Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests
-
摘要:目的 针对采伐干扰后天然恢复的次生林,建立其碳储量生长模型及对应的碳汇模型,分析不同因子对固碳能力的驱动作用,为固碳能力量化评价提供科学依据。方法 基于吉林省第9次森林资源连续清查固定样地数据筛选出的111个采伐后形成的天然次生林样地数据,采用Richards理论生长方程,以样地平均木的碳储量为因变量,以样地平均年龄为自变量,通过对年龄分组和迭代算法建立碳储量分级生长模型,通过对碳储量分级生长模型中的年龄求导得到碳汇分级生长模型。采用决定系数(R2)和均方根误差(RMSE)评价模型拟合效果。以地理因子、地形因子、气候因子、土壤因子和林分因子为自变量,基于一般线性模型,引入定性和定量因子交互作用,分析固碳能力的驱动力。结果 (1)天然次生林碳储量分级生长模型的R2为0.965 6,RMSE为2.61 kg,具有很好的拟合优度。(2)各个分级碳汇量最大的年龄分别为8、10、13、17和29年,以1 000株/hm2的密度计算,5年时间的阈值为1.84 t/hm2,到30年时增加到10.78 t/hm2,各级间的阈值随年龄的增加而增加。(3)一阶定性和一、二阶定量交互的模型对平均木碳储量的解释最高,R2为0.919 2,与不含交互项的主效应模型相比,R2提高了0.088 5。(4)对于平均木碳储量,地理因子(经度和纬度)、地形因子(海拔、地貌、坡向、坡位和坡度)、枯枝落叶层厚度、气候因子(年均气温、极端最低温度、湿度指数、无霜期天数)、土壤因子(土壤厚度)和林分因子(年龄和优势树种)等因子有显著性影响;对于不同立地分级20年时碳密度,地理因子(纬度)、地形因子(地貌、坡度和坡向)、气候因子(极端最高温度、最热月平均温度和湿度指数)、土壤因子(土壤类型和砾石含量)和林分因子(优势树种)等因子有显著性影响,而海拔和腐殖质厚度等变量存在于交互项中,其主效应并不显著。结论 天然次生林不同等级的碳密度在不同的时间段,等级间的阈值不同,随着年龄的增加,各级间的阈值不断增加,但不同等级间碳储量的相对差距随着年龄的增加而减小。引入交互作用可以提高模型对森林固碳的解释程度。纬度等地理因子,坡度、坡向等地形因子,湿度指数等气候因子和优势树种等林分因子是影响天然次生林固碳能力因素的关键因子。Abstract:Objective This paper aims to establish a growth model of carbon storage of the natural secondary forests after logging disturbance and the corresponding carbon sink model, so as to analyze the driving effect of different factors on carbon sequestration capacity, which can provide references for quantitative evaluation of carbon sequestration capacity.Method Totally 111 sample plot data for the natural secondary forests were selected based on the data of the 9th National Forest Inventory in Jilin Province of northeastern China. Based on the Richards theoretical growth equation, taking the average tree carbon storage of the sample plot as the dependent variable and the average age of the sample plot as the independent variable, a carbon storage classified growth model was established by grouping the age and iterative algorithm, and the carbon sink classified growth model was obtained by deriving the age in the carbon storage classified growth model. The coefficient of determination (R2) and the root mean square error (RMSE) were used to evaluate the effect of model fitting. Based on a linear model, taking geographical factors, topographic factors, climate factors, soil factors and forest stand factors as independent variables, the interactions of qualitative and quantitative factors were introduced to analyze the driving force of carbon sequestration capacity.Result (1) The R2 of the natural secondary forest carbon storage classified growth model was 0.965 6, and the RMSE was 2.612 7 kg, this model had a good goodness of fit. (2) The ages of the largest carbon sinks in each level were 8, 10, 13, 17 and 29 years. Calculated at a density of 1 000 plants per hectare, the threshold between levels in 5 years was 1.84 t/ha, and by 30 years increased to 10.78 t/ha, the threshold between each level increased with age. (3) The first-order qualitative, first-order, and second-order quantitative interaction model had the highest explanation for the average tree carbon storage, and R2 was 0.919 2. Compared with the main effect model without interaction terms, R2 was increased by 0.088 5. (4) For the average tree carbon storage, geographic factors (longitude and latitude), topographic factors (altitude, landform, slope aspect, slope position and slope degree), litter layer thickness, climate factors (annual average temperature, extreme minimum temperature, humidity index, frost-free days), soil factor (soil thickness) and stand factors (age and dominant tree species) had significant effects. For 20 years of carbon density by different classifications, geographic factor (latitude), topographic factors (landform, slope degree and slope aspect), climate factors (extreme maximum temperature, hottest monthly average temperature and humidity index), soil factors (soil type and gravel content) and stand factor (dominant tree species) had significant effects, while factors such as altitude and humus thickness existed in the interaction terms, and their main effects were not significant.Conclusion The carbon density of different level thresholds of the natural secondary forests is different in varied time periods. With the increase of age, the thresholds between levels continue to increase, but the relative magnitudes in carbon storage between different levels are decreasing. The introduction of interaction could help improve the interpretation degree of forest carbon sequestration. Geographical factors such as latitude, topographical factors such as slope degree and slope aspect, climate factors such as humidity index, and stand factors such as dominant tree species are the key factors affecting the carbon sequestration capacity of the natural secondary forests.
-
-
表 1 吉林天然次生林样地统计量
Table 1 Statistics of the natural secondary forest sample plots in Jilin Province
调查因子 Survey factor 平均值 Mean 标准差 SD 最小值 Min. value 最大值 Max. value 平均年龄/a
Average age/year18 6 5 20 平均胸径
Mean DBH/cm9.2 2.2 5.7 16.6 株密度/(株·hm−2)
Tree density/(plant·ha−1)1 015 698 17 4 000 蓄积量/(m3·hm−2)
Volume/(m3·ha−1)35.82 31.58 0.22 146.25 碳密度/(t·hm−2)
Carbon density/(t·ha−1)18.52 15.77 0.14 82.56 表 2 样地非生物环境因子以及优势树种统计量
Table 2 Statistics of abiotic environmental factors and dominant tree species in the sample plots
调查因子Survey factor 属性 Attribute 说明 Description 东经 East longitude/(°) 定量 Quantitative 127.42 ± 1.70 (125.31 ~ 130.76) 北纬 North latitude/(°) 定量 Quantitative 42.41 ± 0.86 (40.96 ~ 44.89) 海拔 Altitude/m 定量 Quantitative 494 ± 205 (90 ~ 1 140) 地貌 Landform 定性 Qualitative 中山 Mid-mountain (3) 低山 Low-mountain (65)
丘陵 Hill (35) 平原 Plain (8)坡向 Slope aspect 定性 Qualitative 北坡 North slope (9) 东北坡 Northeast slope (13) 东坡 East slope (8)
东南坡 Southeast slope (11)南坡 South slope (8)
西南坡 Southwest slope (20) 西坡 West slope (15)
西北坡 Northwest slope (14) 无坡向 No aspect (13)坡度 Slope degree 定性 Qualitative 平坡 Flat slope (20) 缓坡 Gentle slope (48) 斜坡 Slope (27)
陡坡 Steep slope (13) 急坡 Escarpment (3)坡位 Slope position 定性 Qualitative 脊部 Ridge (2) 上坡 Up slope (29) 中坡 Middle slope (31)
下坡 Down slope (39) 山谷 Valley (7) 平地 Flat (3)腐殖质厚度 Humus layer thickness/cm 定量 Quantitative 3.05 ± 2.14 (0.00 ~ 12.00) 枯枝落叶厚 Litter layer thickness/cm 定量 Quantitative 3.20 ± 1.80 (0.00 ~ 10.00) 土壤类型 Soil type 定性 Qualitative 灰黑土 Gray black soils (106) 白浆土 Albic soils (1)
风沙土 Aeolian sandy soils (1) 草甸土 Meadow soils (2) 沼泽土 Bog soils (1)砾石含量 Gravel content/% 定量 Quantitative 6.70 ± 9.48 (0.00 ~ 40.00) 土壤厚度 Soil thickness/cm 定量 Quantitative 38.54 ± 12.11 (10.00 ~ 60.00) 年降水量 Annual precipitation/mm 定量 Quantitative 734 ± 134 (486 ~ 1 059) 年平均气温 Annual average temperature/℃ 定量 Quantitative 4.94 ± 0.98 (0.79 ~ 6.91) 极端最低温
Extreme minimum temperature/℃定量 Quantitative −29.72 ± 1.79 (−34.80 ~ −24.30) 极端最高温
Extreme maximum temperature/℃定量 Quantitative 33.34 ± 0.72 (30.50 ~ 34.50) 湿度指数 Humidity index 定量 Quantitative 21.62 ± 4.40 (11.75 ~ 32.48) 无霜期天数 Frost-free days/d 定量 Quantitative 182 ± 9 (141 ~ 199) 最冷月平均温度
Mean temperature in the coldest month/℃定量 Quantitative −15.04 ± 1.17 (−17.87 ~ −11.13) 最热月平均温度
Mean temperature in the hottest month/℃定量 Quantitative 21.69 ± 1.01 (17.55 ~ 23.73) 优势树种 Dominant tree species 定性 Qualitative 云杉Picea asperata (2) 落叶松Larix spp. (21)
栎类Quercus spp. (10)
白桦Betula platyphylla (3)
胡桃楸Juglans mandshurica (5)
榆树Ulmus pumila (3)
杨树Populus simonii (4)
泡桐Paulownia fortune (5)
其他软阔 Other soft-broadleaved (10)
阔叶混交林 Broadleaved mixed forest (41)
针阔混交林 Coniferous and broadleaved mixed forest (7)注:对定量数据,说明为:平均值 ± 标准差(最小值 ~ 最大值);对定性数据,说明为:定性变量值(样本数)。Notes: for quantitative data, it is explained as: average ± SD (minimum to maximum); for qualitative data, it is explained as qualitative variable value (sample size). 表 3 不同碳储量生长等级的样地数量
Table 3 Number of sample plots with different carbon storage growth grades
等级
Grade样地数
Sample plot number比例
Proportion/%1 16 14 2 11 10 3 14 13 4 34 31 5 36 32 表 4 碳储量生长模型拟合参数和模型评价指标
Table 4 Fitting parameters and evaluation indexes of carbon storage growth model
参数 Parameter 估计值 Estimate value T 值 T-value 显著性 Sig. a 228.093 282 2.221 265 0.028 400 b1 0.011 314 2.608 114 0.010 381 b2 0.008 498 2.242 808 0.026 932 b3 0.006 704 2.183 002 0.031 181 b4 0.004 997 2.310 217 0.022 759 b5 0.002 965 2.199 555 0.029 950 c 1.090 761 12.525 250 0.000 000 注:参数b的下标表示分级等级,下标越小表示生长越快,碳储量也越大。Notes: the subscript of parameter b indicates the grading grade, and the smaller of the subscript is, the faster the growth is and the greater the carbon reserves are. 表 5 不同林分年龄不同分级的次生林碳密度估计值 t/hm2
Table 5 Estimated carbon storage density of the natural secondary forests in different stand ages and classifications
t/ha 林分年龄/a
Stand age/year分级 Classification 1 2 3 4 5 5 9.64 7.11 5.52 4.02 2.29 10 19.92 14.80 11.54 8.45 4.84 15 30.08 22.51 17.64 12.98 7.47 20 39.96 30.12 23.71 17.52 10.14 25 49.49 37.57 29.71 22.05 12.83 30 58.63 44.83 35.60 26.55 15.52 表 6 样地平均木碳储量不同交互项选择模式的拟合结果和统计量
Table 6 Fitting and statistics results of the sample plot average tree carbon storage model on different interactive item selection patterns
指标
Index交互项选择模式 Interactive item selection mode M-All DDI DDIA D12D D12DA 样本数 Number of sample 111 111 111 111 111 参数个数 Number of parameter 53 59 60 66 59 筛选次数 Screening time 0 16 12 16 13 最终因子数 Final factor number 24 13 14 14 15 主效应因子数 Number of main effect factor 24 11 14 11 13 交互项个数 Number of interaction item 0 3 2 3 2 决定系数 Coefficient of determination (R2) 0.833 4 0.899 8 0.918 0 0.917 3 0.919 2 修正决定系数
Adjusted coefficient of determination (R2 adj)0.684 1 0.787 9 0.823 1 0.797 7 0.829 2 均方根误差
Root mean square error (RMSE)/kg7.696 7 6.306 3 5.759 1 6.158 9 5.660 4 注:M-All表示所有因子的主效应;DDI表示显著因子一阶定性一阶定量交互;DDIA表示所有因子一阶定性一阶定量交互;D12D表示显著因子一阶定性一、二阶定量交互;D12DA表示所有因子一阶定性一、二阶定量交互。Notes: M-All represents the main effect of all factors; DDI represents the first-order qualitative and first-order quantitative interaction of significant factors; DDIA represents the first-order qualitative and first-order quantitative interaction of all factors; D12D represents the first-order qualitative first-order and second-order quantitative interaction of significant factors; D12DA represents the first-order qualitative first-order and second-order quantitative interaction of all factors. 表 7 含交互项的样地平均木碳储量方差分析
Table 7 Variance analysis of the sample plot average tree carbon storage with interactive terms
因子 Factor 显著性 Sig. 年龄 Age < 0.001 优势树种 Dominant tree species 0.004 纬度 Latitude < 0.001 经度 Longitude 0.025 地貌 Landform 0.081 坡向 Slope aspect < 0.001 坡位 Slope position 0.003 坡度 Slope degree 0.007 枯枝落叶厚度 Litter layer thickness 0.064 年平均气温 Annual average temperature 0.002 极端最低温 Extreme minimum temperature 0.105 湿度指数 Humidity index < 0.001 无霜期天数 Frost-free days 0.001 海拔 × 坡向 × 土壤厚度
Altitude × slope aspect × soil thickness< 0.001 海拔 × 枯枝落叶厚 × 优势树种
Altitude × litter layer thickness × dominant tree species0.023 表 8 不同立地分级20年时碳密度的含交互项的方差分析
Table 8 Variance analysis of carbon storage density with interactive terms in different site grades for 20 years
因子 Factor 显著性 Sig. 优势树种 Dominant tree species < 0.001 纬度 Latitude 0.026 地貌 Landform < 0.001 坡度 Slope degree < 0.001 坡向 Slope aspect < 0.001 湿度指数 Humidity index < 0.001 最热月平均温度
Mean temperature in the hottest month< 0.001 极端最高温度
Extreme maximum temperature< 0.001 极端最低温
Extreme minimum temperature0.124 土壤类型 Soil type 0.012 砾石含量 Gravel content 0.004 株数密度 × 砾石含量
Tree density × gravel content< 0.001 坡向 × 最冷月平均温度 × 最热月平均温度
Slope aspect × mean temperature in the coldest
month × mean temperature in the hottest month< 0.001 腐殖质厚度 × 海拔 × 坡向
Humus layer thickness × altitude × slope aspect0.008 -
[1] Sutherland I J, Gergel S E, Bennett E M. Seeing the forest for its multiple ecosystem services: indicators for cultural services in heterogeneous forests[J]. Ecological Indicators, 2016, 71: 123−133. doi: 10.1016/j.ecolind.2016.06.037
[2] Kolo H, Kindu M, Knoke T. Optimizing forest management for timber production, carbon sequestration and groundwater recharge[J]. Ecosystem Services, 2020, 44: 101147. doi: 10.1016/j.ecoser.2020.101147
[3] 魏曦, 梁文俊, 毕华兴, 等. 晋西黄土区油松林分结构与水土保持功能的多因子复合关系[J]. 林业科学研究, 2020, 33(3): 39−47. doi: 10.13275/j.cnki.lykxyj.2020.03.005 Wei X, Liang W J, Bi H X, et al. Multifactor relationships between stand structure and soil and water conservation function of Pinus tabulaeformis plantations in the Loess Plateau of Western Shanxi[J]. Forest Research, 2020, 33(3): 39−47. doi: 10.13275/j.cnki.lykxyj.2020.03.005
[4] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报, 2017, 37(7): 2455−2462. Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica, 2017, 37(7): 2455−2462.
[5] Parker C, Mitchell A, Trivedi M, et al. The little REDD book: a guide to governmental and non-governmental proposals for reducing emissions from deforestation and degradation[M]. Oxford: Global Canopy Programme, 2008.
[6] 牟长城, 杨明, 倪志英, 等. 不同恢复途径对大兴安岭森林沼泽群落结构与生产力的影响[J]. 东北林业大学学报, 2007, 35(5): 27−31. doi: 10.3969/j.issn.1000-5382.2007.05.009 Mu C C, Yang M, Ni Z Y, et al. Effects of different restoration approaches on structure and productivity of forest swamp communities in Daxing’an Mountain[J]. Journal of Northeast Forestry University, 2007, 35(5): 27−31. doi: 10.3969/j.issn.1000-5382.2007.05.009
[7] United Nations Environment Programme. The state of the world’s forests: forests, biodiversity and people[R/OL]. Rome: FAO, 2020 [2021−06−22]. http://resp.llas.ac.cn/C666/handle/2XK7JSWQ/270906.
[8] 马姜明, 刘世荣, 史作民, 等. 退化森林生态系统恢复评价研究综述[J]. 生态学报, 2010, 30(12): 3297−3303. Ma J M, Liu S R, Shi Z M, et al. A review on restoration evaluation studies of degraded forest ecosystem[J]. Acta Ecologica Sinica, 2010, 30(12): 3297−3303.
[9] Wu B, Meng X, Ye Q, et al. Method of estimating degraded forest area: cases from dominant tree species from Guangdong and Tibet in China[J]. Forests, 2020, 11(9): 930. doi: 10.3390/f11090930
[10] 张小全, 侯振宏. 森林退化、森林退化、森林管理、植被破坏和恢复的定义与碳计量问题[J]. 林业科学, 2003, 39(4): 140−144. doi: 10.3321/j.issn:1001-7488.2003.04.023 Zhang X Q, Hou Z H. Definitions of forest degradation, forest management, devegetation and revegetation in relations to carbon accounting[J]. Scientia Silvae Sinicae, 2003, 39(4): 140−144. doi: 10.3321/j.issn:1001-7488.2003.04.023
[11] 纪小芳, 鲁建兵, 杨军, 等. 凤阳山针阔混交林碳通量变化特征及其影响因子[J]. 东北林业大学学报, 2019, 47(3): 49−55. doi: 10.3969/j.issn.1000-5382.2019.03.010 Ji X F, Lu J B, Yang J, et al. Carbon flux variation characteristics and its influencing factors in coniferous and broadleaved mixed forest in Fengyang Mountain[J]. Journal of Northeast Forestry University, 2019, 47(3): 49−55. doi: 10.3969/j.issn.1000-5382.2019.03.010
[12] 魏艳艳. 2009-2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海: 上海师范大学, 2020. Wei Y Y. Analysis on the change and driving force of carbon storage of main land use types in Chongming Island from 2009 to 2018[D]. Shanghai: Shanghai Normal University, 2020.
[13] Gruba P, Socha J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pH (H2O) on soil carbon stocks using generalized additive models[J]. Forest Ecology and Management, 2019, 447: 105−114. doi: 10.1016/j.foreco.2019.05.061
[14] 柏广新, 牟长城. 抚育对长白山幼龄次生林群落结构与动态的影响[J]. 东北林业大学学报, 2012, 40(10): 48−55. doi: 10.3969/j.issn.1000-5382.2012.10.012 Bai G X, Mu C C. Effect of thinning on the structure and succession of secondary forest communities in Changbai Mountains of China[J]. Journal of Northeast Forestry University, 2012, 40(10): 48−55. doi: 10.3969/j.issn.1000-5382.2012.10.012
[15] 朱教君, 李凤芹. 森林退化/衰退的研究与实践[J]. 应用生态学报, 2007, 18(7): 1601−1609. doi: 10.3321/j.issn:1001-9332.2007.07.032 Zhu J J, Li F Q. Forest degradation/decline research and practice[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1601−1609. doi: 10.3321/j.issn:1001-9332.2007.07.032
[16] Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10: 290−300. doi: 10.1093/jxb/10.2.290
[17] 李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013 Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
[18] Li H X, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153−163. doi: 10.1016/j.foreco.2012.10.002
[19] 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2009. Tang S Z, Lang K J, Li H K. Statistics and biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2009.
[20] 刘晓彤, 李海奎, 曹磊, 等. 广东省森林土壤养分异质性析因[J]. 北京林业大学学报, 2021, 43(2): 90−101. Liu X T, Li H K, Cao L, et al. Analysis on the heterogeneity of forest soil nutrients in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 90−101.
[21] 何潇, 赵嘉诚, 曹磊, 等. 广东省枫香单木干材生物量生长模型的研建[J]. 西北林学院学报, 2018, 33(6): 236−242. doi: 10.3969/j.issn.1001-7461.2018.06.37 He X, Zhao J C, Cao L, et al. Construction of individual bole biomass growth models for Liquidambar formosana in Guangdong Province[J]. Journal of Northwest Forestry University, 2018, 33(6): 236−242. doi: 10.3969/j.issn.1001-7461.2018.06.37
[22] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213 Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
[23] 何潇, 曹磊, 徐胜林, 等. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9): 50−58. doi: 10.13332/j.1000-1522.20190030 He X, Cao L, Xu S L, et al. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50−58. doi: 10.13332/j.1000-1522.20190030
[24] 李江, 陈宏伟, 冯弦. 云南热区几种阔叶人工林碳储量的研究[J]. 广西植物, 2003, 23(4): 294−298. doi: 10.3969/j.issn.1000-3142.2003.04.002 Li J, Chen H W, Feng X. Carbon stock and rate of carbon sequestration assessment of hardwood plantations in tropical Yunnan, China[J]. Guihaia, 2003, 23(4): 294−298. doi: 10.3969/j.issn.1000-3142.2003.04.002
[25] 郑立生, 李海奎. 模型形式和地域对落叶松地上生物量预测的影响[J]. 林业资源管理, 2013, 2: 83−88. doi: 10.3969/j.issn.1002-6622.2013.03.019 Zheng L S, Li H K. Effects of model form and region on prediction for aboveground biomass of Larix[J]. Forest Resources Management, 2013, 2: 83−88. doi: 10.3969/j.issn.1002-6622.2013.03.019
[26] 李娜. 川西亚高山森林植被生物量及碳储量遥感估算研究[D]. 雅安: 四川农业大学, 2008. Li N. Application of remote sensing model in biomass estimation and carbon storage of the subalpine coniferous forest in western Sichuan Province[D]. Ya’an: Sichuan Agricultural University, 2008.
[27] Latta G, Temesgen H, Adams D, et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest[J]. Forest Ecology and Management, 2010, 259(4): 720−729. doi: 10.1016/j.foreco.2009.09.003
[28] Khan D, Muneer M A, Nisa Z U, et al. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China[J/OL]. Advances in Meteorology, 2019: 5692574 [2021−07−14]. http://doi.org/10.1155/2019/5692574.
[29] Aguirre A, Río M D, Ruiz-Peinado R, et al. Stand-level biomass models for predicting C stock for the main Spanish pine species[J]. Forest Ecosystems, 2021, 8: 29. doi: 10.1186/s40663-021-00308-w
[30] Baraloto C, Rabaud S, Molto Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Global Change Biology, 2011, 17(8): 2677−2688. doi: 10.1111/j.1365-2486.2011.02432.x
[31] Ali A, Sanaei A, Li M S, et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests[J]. Science of the Total Environment, 2020, 706: 135719. doi: 10.1016/j.scitotenv.2019.135719
[32] Santiago-Garcia R J, Finegan B, Bosque-Perez N A. Soil is the main predictor of secondary rain forest estimated aboveground biomass across a Neotropical landscape[J]. Biotropica, 2019, 51: 10−17. doi: 10.1111/btp.12621
[33] Bennett A C, Penman T D, Arndt S K, et al. Climate more important than soils for predicting forest biomass at the continental scale[J]. Ecography, 2020, 43(11): 1692−1705. doi: 10.1111/ecog.05180
[34] Bengough A G. Root growth and function in relation to soil structure, composition, and strength[M]//de Kroon H, Visser E J W. Root ecology: ccological studies (analysis and synthesis). Berlin: Springer, 2003: 168.
[35] Lindner M, Fitzgerald J B, Zimmermann N E, et al. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?[J]. Journal of Environmental Management, 2014, 146: 69−83.
-
期刊类型引用(24)
1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术
其他类型引用(20)