Selection and validation of appropriate reference genes and expression analysis of jasmonic acid-related genes responding to Marssonina rosae in Rosa species and cultivars
-
摘要:
目的 为研究蔷薇属植物响应黑斑病侵染的稳定表达的最适内参基因,解析茉莉酸在蔷薇属植物响应蔷薇盘二孢侵染过程中的作用。 方法 以黑斑病病原菌蔷薇盘二孢侵染的6个蔷薇属种/品种不同时间的离体叶片为材料,利用qRT-PCR技术及geNorm、NormFinder、BestKeeper软件对9个候选内参基因(ACT、GAPDH、PP2A、Rcl2、SAND、TIP、TUA、TUB、UBC)的表达量进行测定和分析,利用筛选出的内参基因,对蔷薇属植物茉莉酸(JA)抗病途径相关基因(COI1、OPR3、MYC2、JAR1)的表达水平进行定量分析。 结果 (1)UBC可作为6种蔷薇属植物共同适用的内参基因,可用于后续分析JA抗病途径相关基因的表达水平。(2)内源JA含量在6种蔷薇属植物响应蔷薇盘二孢侵染的过程中存在差异。在黑斑病高抗植物受侵染0 ~ 4 d间JA含量下调,4 ~ 8 d间上调。在黑斑病易感植物受侵染0 ~ 8 d间,内源JA含量呈下调趋势。(3)JA合成相关基因OPR3及JAR1表达量在受侵染初期表达量趋势存在差异。在除荷花蔷薇外的其余5种植物中,OPR3在侵染初期(0 ~ 0.5 d)表达下调,JAR1在侵染初期表达上调。OPR3和JAR1在侵染后期均表达上调,黑斑病易感材料的上调程度高于高抗材料。(4)JA信号传导相关基因COI1及MYC2在受侵染初期表达量趋势同样存在差异。COI1在黑斑病高抗材料受侵染初期上调表达,在黑斑病易感材料下调表达,MYC2在6种植物受侵染0 ~ 2 d中均下调表达。COI1及MYC2表达量在受侵染2 d后均上调表达,且在黑斑病易感植物中的上调程度大于黑斑病高抗材料。 结论 与JA信号传导相关的MYC2、COI1在蔷薇属植物抵御黑斑病病菌入侵过程中发挥负调控作用,且由JA通路介导的抵御死体营养型病原菌的侵染在后期发挥了作用。 Abstract:Objective This paper aims to select the appropriate reference gene and analyze the role of jasmonic acid in Rosa species and cultivars responding to Marssonina rosae. Method R. multiflora f. carnea, R. xanthina f. spontanea, R. glauca, R. rugosa, R. hybrida ‘Porcelina’ and R12-26 (hybrid of R. rugosa and R. hybrida ‘Porcelina’) were used as materials, qRT-PCR technology, geNorm, NormFinder, BestKeeper were used to evaluate the expression stability of nine candidate reference genes (ACT, GAPDH, PP2A, RCl2, SAND, TIP, TUA, TUB and UBC). The expression levels of jasmonic acid resistance pathway relatedgenes (COI1, OPR3, MYC2 and JAR1) in six Rosa species and cultivars were quantitatively analyzed. Result (1) UBC was the common reference gene of six Rosa species and cultivars responding to M. rosae, and can be used for analyzing the related gene expression levels to JA resistance pathway. (2) There were differences in JA content among the six plants responding to M. rosae. In disease-resistant plants, JA concentration decreased at 0−4 d and increased at 4−8 d. In disease-susceptible plants, JA concentration decreased at 0−8 d and increased significantly at 8−10 d. (3) The expression levels of JA synthesis-related genes OPR3 and JAR1 were different at the early stage of infection. The expression level of OPR3 was down-regulated and JAR1 up-regulated in five plants except for R. multiflora f. carnea. OPR3 and JAR1 were all up-regulated in the late stage of infection, however the up-regulation degree in black-spot susceptible species was significantly higher than that of resistant species. (4) There were also differences in the expression levels of JA signaling related genes COI1 and MYC2 at the early stage of infection. The expression of COI1 was up-regulated in disease-resistant plants and down-regulated in disease-susceptible plants at the early stage of infection, MYC2 was down-regulated in 6 plants infected 0−2 d. COI1 and MYC2 were up-regulated after 2 d of infection, and the up-regulation degree in black-spot susceptible species was significantly higher than that of resistant species. Conclusion MYC2 and COI1, which are related to JA signaling, play a negative regulatory role in the resistance of Rosa plants to the invasion of black spot pathogens, and the JA pathway mediated resistance to the invasion of dead vegetative pathogens plays a role in the later stage of infection. -
Key words:
- Rosa /
- Marssonina rosae /
- reference gene selection /
- jasmonic acid /
- expression analysis
-
图 1 6种蔷薇属植物离体叶片侵染蔷薇盘二孢的发病情况
红色圆圈表示病斑开始出现。黑色圆圈表示病斑蔓延至整个叶片。Red circle indicates the disease onset with the appearance brown necrotic lesions. Black circles indicate the spread of the brown necrotic lesions throughout the whole leaf.
Figure 1. Incidence of in vitro leaves infected by M. rosae of 6 Rosa species and cultivars
表 1 基因引物基本信息
Table 1. Basic information of gene primers
基因
Gene引物序列(5′—3′)
Primer sequence (5′-3′)退火温度
Annealing temperature (Tm)/℃扩增效率
Amplification efficiency (E)/%r ACT F: TCAAGGATTGGTGGACTTCAGT
R: ACCAGAGAACAAGAATGCAAGC55 96.0 0.970 GAPDH F: TATGACCAGATCAAGGCTGCT
R: ACCAATGAAGTCGGTTGACAC55 102.5 0.999 PP2A F: TGTCACTGCATCAAAGGACAG
R: GACGAATTGTCTTCTCCACCA55 102.0 0.982 Rcl2 F: ATGGGAAATGCCCTACCT
R: CACTTGTCCGACTGTTGC55 95.7 0.969 SAND F: BGTGTTGAGGAGTTGCCTCTTG
R: AACCTGTCGGGAGAATCTGTT55 98.5 0.989 TIP F: GAATCCACGGCTGGGAAA
R: CAGTTCGTGGGTGGAGGAGTT55 104.2 0.998 TUA F: CATTGAGCGTCCCACCTA
R: CACATCCACATTCAGAGCC55 103.2 0.987 TUB F: GTACATGGCCTGCTGTTTGAT
R: ATGGTACGCTTGGTCTTGATG55 96.1 0.972 UBC F: GCCAGAGATTGCCCATATGTA
R: TCACAGAGTCCTAGCAGCACA55 103.5 0.996 COI1 F: AATGAGGGGCTGTTGCTTCA
R: GATCCCCTGTACCCTTGCAC56 102.2 0.984 MYC2 F: CGGCAGCAGCGTCAAGAAT
R: GAGGTCGGAGTGGTGGGAAT57 101.0 0.957 OPR3 F: CATCAGCGAAGGCACTTTGG
R: GGCGTCGACTACCTTCTTCC55 103.6 0.951 JAR1 F: TTGGGTGCTACTTCTTTCTCAG
R: AATTGGAGGAAGGAGGGTG57 104.4 0.952 表 2 9个候选内参基因的表达稳定性排序
Table 2. Expression stability ranking of 9 candidate internal reference genes
种/品种
Species/cultivar方法 Method 1 2 3 4 5 6 7 8 9 荷花蔷薇
R. multiflora f. carneageNorm UBC TIP PP2A GAPDH TUB ACT SAND TUA Rcl2 Normfinder UBC TIP PP2A GAPDH TUB ACT TUA SAND Rcl2 Bestkeeper TIP ACT UBC TUB SAND PP2A TUA GAPDH Rcl2 RefFinder UBC TIP PP2A TUB ACT GAPDH SAND TUA Rcl2 单瓣黄刺玫
R. xanthina f. spontaneageNorm UBC PP2A SAND TIP GAPDH ACT Rcl2 TUB TUA Normfinder PP2A UBC TIP SAND GAPDH ACT Rcl2 TUB TUA Bestkeeper PP2A TIP UBC ACT GAPDH SAND Rcl2 TUB TUA RefFinder PP2A UBC TIP SAND GAPDH ACT Rcl2 TUB TUA 玫瑰
R. rugosageNorm UBC TIP GAPDH TUB TUA PP2A SAND Rcl2 ACT Normfinder UBC TIP PP2A GAPDH TUB SAND TUA Rcl2 ACT Bestkeeper UBC TIP TUA TUB GAPDH SAND ACT PP2A Rcl2 RefFinder UBC TIP GAPDH TUB TUA PP2A SAND ACT Rcl2 R12-26 geNorm PP2A TIP UBC SAND GAPDH TUB TUA ACT Rcl2 Normfinder TIP GAPDH UBC PP2A SAND TUB TUA ACT Rcl2 Bestkeeper UBC ACT GAPDH TIP PP2A SAND Rcl2 TUB TUA RefFinder UBC TIP PP2A GAPDH SAND ACT TUB TUA Rcl2 红叶蔷薇
R. glaucageNorm UBC TIP SAND PP2A TUA TUB GAPDH Rcl2 ACT Normfinder UBC TIP TUA SAND PP2A TUB GAPDH Rcl2 ACT Bestkeeper SAND TIP PP2A UBC ACT TUA TUB GAPDH Rcl2 RefFinder UBC TIP SAND PP2A TUA TUB GAPDH ACT Rcl2 ‘波塞妮娜’
R. hybrida ‘Porcelina’geNorm SAND TIP UBC GAPDH PP2A ACT TUB Rcl2 TUA Normfinder GAPDH TIP UBC SAND TUB PP2A ACT Rcl2 TUA Bestkeeper PP2A UBC SAND TIP GAPDH ACT TUB Rcl2 TUA RefFinder UBC TIP SAND GAPDH PP2A TUB ACT Rcl2 TUA -
[1] Dobbs R B. Research battles black spot in roses[J]. American Rose Annual, 1984, 69: 44−45. [2] Whitaker V M, Debener T, Roberts A V, et al. A standard set of host differentials and unified nomenclature for an international collection of Diplocarpon rosae races[J]. Plant Pathology, 2010, 59(4): 745−752. doi: 10.1111/j.1365-3059.2010.02281.x [3] 王晓敏. 小麦与条锈菌互作过程中活性氧和防御基因的防御反应及抗病相关基因的鉴定与功能验证[D]. 咸阳: 西北农林科技大学, 2010.Wang X M. Defense responses including oxidative burst and defense gene expression in the interaction between wheat and stripe rust and interaction and functional characterization of resistance-related genes[D]. Xianyang: Northwest Agriculture & Forestry University, 2010. [4] Durrant W E, Dong X. Systemic acquired resistance[J]. Annual Review of Phytopathology, 2004, 42(1): 185−209. doi: 10.1146/annurev.phyto.42.040803.140421 [5] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annual Review of Phytopathology, 2005, 43(1): 205−227. doi: 10.1146/annurev.phyto.43.040204.135923 [6] 钟庆燕. 外源乙烯和茉莉酸诱导水稻对纹枯病的抗性机理研究[D]. 哈尔滨: 东北农业大学, 2019.Zhong Q Y. Mechanism of resistance of rice to sheath blight induced by exogenous ethylene and jasmonic acid[D]. Harbin: Northeast Agricultural University, 2019. [7] 傅竞也. 玉米萜类植保素生物合成转录调控机制研究[D]. 雅安: 四川农业大学, 2019.Fu J Y. The transcriptional regulatory mechanism of maize terpenoid phytoalexin biosynthesis [D]. Yaan: Sichuan Agricultural University, 2019. [8] 刘瑞峰, 贾桂霞. 水杨酸和茉莉酸/乙烯信号通路关键基因在月季−黑斑病菌互作中的表达模式[J]. 林业科学, 2020, 56(6): 47−58.Liu R F, Jia G X. Expression patterns of key genes of salicylic acid and jasmonic acid/ethylene signaling pathways in the interaction between rose and Diplocarpon rosea[J]. Scientia Silvea Sinicae, 2020, 56(6): 47−58. [9] 刘瑞峰, 刘强, 张非亚. 月季响应黑斑病的早期差异表达基因分析[J]. 园艺学报, 2015, 42(4): 731−740.Liu R F, Liu Q, Zhang F Y. The analysis of differential expression genes for rose early responding to black-spot disease[J]. Acta Horticulturae Sinica, 2015, 42(4): 731−740. [10] 包颖, 李泽卿, 魏琳燕, 等. 月季盐胁迫响应转录因子基因RcMYB102的克隆及表达分析[J]. 江苏农业学报, 2020, 36(6): 1521−1528. doi: 10.3969/j.issn.1000-4440.2020.06.023Bao Y, Li Z Q, Wei L Y, et al. Cloning and expression analysis of the transcription factor gene RCMYB102 in response to salt stress in Rosa chinensis[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(6): 1521−1528. doi: 10.3969/j.issn.1000-4440.2020.06.023 [11] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681−697. doi: 10.1093/aob/mcm079 [12] 牟艺菲. 小麦OPR和LOX基因家族的鉴定及其抗逆功能分析[D]. 咸阳: 西北农林科技大学, 2019.Mou Y F. Identification and functional analysis of wheat OPR and LOX gene families in response to stresses[D]. Xianyang: Northwest Agriculture & Forestry University, 2019. [13] 樊婕. 茉莉酸甲酯对菊花抗蚜性的影响机理研究[D]. 泰安: 山东农业大学, 2020.Fan J. Study on the effection of methyl jasmonate on aphids resistance of chrysanthemum[D]. Tai’an: Shandong Agricultural University, 2020. [14] Garrido-Bigotes A, Valenzuela-Riffo F, Torrejón M, et al. A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1–JA-Ile/COR–JAZs complexes[J]. Scientific Reports, 2020, 10(1): 11310. doi: 10.1038/s41598-020-68213-w [15] 苗琪, 崔馨文, 周雅然, 等. 长春花茉莉酸受体CrCOI1的生物信息学分析与原核表达[J]. 分子植物育种, 2023, 21(3): 747−753.Miao Q, Cui X W, Zhou Y R, et al. Bioinformatics analysis and prokaryotic expression of jasmonic acidreceptor CrCoI1 formCatharanthus roseus[J]. Molecular Plant Breeding, 2023, 21(3): 747−753. [16] 季彤彤. 茉莉酸诱导H2O2的积累调控拟南芥衰老的机理研究[D]. 武汉: 武汉大学, 2020.Ji T T. Jasmonic acid regulated senescence by including H2O2 accumulation in Arabidopsis[D]. Wuhan: Wuhan University, 2020. [17] Galindo-González L, Deyholos M K. RNA-seq transcriptome response of flax (Linum usitatissimum) to the pathogenic fungus Fusarium oxysporum f. sp. lini[J]. Frontiers in Plant Science, 2016, 7: 1766. [18] Widemann E, Miesch L, Lugan R, et al. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves[J]. Journal of Biological Chemistry, 2013, 288(44): 31701−31714. doi: 10.1074/jbc.M113.499228 [19] Ding L, Xu H, Yi H, et al. Resistance to Hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6(4): e19008. doi: 10.1371/journal.pone.0019008 [20] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR: trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23−39. doi: 10.1677/jme.0.0290023 [21] Jin Y H, Liu F, Huang W, et al. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data[J]. Scientific Reports, 2019, 9(1): 8408. doi: 10.1038/s41598-019-44849-1 [22] 周成城, 荣俊冬, 谢德金, 等. 福建柏实时荧光定量PCR内参基因的选择[J]. 林业科学研究, 2011, 34(1): 137−145.Zhou C C, Rong J D, Xie D J, et al. Quantitative real-time pcr analysis of Fokienia hodginsii during selection of reference genes[J]. Forest Research, 2011, 34(1): 137−145. [23] Joseph J T, Poolakkalody N J, Shah J M. Plant reference genes for development and stress response studies[J]. Journal of Biosciences, 2018, 43(1): 173−187. doi: 10.1007/s12038-017-9728-z [24] Czechowski T, Stitt M, Altmann T. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1): 5−17. doi: 10.1104/pp.105.063743 [25] Klie M, Debener T. Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida)[J]. BMC Research Notes, 2011, 4(1): 518. doi: 10.1186/1756-0500-4-518 [26] Meng Y L, Li N, Tian J, et al. Identification and validation of reference genes for gene expression studies in postharvest rose flower (Rosa hybrida)[J]. Scientia Horticulturae, 2013, 158: 16−21. doi: 10.1016/j.scienta.2013.04.019 [27] Yang S M, Xu T L, Yang Y, et al. H2O2 accumulation plays critical role in black spot disease resistance in roses[J]. Horticulture, Environment, and Biotechnology, 2022, 64(1): 1−14. [28] Xu T L, Wu Y Y, Yi X W, et al. Reinforcement of resistance of modern rose to black disease via hybridization with Rosa rugosa[J]. Euphytica, 2018(214): 175. [29] Borges A F, Fonseca C, Ferreira R B, et al. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera[J]. PLoS One, 2014, 9(10): e1113999. [30] Monteiro F, Sebastiana M, Pais M S, et al. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars[J]. PLoS One, 2013, 8(9): e72998. doi: 10.1371/journal.pone.0072998 [31] Kumar G, Singh A K. Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in apple[J]. Scientia Horticulturae, 2015, 197: 597−606. doi: 10.1016/j.scienta.2015.10.025 [32] 范强. GhCOI1和GhMYC2基因对棉花黄萎病抗性的VIGS分析[D]. 兰州: 甘肃农业大学, 2017.Fan Q. Analysis of GhCOI1 and GhMYC2 by VIGS in the cotton resistance against Verticillium wilt[D]. Lanzhou: Gansu Agricultural University, 2017. [33] 魏洁书, 杨锦芬. 应用荧光定量比较Ct 值法测定基因相对表达量[J]. 中国科技论文, 2013, 6(5): 390−395.Wei J S, Yang J F. Application of real-time fluorescent quantitative polymerase chain reaction based on the Ct value comparison method to determine the relative genes expression[J]. China Scienpaper, 2013, 6(5): 390−395. [34] Véronique A, Pascale P, Stephan S, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): 597−606. [35] 闫姣. 应用于珙桐基因表达定量分析的内参基因的筛选及验证[D]. 泰安: 山东农业大学, 2012.Yan J. Selection and validation of reference genes for quantitative analysis of gene expression in dove tree (Davidia involucrata)[D]. Tai’an: Shandong Agricultural University, 2012. [36] 尹佳佳. 不同条件下柠条锦鸡儿荧光定量PCR内参基因的筛选[D]. 呼和浩特: 内蒙古农业大学, 2013.Yin J J. Reference gene selection for qRT-PCR in Caragana korshinskii under different conditions[D]. Hohhot: Inner Mongolia Agricultural University, 2013. [37] Kumar R M, Liu X Y, Hu W X, et al. Auxin enhances grafting success in Carya cathayensis (Chinese hickory)[J]. Planta, 2018, 247(3): 761−772. doi: 10.1007/s00425-017-2824-3 [38] Niu K, Shi Y, Ma H. Selection of candidate reference genes for gene expression analysis in kentucky bluegrass (Poa pratensis L.) under abiotic stress[J]. Frontier in Plant Science, 2017, 14(8): 193. [39] Yu M, Liu D, Li Y C, et al. Validation of reference genes for expression analysis in three Bupleurum species[J]. Biotechnology & Biotechnological Equipment, 2018, 33(1): 154−161. [40] 邱显钦, 王其刚, 蹇洪英, 等. 月季抗白粉病基因RhMLO的亚细胞定位及功能分析[J]. 园艺学报, 2017, 44(5): 933−943.Qiu X Q, Wang Q G, Jian H Y, et al. Subcellular localization and functional analysis of the powdery mildew resistance gene RhMLO in rose[J]. Acta Horticulturae Sinica, 2017, 44(5): 933−943. [41] Guan L, Denker N, Eisa A, et al. JASSY, a chloroplast outer membrane protein required forjasmonate biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10568−10575. doi: 10.1073/pnas.1900482116 [42] 王丽芳, 于涌鲲, 杜希华, 等. 茉莉酸等3种因素刺激番茄LeWRKY1的表达特征分析[J]. 中国农学通报, 2010, 26(23): 73−76.Wang L F, Yu Y K, Du X H, et al. Research on expression of LEWRKY1 in tomato induced by jasmonic acid and other two factors[J]. Chinese Agricultural Science Bulletin, 2010, 26(23): 73−76. [43] 秦伟, 赵光耀, 曲志才, 等. 小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析[J]. 作物学报, 2010, 36(2): 249−255. doi: 10.3724/SP.J.1006.2010.00249Qin W, Zhao G Y, Qu Z C, et al. Identification and analysis of TaWRKY34 gene induced by wheat powdery mildew[J]. Acta Agronomica Sinica, 2010, 36(2): 249−255. doi: 10.3724/SP.J.1006.2010.00249 [44] Kloek A P, Verbsky M L, Sharma S B, et al. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive1 mutation occurs through two distinct mechanisms[J]. Plant Journal, 2001, 26(5): 509−522. doi: 10.1046/j.1365-313x.2001.01050.x [45] Ralhan A, Schttle S, Thurow C, et al. The vascular pathogen Verticillium longisporum requires a jasmonic acid independent COI1 function in roots to elicit disease symptoms in Arabidopsiss hoots[J]. Plant Physiology, 2012, 159(3): 1192−1203. doi: 10.1104/pp.112.198598 [46] Geng X Q, Shen M Z, Jin H K, et al. The Pseudomonas syringae type Ⅲ effectors AvrRpm1 and AvrRpt2 promote virulence dependent on the F-box protein COI1[J]. Plant Cell Reports, 2016, 35(4): 921−932. doi: 10.1007/s00299-016-1932-z [47] Kazan K, Manners J M. MYC2: the master in action[J]. Molecular Plant, 2013, 6(3): 686−703. doi: 10.1093/mp/sss128 -