高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蔷薇属植物响应蔷薇盘二孢侵染内参基因的筛选及茉莉酸相关基因表达分析

杨淑敏 杨艺 罗乐 于超 王佳 程堂仁 张启翔 潘会堂

杨淑敏, 杨艺, 罗乐, 于超, 王佳, 程堂仁, 张启翔, 潘会堂. 蔷薇属植物响应蔷薇盘二孢侵染内参基因的筛选及茉莉酸相关基因表达分析[J]. 北京林业大学学报, 2023, 45(4): 114-125. doi: 10.12171/j.1000-1522.20210248
引用本文: 杨淑敏, 杨艺, 罗乐, 于超, 王佳, 程堂仁, 张启翔, 潘会堂. 蔷薇属植物响应蔷薇盘二孢侵染内参基因的筛选及茉莉酸相关基因表达分析[J]. 北京林业大学学报, 2023, 45(4): 114-125. doi: 10.12171/j.1000-1522.20210248
Yang Shumin, Yang Yi, Luo Le, Yu Chao, Wang Jia, Cheng Tangren, Zhang Qixiang, Pan Huitang. Selection and validation of appropriate reference genes and expression analysis of jasmonic acid-related genes responding to Marssonina rosae in Rosa species and cultivars[J]. Journal of Beijing Forestry University, 2023, 45(4): 114-125. doi: 10.12171/j.1000-1522.20210248
Citation: Yang Shumin, Yang Yi, Luo Le, Yu Chao, Wang Jia, Cheng Tangren, Zhang Qixiang, Pan Huitang. Selection and validation of appropriate reference genes and expression analysis of jasmonic acid-related genes responding to Marssonina rosae in Rosa species and cultivars[J]. Journal of Beijing Forestry University, 2023, 45(4): 114-125. doi: 10.12171/j.1000-1522.20210248

蔷薇属植物响应蔷薇盘二孢侵染内参基因的筛选及茉莉酸相关基因表达分析

doi: 10.12171/j.1000-1522.20210248
基金项目: 北京市自然科学基金项目(6192018),国家重点研发计划课题(2019YFD1001001)
详细信息
    作者简介:

    杨淑敏。主要研究方向:园林植物与观赏园艺研究。Email:2638562727@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    潘会堂,教授。主要研究方向:园林植物与观赏园艺研究。Email:htpan@bjfu.edu.cn 地址同上

  • 中图分类号: S608;Q945.8

Selection and validation of appropriate reference genes and expression analysis of jasmonic acid-related genes responding to Marssonina rosae in Rosa species and cultivars

  • 摘要:   目的  为研究蔷薇属植物响应黑斑病侵染的稳定表达的最适内参基因,解析茉莉酸在蔷薇属植物响应蔷薇盘二孢侵染过程中的作用。  方法  以黑斑病病原菌蔷薇盘二孢侵染的6个蔷薇属种/品种不同时间的离体叶片为材料,利用qRT-PCR技术及geNorm、NormFinder、BestKeeper软件对9个候选内参基因(ACTGAPDHPP2ARcl2、SANDTIPTUATUBUBC)的表达量进行测定和分析,利用筛选出的内参基因,对蔷薇属植物茉莉酸(JA)抗病途径相关基因(COI1、OPR3、MYC2、JAR1)的表达水平进行定量分析。  结果  (1)UBC可作为6种蔷薇属植物共同适用的内参基因,可用于后续分析JA抗病途径相关基因的表达水平。(2)内源JA含量在6种蔷薇属植物响应蔷薇盘二孢侵染的过程中存在差异。在黑斑病高抗植物受侵染0 ~ 4 d间JA含量下调,4 ~ 8 d间上调。在黑斑病易感植物受侵染0 ~ 8 d间,内源JA含量呈下调趋势。(3)JA合成相关基因OPR3及JAR1表达量在受侵染初期表达量趋势存在差异。在除荷花蔷薇外的其余5种植物中,OPR3在侵染初期(0 ~ 0.5 d)表达下调,JAR1在侵染初期表达上调。OPR3和JAR1在侵染后期均表达上调,黑斑病易感材料的上调程度高于高抗材料。(4)JA信号传导相关基因COI1及MYC2在受侵染初期表达量趋势同样存在差异。COI1在黑斑病高抗材料受侵染初期上调表达,在黑斑病易感材料下调表达,MYC2在6种植物受侵染0 ~ 2 d中均下调表达。COI1及MYC2表达量在受侵染2 d后均上调表达,且在黑斑病易感植物中的上调程度大于黑斑病高抗材料。  结论  与JA信号传导相关的MYC2、COI1在蔷薇属植物抵御黑斑病病菌入侵过程中发挥负调控作用,且由JA通路介导的抵御死体营养型病原菌的侵染在后期发挥了作用。

     

  • 图  1  6种蔷薇属植物离体叶片侵染蔷薇盘二孢的发病情况

    红色圆圈表示病斑开始出现。黑色圆圈表示病斑蔓延至整个叶片。Red circle indicates the disease onset with the appearance brown necrotic lesions. Black circles indicate the spread of the brown necrotic lesions throughout the whole leaf.

    Figure  1.  Incidence of in vitro leaves infected by M. rosae of 6 Rosa species and cultivars

    图  2  9个候选内参基因响应蔷薇盘二孢侵染时的Ct值

    Figure  2.  Ct value of 9 candidate reference genes in response to M. rosae

    图  3  利用geNorm软件计算的候选内参基因的表达稳定性及配对变异值

    M代表各候选内参基因的表达稳定度。下同。M represents the average expression stability of each candidate reference gene. The same below.

    Figure  3.  Average expression stability values and variation values of candidate reference genes calculated by geNorm

    图  4  Normfinder软件计算获得的候选内参基因的表达稳定性

    Figure  4.  Expression stability of candidate reference genes and by pairwise variation using Normfinder

    图  5  BestKeeper软件计算获得的候选内参基因的表达稳定性

    SD代表各候选内参基因Ct值的标准偏差。SD represents the standard deviation of Ct value of each candidate reference gene.

    Figure  5.  Expression stability of candidate reference genes calculated by BestKeeper

    图  6  内源茉莉酸在蔷薇属植物响应蔷薇盘二孢侵染的含量

    Figure  6.  Content of JA in Rosa species and cultivars responding to M. rosae

    图  7  茉莉酸相关基因在蔷薇盘二孢侵染不同时间的相对表达量

    Figure  7.  Relative expression level of JA-related genes at different time of M. rosae infection

    表  1  基因引物基本信息

    Table  1.   Basic information of gene primers

    基因
    Gene
    引物序列(5′—3′)
    Primer sequence (5′-3′)
    退火温度
    Annealing temperature (Tm)/℃
    扩增效率
    Amplification efficiency (E)/%
    r
    ACT F: TCAAGGATTGGTGGACTTCAGT
    R: ACCAGAGAACAAGAATGCAAGC
    55 96.0 0.970
    GAPDH F: TATGACCAGATCAAGGCTGCT
    R: ACCAATGAAGTCGGTTGACAC
    55 102.5 0.999
    PP2A F: TGTCACTGCATCAAAGGACAG
    R: GACGAATTGTCTTCTCCACCA
    55 102.0 0.982
    Rcl2 F: ATGGGAAATGCCCTACCT
    R: CACTTGTCCGACTGTTGC
    55 95.7 0.969
    SAND F: BGTGTTGAGGAGTTGCCTCTTG
    R: AACCTGTCGGGAGAATCTGTT
    55 98.5 0.989
    TIP F: GAATCCACGGCTGGGAAA
    R: CAGTTCGTGGGTGGAGGAGTT
    55 104.2 0.998
    TUA F: CATTGAGCGTCCCACCTA
    R: CACATCCACATTCAGAGCC
    55 103.2 0.987
    TUB F: GTACATGGCCTGCTGTTTGAT
    R: ATGGTACGCTTGGTCTTGATG
    55 96.1 0.972
    UBC F: GCCAGAGATTGCCCATATGTA
    R: TCACAGAGTCCTAGCAGCACA
    55 103.5 0.996
    COI1 F: AATGAGGGGCTGTTGCTTCA
    R: GATCCCCTGTACCCTTGCAC
    56 102.2 0.984
    MYC2 F: CGGCAGCAGCGTCAAGAAT
    R: GAGGTCGGAGTGGTGGGAAT
    57 101.0 0.957
    OPR3 F: CATCAGCGAAGGCACTTTGG
    R: GGCGTCGACTACCTTCTTCC
    55 103.6 0.951
    JAR1 F: TTGGGTGCTACTTCTTTCTCAG
    R: AATTGGAGGAAGGAGGGTG
    57 104.4 0.952
    下载: 导出CSV

    表  2  9个候选内参基因的表达稳定性排序

    Table  2.   Expression stability ranking of 9 candidate internal reference genes

    种/品种
    Species/cultivar
    方法 Method123456789
    荷花蔷薇
    R. multiflora f. carnea
    geNorm UBC TIP PP2A GAPDH TUB ACT SAND TUA Rcl2
    Normfinder UBC TIP PP2A GAPDH TUB ACT TUA SAND Rcl2
    Bestkeeper TIP ACT UBC TUB SAND PP2A TUA GAPDH Rcl2
    RefFinder UBC TIP PP2A TUB ACT GAPDH SAND TUA Rcl2
    单瓣黄刺玫
    R. xanthina f. spontanea
    geNorm UBC PP2A SAND TIP GAPDH ACT Rcl2 TUB TUA
    Normfinder PP2A UBC TIP SAND GAPDH ACT Rcl2 TUB TUA
    Bestkeeper PP2A TIP UBC ACT GAPDH SAND Rcl2 TUB TUA
    RefFinder PP2A UBC TIP SAND GAPDH ACT Rcl2 TUB TUA
    玫瑰
    R. rugosa
    geNorm UBC TIP GAPDH TUB TUA PP2A SAND Rcl2 ACT
    Normfinder UBC TIP PP2A GAPDH TUB SAND TUA Rcl2 ACT
    Bestkeeper UBC TIP TUA TUB GAPDH SAND ACT PP2A Rcl2
    RefFinder UBC TIP GAPDH TUB TUA PP2A SAND ACT Rcl2
    R12-26 geNorm PP2A TIP UBC SAND GAPDH TUB TUA ACT Rcl2
    Normfinder TIP GAPDH UBC PP2A SAND TUB TUA ACT Rcl2
    Bestkeeper UBC ACT GAPDH TIP PP2A SAND Rcl2 TUB TUA
    RefFinder UBC TIP PP2A GAPDH SAND ACT TUB TUA Rcl2
    红叶蔷薇
    R. glauca
    geNorm UBC TIP SAND PP2A TUA TUB GAPDH Rcl2 ACT
    Normfinder UBC TIP TUA SAND PP2A TUB GAPDH Rcl2 ACT
    Bestkeeper SAND TIP PP2A UBC ACT TUA TUB GAPDH Rcl2
    RefFinder UBC TIP SAND PP2A TUA TUB GAPDH ACT Rcl2
    ‘波塞妮娜’
    R. hybrida ‘Porcelina’
    geNorm SAND TIP UBC GAPDH PP2A ACT TUB Rcl2 TUA
    Normfinder GAPDH TIP UBC SAND TUB PP2A ACT Rcl2 TUA
    Bestkeeper PP2A UBC SAND TIP GAPDH ACT TUB Rcl2 TUA
    RefFinder UBC TIP SAND GAPDH PP2A TUB ACT Rcl2 TUA
    下载: 导出CSV
  • [1] Dobbs R B. Research battles black spot in roses[J]. American Rose Annual, 1984, 69: 44−45.
    [2] Whitaker V M, Debener T, Roberts A V, et al. A standard set of host differentials and unified nomenclature for an international collection of Diplocarpon rosae races[J]. Plant Pathology, 2010, 59(4): 745−752. doi: 10.1111/j.1365-3059.2010.02281.x
    [3] 王晓敏. 小麦与条锈菌互作过程中活性氧和防御基因的防御反应及抗病相关基因的鉴定与功能验证[D]. 咸阳: 西北农林科技大学, 2010.

    Wang X M. Defense responses including oxidative burst and defense gene expression in the interaction between wheat and stripe rust and interaction and functional characterization of resistance-related genes[D]. Xianyang: Northwest Agriculture & Forestry University, 2010.
    [4] Durrant W E, Dong X. Systemic acquired resistance[J]. Annual Review of Phytopathology, 2004, 42(1): 185−209. doi: 10.1146/annurev.phyto.42.040803.140421
    [5] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43(1): 205−227. doi: 10.1146/annurev.phyto.43.040204.135923
    [6] 钟庆燕. 外源乙烯和茉莉酸诱导水稻对纹枯病的抗性机理研究[D]. 哈尔滨: 东北农业大学, 2019.

    Zhong Q Y. Mechanism of resistance of rice to sheath blight induced by exogenous ethylene and jasmonic acid[D]. Harbin: Northeast Agricultural University, 2019.
    [7] 傅竞也. 玉米萜类植保素生物合成转录调控机制研究[D]. 雅安: 四川农业大学, 2019.

    Fu J Y. The transcriptional regulatory mechanism of maize terpenoid phytoalexin biosynthesis [D]. Yaan: Sichuan Agricultural University, 2019.
    [8] 刘瑞峰, 贾桂霞. 水杨酸和茉莉酸/乙烯信号通路关键基因在月季−黑斑病菌互作中的表达模式[J]. 林业科学, 2020, 56(6): 47−58.

    Liu R F, Jia G X. Expression patterns of key genes of salicylic acid and jasmonic acid/ethylene signaling pathways in the interaction between rose and Diplocarpon rosea[J]. Scientia Silvea Sinicae, 2020, 56(6): 47−58.
    [9] 刘瑞峰, 刘强, 张非亚. 月季响应黑斑病的早期差异表达基因分析[J]. 园艺学报, 2015, 42(4): 731−740.

    Liu R F, Liu Q, Zhang F Y. The analysis of differential expression genes for rose early responding to black-spot disease[J]. Acta Horticulturae Sinica, 2015, 42(4): 731−740.
    [10] 包颖, 李泽卿, 魏琳燕, 等. 月季盐胁迫响应转录因子基因RcMYB102的克隆及表达分析[J]. 江苏农业学报, 2020, 36(6): 1521−1528. doi: 10.3969/j.issn.1000-4440.2020.06.023

    Bao Y, Li Z Q, Wei L Y, et al. Cloning and expression analysis of the transcription factor gene RCMYB102 in response to salt stress in Rosa chinensis[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(6): 1521−1528. doi: 10.3969/j.issn.1000-4440.2020.06.023
    [11] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681−697. doi: 10.1093/aob/mcm079
    [12] 牟艺菲. 小麦OPRLOX基因家族的鉴定及其抗逆功能分析[D]. 咸阳: 西北农林科技大学, 2019.

    Mou Y F. Identification and functional analysis of wheat OPR and LOX gene families in response to stresses[D]. Xianyang: Northwest Agriculture & Forestry University, 2019.
    [13] 樊婕. 茉莉酸甲酯对菊花抗蚜性的影响机理研究[D]. 泰安: 山东农业大学, 2020.

    Fan J. Study on the effection of methyl jasmonate on aphids resistance of chrysanthemum[D]. Tai’an: Shandong Agricultural University, 2020.
    [14] Garrido-Bigotes A, Valenzuela-Riffo F, Torrejón M, et al. A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1–JA-Ile/COR–JAZs complexes[J]. Scientific Reports, 2020, 10(1): 11310. doi: 10.1038/s41598-020-68213-w
    [15] 苗琪, 崔馨文, 周雅然, 等. 长春花茉莉酸受体CrCOI1的生物信息学分析与原核表达[J]. 分子植物育种, 2023, 21(3): 747−753.

    Miao Q, Cui X W, Zhou Y R, et al. Bioinformatics analysis and prokaryotic expression of jasmonic acidreceptor CrCoI1 formCatharanthus roseus[J]. Molecular Plant Breeding, 2023, 21(3): 747−753.
    [16] 季彤彤. 茉莉酸诱导H2O2的积累调控拟南芥衰老的机理研究[D]. 武汉: 武汉大学, 2020.

    Ji T T. Jasmonic acid regulated senescence by including H2O2 accumulation in Arabidopsis[D]. Wuhan: Wuhan University, 2020.
    [17] Galindo-González L, Deyholos M K. RNA-seq transcriptome response of flax (Linum usitatissimum) to the pathogenic fungus Fusarium oxysporum f. sp. lini[J]. Frontiers in Plant Science, 2016, 7: 1766.
    [18] Widemann E, Miesch L, Lugan R, et al. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves[J]. Journal of Biological Chemistry, 2013, 288(44): 31701−31714. doi: 10.1074/jbc.M113.499228
    [19] Ding L, Xu H, Yi H, et al. Resistance to Hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6(4): e19008. doi: 10.1371/journal.pone.0019008
    [20] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR: trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23−39. doi: 10.1677/jme.0.0290023
    [21] Jin Y H, Liu F, Huang W, et al. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data[J]. Scientific Reports, 2019, 9(1): 8408. doi: 10.1038/s41598-019-44849-1
    [22] 周成城, 荣俊冬, 谢德金, 等. 福建柏实时荧光定量PCR内参基因的选择[J]. 林业科学研究, 2011, 34(1): 137−145.

    Zhou C C, Rong J D, Xie D J, et al. Quantitative real-time pcr analysis of Fokienia hodginsii during selection of reference genes[J]. Forest Research, 2011, 34(1): 137−145.
    [23] Joseph J T, Poolakkalody N J, Shah J M. Plant reference genes for development and stress response studies[J]. Journal of Biosciences, 2018, 43(1): 173−187. doi: 10.1007/s12038-017-9728-z
    [24] Czechowski T, Stitt M, Altmann T. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1): 5−17. doi: 10.1104/pp.105.063743
    [25] Klie M, Debener T. Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida)[J]. BMC Research Notes, 2011, 4(1): 518. doi: 10.1186/1756-0500-4-518
    [26] Meng Y L, Li N, Tian J, et al. Identification and validation of reference genes for gene expression studies in postharvest rose flower (Rosa hybrida)[J]. Scientia Horticulturae, 2013, 158: 16−21. doi: 10.1016/j.scienta.2013.04.019
    [27] Yang S M, Xu T L, Yang Y, et al. H2O2 accumulation plays critical role in black spot disease resistance in roses[J]. Horticulture, Environment, and Biotechnology, 2022, 64(1): 1−14.
    [28] Xu T L, Wu Y Y, Yi X W, et al. Reinforcement of resistance of modern rose to black disease via hybridization with Rosa rugosa[J]. Euphytica, 2018(214): 175.
    [29] Borges A F, Fonseca C, Ferreira R B, et al. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera[J]. PLoS One, 2014, 9(10): e1113999.
    [30] Monteiro F, Sebastiana M, Pais M S, et al. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars[J]. PLoS One, 2013, 8(9): e72998. doi: 10.1371/journal.pone.0072998
    [31] Kumar G, Singh A K. Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple[J]. Scientia Horticulturae, 2015, 197: 597−606. doi: 10.1016/j.scienta.2015.10.025
    [32] 范强. GhCOI1和GhMYC2基因对棉花黄萎病抗性的VIGS分析[D]. 兰州: 甘肃农业大学, 2017.

    Fan Q. Analysis of GhCOI1 and GhMYC2 by VIGS in the cotton resistance against Verticillium wilt[D]. Lanzhou: Gansu Agricultural University, 2017.
    [33] 魏洁书, 杨锦芬. 应用荧光定量比较Ct 值法测定基因相对表达量[J]. 中国科技论文, 2013, 6(5): 390−395.

    Wei J S, Yang J F. Application of real-time fluorescent quantitative polymerase chain reaction based on the Ct value comparison method to determine the relative genes expression[J]. China Scienpaper, 2013, 6(5): 390−395.
    [34] Véronique A, Pascale P, Stephan S, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): 597−606.
    [35] 闫姣. 应用于珙桐基因表达定量分析的内参基因的筛选及验证[D]. 泰安: 山东农业大学, 2012.

    Yan J. Selection and validation of reference genes for quantitative analysis of gene expression in dove tree (Davidia involucrata)[D]. Tai’an: Shandong Agricultural University, 2012.
    [36] 尹佳佳. 不同条件下柠条锦鸡儿荧光定量PCR内参基因的筛选[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Yin J J. Reference gene selection for qRT-PCR in Caragana korshinskii under different conditions[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
    [37] Kumar R M, Liu X Y, Hu W X, et al. Auxin enhances grafting success in Carya cathayensis (Chinese hickory)[J]. Planta, 2018, 247(3): 761−772. doi: 10.1007/s00425-017-2824-3
    [38] Niu K, Shi Y, Ma H. Selection of candidate reference genes for gene expression analysis in kentucky bluegrass (Poa pratensis L.) under abiotic stress[J]. Frontier in Plant Science, 2017, 14(8): 193.
    [39] Yu M, Liu D, Li Y C, et al. Validation of reference genes for expression analysis in three Bupleurum species[J]. Biotechnology & Biotechnological Equipment, 2018, 33(1): 154−161.
    [40] 邱显钦, 王其刚, 蹇洪英, 等. 月季抗白粉病基因RhMLO的亚细胞定位及功能分析[J]. 园艺学报, 2017, 44(5): 933−943.

    Qiu X Q, Wang Q G, Jian H Y, et al. Subcellular localization and functional analysis of the powdery mildew resistance gene RhMLO in rose[J]. Acta Horticulturae Sinica, 2017, 44(5): 933−943.
    [41] Guan L, Denker N, Eisa A, et al. JASSY, a chloroplast outer membrane protein required forjasmonate biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568−10575. doi: 10.1073/pnas.1900482116
    [42] 王丽芳, 于涌鲲, 杜希华, 等. 茉莉酸等3种因素刺激番茄LeWRKY1的表达特征分析[J]. 中国农学通报, 2010, 26(23): 73−76.

    Wang L F, Yu Y K, Du X H, et al. Research on expression of LEWRKY1 in tomato induced by jasmonic acid and other two factors[J]. Chinese Agricultural Science Bulletin, 2010, 26(23): 73−76.
    [43] 秦伟, 赵光耀, 曲志才, 等. 小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析[J]. 作物学报, 2010, 36(2): 249−255. doi: 10.3724/SP.J.1006.2010.00249

    Qin W, Zhao G Y, Qu Z C, et al. Identification and analysis of TaWRKY34 gene induced by wheat powdery mildew[J]. Acta Agronomica Sinica, 2010, 36(2): 249−255. doi: 10.3724/SP.J.1006.2010.00249
    [44] Kloek A P, Verbsky M L, Sharma S B, et al. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive1 mutation occurs through two distinct mechanisms[J]. Plant Journal, 2001, 26(5): 509−522. doi: 10.1046/j.1365-313x.2001.01050.x
    [45] Ralhan A, Schttle S, Thurow C, et al. The vascular pathogen Verticillium longisporum requires a jasmonic acid independent COI1 function in roots to elicit disease symptoms in Arabidopsiss hoots[J]. Plant Physiology, 2012, 159(3): 1192−1203. doi: 10.1104/pp.112.198598
    [46] Geng X Q, Shen M Z, Jin H K, et al. The Pseudomonas syringae type Ⅲ effectors AvrRpm1 and AvrRpt2 promote virulence dependent on the F-box protein COI1[J]. Plant Cell Reports, 2016, 35(4): 921−932. doi: 10.1007/s00299-016-1932-z
    [47] Kazan K, Manners J M. MYC2: the master in action[J]. Molecular Plant, 2013, 6(3): 686−703. doi: 10.1093/mp/sss128
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  121
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2022-01-10
  • 录用日期:  2023-03-07
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回