania micrantha is a class I alien invasive harmful plant, which relies on seeds to spread rapidly, causing significant ecological and economic losses. By exploring the mechanism of N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) on the reproductive regulation of M. micrantha, a new strategy was provided to curb the trend of M. micrantha’s rapid spread. Method The number of inflorescences and florets of M. micrantha treated with CPPU was counted anatomically. The mechanism of inhibition of flowering by CPPU was analyzed by RNA-seq, and determined the enzyme activities of protective enzymes in flowering stage of M. micrantha. Result (1) CPPU could effectively inhibit the flower formation of M. micrantha, with the increase of CPPU concentration, the number of inflorescences and florets decreased. After being treated with 5 mg/L CPPU, the number of inflorescences and florets decreased by 34.50% and 36.70%, respectively. There was no flower after 75 mg/L of CPPU treatment. (2) Transcriptome analysis revealed differential regulation of protective enzyme genes, it was found that, after being treated with 75 mg/l CPPU, a large number of DEGs related to pod and PAL were up-regulated; (3) the results of the protective enzyme activity indicated that CPPU treatment decreased the enzyme activity of PAL (phenylalanine ammonia-lyase), POD (peroxidase) and CAT (catalase), but increased the protective enzyme activity of PPO (polyphen oloxidase tyrosinase phenlase). Conclusion 75 mg/L of CPPU can control the expression of protective enzyme gene of M. micrantha, which cause membrane lipid peroxidation damage and inhibit the flowering process, thus it can effectively control the reproduction and spread of M. micrantha. -
Key words:
- Mikania micrantha /
- CPPU /
- flowering /
- reproductive regulation
-
图 1 CPPU处理对薇甘菊花序和小花的影响
a. 薇甘菊正常花序图;b. 10 mg/L CPPU处理70 d后薇甘菊的花序图;c. 不同质量浓度CPPU处理后薇甘菊花序和小花数量。a, M. micrantha normal inflorescence figure: b, M. micrantha inflorescence figure of 10 mg/L CPPU treatment after 70 d; c, number of inflorescences and florets of M. micrantha treated with different mass concentrations of CPPU.
Figure 1. Effects of CPPU on the inflorescences and florets of M. micrantha
图 4 不同CPPU处理对薇甘菊叶片内过氧化物酶活性的影响
不同小写字母表示在同一处理时间内不同质量浓度梯度之间差异显著(P < 0.05)。下同。Different lowercase letters represent significant differences between varied mass concentration gradients during the same processing time (P < 0.05). The same below.
Figure 4. Effects of different CPPU treatment on POD activity in M. micrantha leaves
-
[1] 方晓婷. 入侵植物薇甘菊的转录组分析及其群体遗传特征初探[D]. 广州: 中山大学, 2011.Fang X T. Primary studies on transcriptome and population genetics of an invasive weed Mikania micrantha[D]. Guangzhou: Sun Yat-Sen University, 2011. [2] Khadka A. Assessment of the perceived effects and management challenges of Mikania micrantha invasion in Chitwan National Park buffer zone community forest, Nepal[J]. Heliyon, 2017, 3(4): e00289. doi: 10.1016/j.heliyon.2017.e00289 [3] 王伯荪, 廖文波, 昝启杰, 等. 薇甘菊Mikania micrantha在中国的传播[J]. 中山大学学报, 2003, 42(4): 47−48.Wang B S, Liao W B, Zan Q J, et al. The spread of Mikania micrantha in China[J]. Journal of Sun Yat-Sen University, 2003, 42(4): 47−48. [4] 梁艳荣, 胡晓红, 张颍, 等. 植物过氧化物酶生理功能研究进展[J]. 内蒙古农业大学学报, 2003, 24(2): 110−113.Liang Y R, Hu X H, Zhang Y, et al. Progress on physiological function research of plant peroxidase[J]. Inner Mongolia Agriculture University, 2003, 24(2): 110−113. [5] Shen S, Shen Z, Zhao M. Big data monitoring system design and implementation of invasive alien plants based on wens and webgis[J]. Wireless Personal Communications, 2017, 97(3): 1−13. [6] Chen B M, Peng S L, Ni G Y. Effects of the invasive plant Mikania micrantha H. B. K. on soil nitrogen availability through allelopathy in South China[J]. Biology Invasions, 2009, 11(6): 1291−1299. doi: 10.1007/s10530-008-9336-9 [7] Shen S, Xu G, Zhang F, et al. Harmful effects and chemical control study of Mikania micrantha H. B. K in Yunnan, Southwest China[J]. African Journal of Agricultural Research, 2013, 8(44): 5554−5561. [8] Yu H, He W M, Liu J, et al. Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities[J]. Biological Invasions, 2009, 11(4): 835. doi: 10.1007/s10530-008-9297-z [9] Liu B, Yan J, Li W, et al. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth[J]. Nature Communications, 2020, 11(1): 340−352. doi: 10.1038/s41467-019-13926-4 [10] Day M D, Clements D R, Gile C, et al. Biology and impacts of pacific islands invasive species (13): Mikania micrantha Kunth (Asteraceae)[J]. Pacific Science, 2016, 70: 257−285. doi: 10.2984/70.3.1 [11] Yang Q H, Ye W H, Deng X, et al. Seed germination eco-physiology of Mikania micrantha H. B. K[J]. Botanical Studies, 2005, 46(1): 293−299. [12] 宋旭东. 激素型除草剂对裸燕麦的安全性及其除草效果研究[D]. 兰州: 甘肃农业大学, 2015.Song X D. The study of safetyand weed control effect of hormone herbicide on the naked oats[D]. Lanzhou: Gansu Agriculture University, 2015. [13] Spormann S, Soares C, Fidalgo F. Salicylic acid alleviates glyphosate-induced oxidative stress in Hordeum vulgare L.[J]. Journal of Environmental Management, 2019, 241(7): 226−234. [14] Guo M, Shen J, Song X E, et al. Comprehensive evaluation of fluroxypyr herbicide on physiological parameters of spring hybrid millet[J]. Peer J, 2019, 7(1): e7794. [15] Jacob C P, De F, Pereira P, et al. Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances[J]. Scientia Agricola, 2015, 72(4): 356−362. doi: 10.1590/0103-9016-2014-0360 [16] Ionescu I A, Mller B L, Sánchez-Pérez R. Chemical control of flowering time[J]. Journal of Experimental Botany, 2017, 68(3): 369−374. [17] 尹均, 任江萍, 潘登奎, 等. 小麦春化发育相关蛋白质同工酶的研究[J]. 麦类作物学报, 2002, 22(1): 33−38. doi: 10.3969/j.issn.1009-1041.2002.01.008Yin J, Ren J P, Pan D K, et al. The proteins and isoenzymes related to vernalization of wheat[J]. Journal of Triticeae Crops, 2002, 22(1): 33−38. doi: 10.3969/j.issn.1009-1041.2002.01.008 [18] 袁军, 熊丙全, 余东, 等. CPPU在果树上的应用研究进展[J]. 北方果树, 2004(2): 1−3. doi: 10.3969/j.issn.1001-5698.2004.02.001Yuan J, Xiong B Q, Yu D, et al. Advances of the application of CPPU to fruit tress[J]. Northern Fruits, 2004(2): 1−3. doi: 10.3969/j.issn.1001-5698.2004.02.001 [19] Gong G, Kam H, Tse Y, et al. Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes[J]. Chemosphere, 2019, 235(11): 153−162. [20] 申海林, 郭俊强, 于坤淼, 等. CPPU对山葡萄雄株花器官形态发育的影响[J]. 中外葡萄与葡萄酒, 2017(6): 31−34. doi: 10.13414/j.cnki.zwpp.2017.06.006Shen H L, Guo J Q, Yu K M, et al. Effects of CPPU on floral organ development in male Vitis amurensis Rupr[J]. Sino-Overseas Grapevine & Wine, 2017(6): 31−34. doi: 10.13414/j.cnki.zwpp.2017.06.006 [21] 沈孝善, 陈凯. CPPU对软毛猕猴桃(Actinidia chinensis)果实生长和膨大的影响[J]. 西南农业学报, 1996, 9(2): 86−90.Shen X S, Chen K. Changes of fruit growth pattern and inrease of fruit size and fruit weight in kiwifruit (Actinidia chinensis) by application of N-(2-Chloro-4-pyridyl)-N′-Phenylorea (CPPU)[J]. Southwest China Journal of Agricultural Sciences, 1996, 9(2): 86−90. [22] Xu P L, Jiao Z Q, Fan S T, et al. Proteomic analysis of sex conversion induced by CPPU in male grapevine of Vitis amurensis[J]. Vitis Journal of Grapevine Research, 2013, 52(4): 177−184. [23] 王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.Wang X K. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Higher Education Press, 2006. [24] 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009.Li L. Experimental guidance of plant physiology module[M]. Beijing: Science Press, 2009. [25] Qi H D, Lin Y, Ren Q P, et al. RNA splicing of FLC modulates the transition to flowering[J]. Frontiers in Plant Science, 2019, 10: 1625−1630. doi: 10.3389/fpls.2019.01625 [26] 南芝润, 范月仙. 植物过氧化氢酶的研究进展[J]. 安徽农学通报, 2008, 14(5): 27−29. doi: 10.3969/j.issn.1007-7731.2008.05.012Nan Z R, Fan Y X. Advance of researches on catelase in plants[J]. Anhui Agricultural Sciences Bulletin, 2008, 14(5): 27−29. doi: 10.3969/j.issn.1007-7731.2008.05.012 [27] 洪奔, 陶建敏, 农慧兰, 等. ‘阳光玫瑰’雄性不育株花蕾发育期抗氧化酶活性和内源激素含量的变化[J]. 西北植物学报, 2022, 42(3): 444−452.Hong B, Tao J M, Nong H L, et al. Analysis of antioxidant enzymes activities and endogenous hormone contents in male sterile plant of ‘Shine Muscat’ seeding during bud development[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 444−452. [28] 刘磊, 刘世琦, 许莉, 等. 洋葱抽薹与未抽薹植株生理生化特性对比研究[J]. 中国农学通报, 2006, 22(1): 149−152. doi: 10.3969/j.issn.1000-6850.2006.01.040Liu L, Liu S Q, Xu L, et al. Studies on the difference of bolting and unbolting onions on the physiological and biochemical characteristics[J]. Chinese Agricultural Science Bulletin, 2006, 22(1): 149−152. doi: 10.3969/j.issn.1000-6850.2006.01.040 [29] 吴洁秋, 朱根发, 王凤兰, 等. 竹叶兰花器官发育过程及生理特性研究[J]. 热带作物学报, 2021, 42(1): 140−148.Wu J Q, Zhu G F, Wang F L, et al. Organ development and physiological characteristics of Arundina graminifolia (D. Don) Hochr[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 140−148. [30] Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell, 1995, 7(7): 1085−1097. doi: 10.2307/3870059 -