高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

栓皮栎和锐齿槲栎幼苗光合特性对高温胁迫的响应

张星 王苗苗 李国雷 白正甲 姚飞

张星, 王苗苗, 李国雷, 白正甲, 姚飞. 栓皮栎和锐齿槲栎幼苗光合特性对高温胁迫的响应[J]. 北京林业大学学报, 2022, 44(7): 25-35. doi: 10.12171/j.1000-1522.20210240
引用本文: 张星, 王苗苗, 李国雷, 白正甲, 姚飞. 栓皮栎和锐齿槲栎幼苗光合特性对高温胁迫的响应[J]. 北京林业大学学报, 2022, 44(7): 25-35. doi: 10.12171/j.1000-1522.20210240
Zhang Xing, Wang Miaomiao, Li Guolei, Bai Zhengjia, Yao Fei. Photosynthetic response of Quercus variabilis and Quercus aliena var. acuteserrata seedlings to high temperature stress[J]. Journal of Beijing Forestry University, 2022, 44(7): 25-35. doi: 10.12171/j.1000-1522.20210240
Citation: Zhang Xing, Wang Miaomiao, Li Guolei, Bai Zhengjia, Yao Fei. Photosynthetic response of Quercus variabilis and Quercus aliena var. acuteserrata seedlings to high temperature stress[J]. Journal of Beijing Forestry University, 2022, 44(7): 25-35. doi: 10.12171/j.1000-1522.20210240

栓皮栎和锐齿槲栎幼苗光合特性对高温胁迫的响应

doi: 10.12171/j.1000-1522.20210240
基金项目: 国家自然科学基金面上项目(32171764)
详细信息
    作者简介:

    张星。主要研究方向:城市环境树木生理学。Email:448345072@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    李国雷,教授。主要研究方向:林木种苗培育理论与技术、城市林业与环境。 Email:glli226@163.com 地址:同上

  • 中图分类号: S792.18

Photosynthetic response of Quercus variabilis and Quercus aliena var. acuteserrata seedlings to high temperature stress

  • 摘要:   目的  探究栓皮栎、锐齿槲栎一年生幼苗光合生理特性对夏季高温胁迫的响应,以及其内在调控机制与升温间的关系,为高温条件下的栎类幼苗培育和耐热性树种筛选提供理论参考。  方法  以2种栎树幼苗为材料,设置3个温度梯度:27 ℃(对照,CK)、35 ℃(HT1)、42 ℃(HT2),在人工气候模拟室进行连续8 d(每天固定6 h)的高温胁迫处理。观测分析高温胁迫对2种栎类幼苗叶绿素荧光参数(Fv/Fm、Fy、NPQ、YⅡ、qP)、气体交换参数(PnGsCiTr)及快速光响应曲线的影响。  结果  (1)2个高温处理均未影响2种栎树幼苗叶片的光系统Ⅱ活性(Fv/Fm)和天线色素的光能耗散(NPQ)。随高温胁迫程度提高,2种栎树幼苗通过抑制PSⅡ反应中心电子流动(qP)、降低实际量子产率(Fy、YⅡ)、削弱电子传递速率(rETR)等手段来适应高温逆境环境。(2)高温胁迫能显著影响2种栎树PnGsCi。35 ℃时,2树种PnGsCi均显著降低;42 ℃时,2树种Gs均不升高,而Ci均呈上升趋势。解除高温胁迫后,除栓皮栎HT2组外,各项气体交换参数基本恢复初始数值。此外,高温胁迫对栓皮栎GsCi影响更为显著。(3)在HT1高温处理下,2种栎类幼苗光合作用受抑制的主要因素是气孔限制,在HT2高温处理下,对2种栎类幼苗光合作用能力产生影响的主要是非气孔因素。  结论  (1)2种落叶栎幼苗光合作用的内在调控机制与升温程度相关。(2)2种落叶栎幼苗在高温胁迫下光合能力均降低,但锐齿槲栎幼苗在高温胁迫下能维持较高的电子传递速率,保持相对较高的光合作用潜力,对高温胁迫的耐性比栓皮栎幼苗强。

     

  • 图  1  高温胁迫处理期锐齿槲栎(A)和栓皮栎幼苗(B)生长形态特征

    CK为对照组(27 ℃),HT1为35 ℃处理组,HT2为42 ℃处理组。下同。CK is control group (27 ℃),HT1 is 35 ℃ treatment group,HT2 is 42 ℃ treatment group. The same below.

    Figure  1.  Growth and morphology characteristics of Quercus aliena var. acuteserrata (A) and Quercus variabilis (B) seedlings under high temperature stress

    图  2  人工模拟气候室内动态气温曲线设置图

    Figure  2.  Dynamic temperature setting in the artificial climate chamber

    图  3  树种与温度对栓皮栎和锐齿槲栎幼苗Fy(A),YII(B),qP(C)值的影响

    Fy. 荧光量子产率;YII. 实际量子产率;qP. 光化学淬灭参数;QA. 锐齿槲栎;QV. 栓皮栎。不同小写字母表示处理间差异显著。下同。Fy, fluorescence yield; YII, actual quantum yield; qP, photochemical quenching parameter; QA, Quercus aliena var. acuteserrata; QV, Quercus variabilis. Different lowercase letters indicate significant differences between treatments. The same below.

    Figure  3.  Effects of tree species and temperature on Fy(A), YII(B), qP(C) of Q. variabilis and Q. aliena var. acuteserrata seedlings at nursery

    图  4  锐齿槲栎(A)和栓皮栎(B)幼苗高温胁迫后快速光响应拟合曲线图

    PAR. 光合有效辐射;rETR. 相对电子传递速率。PAR, photosynthetic active radiation; rETR, relative electron transfer rate.

    Figure  4.  RLC fitting curves of Quercus aliena var. acuteserrata (A) and Quercus variabilis (B) seedlings after high temperature stress

    表  1  温度、树种及交互效应对栓皮栎和锐齿槲栎幼苗叶绿素荧光参数值的影响

    Table  1.   Effects of temperature, tree species and interaction on chlorophyll fluorescence parameters of Q. variabilis and Q. aliena var. acuteserrata seedlings

    变化来源 Source of variationFv/Fm Fy YII qP NPQ
    FPFPFPFPFP
    树种 Tree species 0.225 0.639 0.122 0.729 2.114 0.156 8.332 0.007 5.901 0.021*
    温度 Temperature 0.319 0.729 29.740 < 0.001** 134.87 < 0.001** 93.427 < 0.001** 0.403 0.672
    树种 × 温度 Tree species × temperature 0.063 0.939 0.063 0.628 0.956 0.396 54.873 < 0.001** 2.466 0.102
    注:Fv/Fm. 最大光量子产量;NPQ. 热耗散系数。**表示在P < 0.01 水平上有显著性差异,*表示在P < 0.05水平上有显著差异。下同。Notes: Fv/Fm, maximum light quantum yield; NPQ, heat dissipation coefficient. ** means significant difference at P < 0.01 level, * means significant difference at P < 0.05 level. The same below.
    下载: 导出CSV

    表  2  高温胁迫后栓皮栎和锐齿槲栎幼苗的气体交换特征参数

    Table  2.   Gas exchange parameters of Q. variabilis and Q. aliena var. acuteserrata seedlings after high temperature stress

    时间 Time变异来源
    Source of variation
    Pn/(μmol·m−2·s−1)Gs/(mmol·m−2·s−1)Ci/(μmol·mol−1)Tr/(g·m−2·h−1)WUE/(μmol·g−1)
    胁迫后1 d
    1 d after stress
    QACK 7.95 ± 0.25a 0.08 ± 0.010ab 241.07 ± 6.74abcde 1.54 ± 0.13bcd 5.46 ± 0.46a
    QAHT1 5.57 ± 0.40cde 0.06 ± 0.010bcde 229.20 ± 7.44cdef 1.52 ± 0.13bcd 3.72 ± 0.14cd
    QAHT2 6.10 ± 0.39bcd 0.08 ± 0.010abc 246.08 ± 7.66abc 1.85 ± 0.17ab 3.37 ± 0.16d
    QVCK 6.28 ± 0.65bcd 0.07 ± 0.010bcd 257.83 ± 10.72ab 1.47 ± 0.10bcde 4.21 ± 0.24bcd
    QVHT1 4.28 ± 0.51f 0.05 ± 0.010f 217.18 ± 9.26f 1.10 ± 0.13e 3.90 ± 0.22cd
    QVHT2 5.62 ± 0.35cde 0.06 ± 0.004cde 220.97 ± 6.05def 1.44 ± 0.09cde 3.93 ± 0.12bcd

    胁迫后7 d
    7 d after stress
    QACK 6.46 ± 0.35 bc 0.09 ± 0.010a 240.57 ± 7.51bcde 1.43 ± 0.14cde 4.84 ± 0.61ab
    QAHT1 6.78 ± 0.37 abc 0.08 ± 0.010 ab 242.34 ± 6.56abcd 1.78 ± 0.11abc 3.84 ± 0.15cd
    QAHT2 7.18 ± 0.58 ab 0.10 ± 0.010 a 253.13 ± 10.40ab 2.07 ± 0.22a 3.61 ± 0.25d
    QVCK 5.73 ± 0.56 cde 0.07 ± 0.010 bcd 262.80 ± 7.41a 1.34 ± 0.13de 4.60 ± 0.64abc
    QVHT1 5.05 ± 0.51 def 0.05 ± 0.010 def 220.35 ± 4.70ef 1.49 ± 0.18bcde 3.52 ± 0.16d
    QVHT2 4.47 ± 0.43 ef 0.05 ± 0.005 ef 230.12 ± 7.34cdef 1.36 ± 0.12de 3.32 ± 0.21d
    注: Pn. 净光合速率;Gs. 气孔导度;Ci. 胞间二氧化碳浓度;Tr. 蒸腾速率;WUE. 水分利用效率。下同。Notes: Pn, net photosynthetic rate; Gs, stomatal conductance; Ci, intercellular carbon dioxide concentration; Tr, transpiration rate; WUE, water use efficiency. The same below.
    下载: 导出CSV

    表  3  树种、温度、时间及交互效应对栓皮栎和锐齿槲栎幼苗气体交换参数值的影响

    Table  3.   Effects of tree species, temperature, time and interaction on gas exchange parameters ofQ. variabilis and Q. aliena var. acuteserrata seedlings

    变异来源 Source of variationPn Gs Ci Tr WUE
    FPFPFPFPFP
    树种 Tree species 29.277 < 0.001 41.882 < 0.001 2.529 0.116 16.316 < 0.001 1.439 0.234
    温度 Temperature 6.872 0.002 7.666 0.001 8.891 < 0.001 3.263 0.043 15.866 < 0.001
    时间 Time 0.006 0.936 2.449 0.121 1.86 0.176 1.213 0.274 0.562 0.456
    树种 × 温度 Tree species × temperature 0.205 0.815 1.277 0.284 8.911 < 0.001 2.858 0.063 1.945 0.149
    树种 × 时间 Tree species × time 1.172 0.282 4.471 0.037 0.008 0.929 0.168 0.683 0.091 0.763
    温度 × 时间 Temperature × time 4.778 0.011 0.935 0.397 0.189 0.829 2.468 0.091 0.015 0.985
    树种 × 温度 × 时间
    Tree species × temperature × time
    3.017 0.054 0.622 0.539 0.268 0.765 0.549 0.580 2.238 0.113
    下载: 导出CSV

    表  4  快速光响应曲线拟合参数表

    Table  4.   Fitting parameters of fast light response curves

    树种
    Tree species
    处理组
    Treatment group
    rETRmax平均值
    Average value of
    rETRmax
    α平均值
    Average value
    of α
    QA CK 30.63 0.2
    HT1 19.44 0.18
    HT2 16.26 0.16
    QV CK 27.82 0.21
    HT1 12.69 0.22
    HT2 10.59 0.23
    注:rETRmaxα平均值均为胁迫后7 d所测数值。Note: average values of rETRmax and α measured 7 d after stress.
    下载: 导出CSV
  • [1] IPCC. Climate change 2013: the physical science basis e[R]// Contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge: Cambridge University Press, 2013.
    [2] Collins M, Knutti R, Arblaster J, et al. Long-term climate change: projections, commitments and irreversibility[M]. Cambridge: Cambridge University Press, 2013.
    [3] Poethig R S. Phase change and the regulation of developmental timing in plants[J]. Science, 2003, 301: 334−336. doi: 10.1126/science.1085328
    [4] Hegland S J, Nielsen A, Lázaro A, et al. How does climate warming affect plant-pollinator interactions?[J]. Ecology Letters, 2009, 12(2): 184−195. doi: 10.1111/j.1461-0248.2008.01269.x
    [5] Chen Y, Feng J, Yuan X, et al. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis[J]. Geoderma, 2020, 370: 114363. doi: 10.1016/j.geoderma.2020.114363
    [6] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 1980, 31(1): 491−543. doi: 10.1146/annurev.pp.31.060180.002423
    [7] Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis[J]. Physiologia Plantarum, 2004, 120(2): 179−186. doi: 10.1111/j.0031-9317.2004.0173.x
    [8] Marchand F L, Mertens S, Kockelbergh F, et al. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event[J]. Global Change Biology, 2005, 11(12): 2078−2089. doi: 10.1111/j.1365-2486.2005.01046.x
    [9] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermo tolerance provided by isoprene[J]. Plant, Cell & Environment, 2005, 28(3): 269−277.
    [10] Beer S, Vilenkin B, Weil A, et al. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry[J]. Marine Ecology Progress Series, 1998, 174: 293−300. doi: 10.3354/meps174293
    [11] 卜令铎, 张仁和, 常宇, 等. 苗期玉米叶片光合特性对水分胁迫的响应[J]. 生态学报, 2010, 30(5): 1184−1191.

    Bu L D, Zhang R H, Chang Y, et al. Response of photosynthetic characteristics to water stress of maize leaves in seedling[J]. Acta Ecologica Sinica, 2010, 30(5): 1184−1191.
    [12] 张桂莲, 陈立云, 张顺堂, 等. 抽穗开花期高温对水稻剑叶理化特性的影响[J]. 中国农业科学, 2007(7): 1345−1352. doi: 10.3321/j.issn:0578-1752.2007.07.006

    Zhang G L, Chen L Y, Zhang S T, et al. Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period[J]. Scientia Agricultura Sinica, 2007(7): 1345−1352. doi: 10.3321/j.issn:0578-1752.2007.07.006
    [13] 徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231−240. doi: 10.13287/j.1001-9332.202101.028

    Xu C, Wang M T, Yang Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 231−240. doi: 10.13287/j.1001-9332.202101.028
    [14] Schulze E D, Beck E, Müller H K. Plant ecology[M]. Berlin: Springer Science & Business Media, 2005.
    [15] Bauweraerts I, Mannaerts T B, Wertin T M, et al. Elevated [CO2] and growth temperature have a small positive effect on photosynthetic thermotolerance of Pinus taeda seedlings[J]. Trees, 2014, 28(5): 1515−1526. doi: 10.1007/s00468-014-1057-3
    [16] Way D A, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data[J]. Tree Physiology, 2010, 30(6): 669−688. doi: 10.1093/treephys/tpq015
    [17] 吴韩英, 寿森炎, 朱祝军, 等. 高温胁迫对甜椒光合作用和叶绿素荧光的影响[J]. 园艺学报, 2001, 28(6): 517−521. doi: 10.3321/j.issn:0513-353X.2001.06.006

    Wu H Y, Shou S Y, Zhu Z J, et al. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.)[J]. Acta Horticulturae Sinica, 2001, 28(6): 517−521. doi: 10.3321/j.issn:0513-353X.2001.06.006
    [18] 尹赜鹏, 鹿嘉智, 高振华, 等. 番茄幼苗叶片光合作用, PSⅡ电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(5): 1−11.

    Yin Z P, Lu J Z, Gao Z H, et al. Effects of photosynthetic, PSⅡ electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings[J]. Northern Horticulture, 2019(5): 1−11.
    [19] Zubaidi A, Anugrahwati D R, McDonald G K, et al. Yield and photosynthetic rate of wheat under continuously high temperature[C]// Institute of Physics. Institute of Physics Conference series: earth and environmental science. London: Institute of Physics Publishing, 2021: 012126.
    [20] 孙谷畴, 曾小平, 刘晓静, 等. 适度高温胁迫对亚热带森林3种建群树种幼树光合作用的影响[J]. 生态学报, 2007, 27(4): 1283−1291. doi: 10.3321/j.issn:1000-0933.2007.04.004

    Sun G C, Zeng X P, Liu X J, et al. Effects of moderate high-temperature stress on photosynthesis in saplings of the three dominant tree species of sub tropical forest[J]. Acta Ecologica Sinica, 2007, 27(4): 1283−1291. doi: 10.3321/j.issn:1000-0933.2007.04.004
    [21] 项文化, 田大伦, 闫文德, 等. 白栎光合特性对二氧化碳浓度增加和温度升高的响应[J]. 浙江农林大学学报, 2004, 21(3): 247−253. doi: 10.3969/j.issn.2095-0756.2004.03.003

    Xiang W H, Tian D L, Yan W D, et al. Photosynthetic responses of Quercus fabri leaves to increase in CO2 concentration and temperature[J]. Journal of Zhejiang Forestry College, 2004, 21(3): 247−253. doi: 10.3969/j.issn.2095-0756.2004.03.003
    [22] 周浙昆. 中国栎属的起源演化及其扩散[J]. 植物生态学报, 1992, 14(3): 1−3.

    Zhou Z K. Origin, phylogeny and dispersal of Quercus from China[J]. Acta Botanica Yunnanica, 1992, 14(3): 1−3.
    [23] 史文辉, 李国雷, 苏淑钗, 等. 子叶切除与苗圃施肥对栓皮栎容器苗造林效果的影响[J]. 林业科学, 2018, 54(1): 64−73. doi: 10.11707/j.1001-7488.20180107

    Shi W H, Li G L, Su S C, et al. Combined effects of cotyledon excision and nursery fertilization on field performance of Quercus variabilis container seedlings[J]. Scientia Silvae Sinicae, 2018, 54(1): 64−73. doi: 10.11707/j.1001-7488.20180107
    [24] Haldimann P, Gallé A, Feller U. Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves[J]. Tree Physiology, 2008, 28(5): 785−795. doi: 10.1093/treephys/28.5.785
    [25] 张瑜, 贾黎明. 栎属树种生长模型研究进展[J]. 世界林业研究, 2013, 26(2): 48−53. doi: 10.13348/j.cnki.sjlyyj.2013.02.013

    Zhang Y, Jia L M. Study advances in growth models of Quercus spp.[J]. World Forestry Research, 2013, 26(2): 48−53. doi: 10.13348/j.cnki.sjlyyj.2013.02.013
    [26] 张文辉, 卢彦昌, 周建云, 等. 巴山北坡不同干扰条件下栓皮栎种群结构与动态[J]. 林业科学, 2008, 44(7): 11−16. doi: 10.3321/j.issn:1001-7488.2008.07.003

    Zhang W H, Lu Y C, Zhou J Y, et al. Population structure and dynamics of Quercus variabilis in different habitats on northern slope of Bashan Mountain[J]. Scientia Silvae Sinicae, 2008, 44(7): 11−16. doi: 10.3321/j.issn:1001-7488.2008.07.003
    [27] And C D, Rambal S. Field study of leaf photosynthetic performance by a mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought[J]. New Phytologist, 1995, 131(2): 159−167. doi: 10.1111/j.1469-8137.1995.tb05717.x
    [28] Wu T, Qu C, Li Y, et al. Warming effects on leaf nutrients and plant growth in tropical forests[J]. Plant Ecology, 2019, 220(7): 663−674.
    [29] Gibson L R, Paulsen G M. Yield components of wheat grown under high temperature stress during reproductive growth[J]. Crop Science, 1999, 39(6): 1841−1846.
    [30] 王良民, 任宪威, 刘一樵. 我国落叶栎的地理分布[J]. 北京林学院学报, 1985, 7(2): 57−69.

    Wang L M, Ren X W, Liu Y Q. Geographic distribution of deciduous oaks in China[J]. Journal of Beijing Forestry College, 1985, 7(2): 57−69.
    [31] 张雪皎, 高贤明, 吉成均, 等. 中国北方5种栎属树木多度分布及其对未来气候变化的响应[J]. 植物生态学, 2019, 43(9): 50−58.

    Zhang X J, Gao X M, Ji C J, et al. Response of abundance distribution of five species of Quercus to climate change in northern China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 50−58.
    [32] 刘峰, 陈伟烈, 贺金生. 神农架地区锐齿槲栎种群结构与更新的研究[J]. 植物生态学报, 2000, 24(4): 396−401. doi: 10.3321/j.issn:1005-264X.2000.04.003

    Liu F, Chen W L, He J S. Population structure and regeneration of Quercus aliena var. acuteserrata in Shennongjia[J]. Acta Phytoecologica Sinica, 2000, 24(4): 396−401. doi: 10.3321/j.issn:1005-264X.2000.04.003
    [33] 罗伟祥, 张文辉, 黄一钊, 等. 中国栓皮栎[M]. 北京: 中国林业出版, 2009.

    Luo W X, Zhang W H, Huang Y Z, et al. Quercus variabilis in China[M]. Beijing: China Forestry Publishing House, 2009.
    [34] Schreiber U, Bilger W, Schliwa U. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10(1): 51−62.
    [35] White A J, Critchley C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynthesis Research, 1999, 59(1): 63272.
    [36] Eilers P, Peeters J. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecological Modelling, 1988, 42(3−4): 199−215. doi: 10.1016/0304-3800(88)90057-9
    [37] Kühl M, Chen M, Ralph P J, et al. A niche for cyanobacteria containing chlorophyll d[J]. Nature, 2005, 433: 820. doi: 10.1038/433820a
    [38] Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 1987, 170(4): 489−504. doi: 10.1007/BF00402983
    [39] Epron, D, Dreyer E, Bréda N. Photosynthesis of oak trees (Quercus petraea (Matt.) Liebl.) during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem Ⅱ[J]. Plant Cell Environment, 1992, 15(7): 809−820. doi: 10.1111/j.1365-3040.1992.tb02148.x
    [40] 王海珍, 韩路, 徐雅丽, 等. 胡杨异形叶叶绿素荧光特性对高温的响应[J]. 生态学报, 2011, 31(9): 2444−2453.

    Wang H Z, Han L, Xu Y L, et al. Response of chlorophyll fluorescence characteristics of Populus euphratica heteromorphic leaves to high temperature t[J]. Acta Ecologica Sinica, 2011, 31(9): 2444−2453.
    [41] 叶子飘, 胡文海, 闫小红. 光系统Ⅱ实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208−1217. doi: 10.17521/cjpe.2015.0470

    Ye Z P, Hu W H, Yan X H. Comparison on light-response models of actual photochemical efficiency in photosystem Ⅱ[J]. Acta Phytoecologica Sinica, 2016, 40(11): 1208−1217. doi: 10.17521/cjpe.2015.0470
    [42] 赵丽丽, 吴佳海, 王普昶, 等. 高羊茅种质光合及叶绿素荧光参数对高温胁迫的响应[J]. 草地学报, 2015, 23(4): 811−817.

    Zhao L L, Wu J H, Wang P C, et al. Effects of high temperature stress on photosynthetic and chlorophyll fluorescence of Festuca arundinacea[J]. Acta Agrestia Sinica, 2015, 23(4): 811−817.
    [43] Chen K, Sun X Y, Amombo E, et al. High correlation between thermotolerance and photosystem Ⅱ activity in tall fescue[J]. Photosynthesis Research, 2014, 122(3): 305−314. doi: 10.1007/s11120-014-0035-3
    [44] 徐建旭, 周慧芬, 邱翠花, 等. 高温强光下温州蜜柑光合机构运转与叶黄素循环和D1蛋白周转的关系[J]. 园艺学报, 2011, 38(2): 205−214.

    Xu J X, Zhou H F, Qiu C H, et al. Studies on the relationship among photosynthetic apparatus operation, xanthophylls cycle and D1 protein turnover in satsuma mandarin leaves under high temperature and strong light[J]. Acta Horticulturae Sinica, 2011, 38(2): 205−214.
    [45] Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity[J]. Aquatic Botany, 2005, 82(3): 222−237. doi: 10.1016/j.aquabot.2005.02.006
    [46] Demmig-Adams B, Winter K, Kruger A, et al. Zeaxanthin synthesis, energy dissipation, and photoprotection of photosystem Ⅱ at chilling temperatures[J]. Plant Physiology, 1989, 90(3): 894−898. doi: 10.1104/pp.90.3.894
    [47] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559−566.

    Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559−566.
    [48] Bilger W B, Björkman O. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.[J]. Planta, 1991, 184(2): 226−234. doi: 10.1007/BF00197951
    [49] 叶梁, 高辉远, 邹琦. 光温交叉胁迫对菜豆幼苗叶黄素循环启动的影响[J]. 植物生理学报, 1998, 34(2): 88−93. doi: 10.13592/j.cnki.ppj.1998.02.002

    Ye L, Gao H Y, Zou Q. Effect of cross stress by light and temperature on the operation of xanthophyll cycle in Phaseolus vulgaris seedlings[J]. Plant Physiology Journal, 1998, 34(2): 88−93. doi: 10.13592/j.cnki.ppj.1998.02.002
    [50] Bauweraerts I, Wertin T M, Ameye M, et al. The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings[J]. Global Change Biology, 2013, 19: 517−528. doi: 10.1111/gcb.12044
    [51] Morales D, Rodríguez P, Dell’amico J, et al. High temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato[J]. Plant Biology, 2003, 47: 203−208.
    [52] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1): 101−117.
    [53] Yamori W, Noguchi K O, Terashima I. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions[J]. Plant, Cell & Environment, 2005, 28(4): 536−547.
    [54] Sharkey T D, Bernacchi C J, Farquhar G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant, Cell & Environment, 2007, 30(9): 1035−1040.
    [55] Havaux M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures[J]. Plant Cell and Environment, 2010, 16(4): 461−467.
    [56] Zhang Z, Lan M, Han X, et al. Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature[J]. Journal of Plant Growth Regulation, 2020, 39(1): 133−146. doi: 10.1007/s00344-019-09969-y
    [57] Vu J, Newman Y C, Allen L H, et al. Photosynthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature[J]. Journal of Plant Physiology, 2002, 159(2): 147−157. doi: 10.1078/0176-1617-00689
    [58] 张源达, 杨再强, 陆思宇, 等. 设施菊花树种“金背大红”叶片光合特性对高温胁迫的响应[J]. 北方园艺, 2021(6): 72−80.

    Zhang Y D, Yang Z Q, Lu S Y, et al. Response of photosynthetic characteristics of leaves of protected Chrysanthemum variety ‘Jinbeidahong’ to high temperature stress[J]. Northern Horticulture, 2021(6): 72−80.
    [59] Prange R K, McRae K B, Midmore D J, et al. Reduction in potato growth at high temperature: role of photosynthesis and dark respiration[J]. American Potato Journal, 1990, 67(6): 357−369. doi: 10.1007/BF02987277
    [60] Reynolds M P, Ewing E E, Owens T G. Photosynthesis at high temperature in tuber-bearing Solanum species: a comparison between accessions of contrasting heat tolerance[J]. Plant Physiology, 1990, 93(2): 791−797. doi: 10.1104/pp.93.2.791
    [61] Simões-Araújo J L, Rumjanek N G, Margis-Pinheiro M. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean[J]. Brazilian Journal of Plant Physiology, 2003, 15: 33−41. doi: 10.1590/S1677-04202003000100005
    [62] Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview[J]. Environmental & Experimental Botany, 2007, 61(3): 199−223.
    [63] 计玮玮, 邱翠花, 焦云, 等. 高温强光胁迫对砂梨叶片光合作用、D1蛋白和Deg1蛋白酶的影响[J]. 果树学报, 2012, 29(5): 794−799.

    Ji W W, Qiu C H, Jiao Y, et al. Effects of high temperature and strong light on photosynthesis, D1 protein, and the Deg1 protease in pear (Pyrus pyrifolia) leaves[J]. Journal of Fruit Science, 2012, 29(5): 794−799.
    [64] 孙宪芝, 郑成淑, 王秀峰. 高温胁迫对切花菊‘神马’光合作用与叶绿素荧光的影响[J]. 应用生态学报, 2008, 19(10): 2149−2154.

    Sun X Z, Zheng C S, Wang X F. Effects of high temperature stress on photosynthesis and chlorophyll florescence of cut flower Chrysan themum (Dendranthema grandiflora ‘Jinba’)[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2149−2154.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  8
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-08-16
  • 网络出版日期:  2022-07-02
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回