高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱木质素与超支化聚丙烯酸酯乳液复配改性速生青杨的尺寸稳定性研究

张少军 仲翔 马尔妮 刘如

张少军, 仲翔, 马尔妮, 刘如. 碱木质素与超支化聚丙烯酸酯乳液复配改性速生青杨的尺寸稳定性研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210268
引用本文: 张少军, 仲翔, 马尔妮, 刘如. 碱木质素与超支化聚丙烯酸酯乳液复配改性速生青杨的尺寸稳定性研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210268
Zhang Shaojun, Zhong Xiang, Ma Erni, Liu Ru. Dimensional stability of compound modification on fast-growing Populus cathayana with alkali lignin and hyperbranched polyacrylate emulsion[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210268
Citation: Zhang Shaojun, Zhong Xiang, Ma Erni, Liu Ru. Dimensional stability of compound modification on fast-growing Populus cathayana with alkali lignin and hyperbranched polyacrylate emulsion[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210268

碱木质素与超支化聚丙烯酸酯乳液复配改性速生青杨的尺寸稳定性研究

doi: 10.12171/j.1000-1522.20210268
基金项目: 国家自然科学基金项目(31800470、31971583)
详细信息
    作者简介:

    张少军。主要研究方向:木材保护与改性。Email:zhangshaojun@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    马尔妮,副教授。主要研究方向:木材物理、木材保护与改性。Email:maerni@bjfu.edu.cn 地址:同上

    刘如,男,助理研究员。主要研究方向:木制品表面装饰。Email:liuru@criwi.org.cn 地址:100091北京市海淀区东小府2号

  • 中图分类号: S781.43

Dimensional stability of compound modification on fast-growing Populus cathayana with alkali lignin and hyperbranched polyacrylate emulsion

  • 摘要:   目的  为提升木质素对人工林速生材的尺寸稳定性,本研究提出利用碱木质素与超支化聚丙烯酸酯乳液(HBPA)对速生青杨复合改性的方法。  方法  通过在碱木质素中引入HBPA乳液,配制了质量分数1.31%的碱木质素与质量分数4%、8%的HBPA乳液的复配乳液(4HL、8HL组),然后分别将碱木质素、HBPA乳液及复配乳液浸渍处理速生青杨,基于改性材的质量增加率、增容率及扫描电镜探究浸渍效果;利用傅里叶变换衰减全反射红外光谱分析HBPA乳液的聚合情况以及改性材化学组分的变化;通过吸水、吸湿性试验对试材的尺寸稳定性进行评价;并对试材的顺纹抗压强度进行测试。  结果  微观上,随着乳液质量分数增大,固化后黏附在细胞腔内的乳液越多,整体被改性剂填充的导管和木纤维的数量也相应增多。宏观上,随着乳液质量分数的增大,改性材的质量增加率和增容率也相应提高,复配乳液改性材的4HL组质量增加率和增容率为8.14%和3.14%,8HL组质量增加率和增容率为15.05%和3.36%,且复配乳液改性材的质量增加率大于碱木质素、HBPA乳液改性材的质量增加率之和;相对于未改性材,复配乳液改性材4HL组和8HL组在吸水192 h时,吸水率分别降低了29.4%、35.3%,体积膨胀率分别降低了28.5%、29.7%,在相对湿度84%的条件下吸湿21 d后,含水率分别降低了6.9%和11.5%,体积湿胀率分别降低21.3%、26.0%;HBPA乳液及复配乳液有效提升了速生青杨的顺纹抗压强度,但其变化趋势与HBPA乳液质量分数相关不大。  结论  相对于碱木质素、HBPA乳液改性材,复配乳液改性材的质量增加率和增容率更高,吸水性和吸湿性降低更明显,尺寸稳定性提升更明显,说明碱木质素与HBPA乳液对速生青杨具有复合改性效果。

     

  • 图  1  HBPA乳液合成过程示意图

    Figure  1.  Schematic diagram of HBPA emulsion synthesis process

    图  2  未改性材和改性材L、4H、8H、4HL、8HL的SEM横切面图

    Figure  2.  SEM images of cross sections for unmodified wood samples and modified wood samples of L, 4H, 8H, 4HL, 8HL

    图  3  未改性材和改性材L、4H、8H、4HL、8HL的SEM径切面图

    Figure  3.  SEM images of radial sections for unmodified wood samples and modified wood samples of L, 4H, 8H, 4HL, 8HL

    图  4  HBPA乳液和各组试材的红外光谱图

    Figure  4.  FTIR spectra of the HBPA emulsion and various groups of wood samples

    图  5  未改性材与改性材的吸水性

    Figure  5.  Water absorption of unmodified and modified wood samples

    图  6  未改性材与改性材在25 ℃,相对湿度分别为33%、58%、84%下的吸湿过程曲线

    Figure  6.  Moisture adsorption processes under 25 ℃ and relative humidity of 33%, 58%, and 84% for unmodified and modified wood samples

    图  7  未改性材与改性材吸水192 h的体积膨胀率

    Figure  7.  Volume swelling rate of unmodified and modified wood samples through water absorption after 192 h immersion

    图  8  未改性材与改性材在25 ℃、相对湿度分别为33%、58%、84%下的体积湿胀率

    Figure  8.  Volume swelling rate of unmodified and modified wood samples through different moisture adsorption under 25 ℃ and relative humidity of 33%, 58%, and 84%

    图  9  未改性与改性材的顺纹抗压强度

    Figure  9.  Longitudinal compression strength of unmodified and modified wood samples

    表  1  试验分组

    Table  1.   Groups of specimens %

    编号
    No.
    处理
    Treatment
    HBPA质量分数
    HBPA mass fraction
    碱木质素质量分数
    Alkali lignin mass fraction
    Control 未改性材 Unmodified wood 0 0
    L 碱木质素处理 Alkali lignin treatment 0 1.31
    4H HBPA乳液处理 HBPA emulsion treatment 4.00 0
    8H 8.00 0
    4HL 碱木质素/HBPA复配乳液处理 Alkali lignin/HBPA compound emulsion treatment 4.00 1.31
    8HL 8.00 1.31
    下载: 导出CSV

    表  2  未改性与改性材的质量增加率和增容率

    Table  2.   Mass percent gain and bulking capacity of unmodified and modified wood samples

    处理组
    Treatment group
    质量增加率
    Mass increase rate (MPG)/%
    增容率
    Bulk capacity (BC)/%
    L 1.51 (0.09) 1.11 (0.09)
    4H 6.24 (0.59) 1.96 (0.08)
    8H 11.21 (0.98) 2.46 (0.26)
    4HL 8.14 (0.54) 3.14 (0.72)
    8HL 15.05 (0.69) 3.36 (0.57)
    注:括号中的数值分别为每组6块试材试验结果的标准偏差。Note: values in parentheses represent the standard deviation for 6 replicates of each group.
    下载: 导出CSV
  • [1] 张英豪, 奉国强. 中国木材供需现状与趋势[J]. 林业经济, 2015, 37(2):68−72.

    Zhang Y H, Feng G Q. China’s timber supply and demand: status and trend[J]. Forestry Economics, 2015, 37(2): 68−72.
    [2] Trinh H M, Militz H, Mai C. Modification of beech veneers with N-methylol melamine compounds for the production of plywood: natural weathering[J]. European Journal of Wood and Wood Products, 2012, 70(1−3): 279−286. doi: 10.1007/s00107-011-0554-y
    [3] 郎倩. 复合改性剂对速生杨木和椿木改性效应及机理研究[D]. 北京: 北京林业大学, 2016.

    Lang Q. Research on properties and mechanism of fast-growing poplar and ailanthus treated by multi-functional modifier[D]. Beijing: Beijing Forestry University, 2016.
    [4] 詹先旭, 张伟, 谢序勤, 等. 速生木材的增强改性研究进展[J]. 家具, 2019, 40(1):13−21.

    Zhan X X, Zhang W, Xie X Q, et al. Research progress on enhanced modification of wood from fast-growing trees[J]. Furniture, 2019, 40(1): 13−21.
    [5] Cannatelli M D, Ragauskas A J. Laccase-mediated synthesis of lignin-core hyperbranched copolymers[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6343−6353. doi: 10.1007/s00253-017-8325-2
    [6] Li H, Sivasankarapillai G, McDonald A G. Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer[J]. Industrial Crops and Products, 2015, 67: 143−154. doi: 10.1016/j.indcrop.2015.01.031
    [7] Liu M, Yi Q R, Li J Y, et al. Synergistic effect of montmorillonite/lignin on improvement of water resistance and dimensional stability of Populus cathayana[J]. Industrial Crops and Products, 2019, 141: 111747. doi: 10.1016/j.indcrop.2019.111747
    [8] 刘敏. 碱木质素/纳米蒙脱土协同提升速生杨尺寸稳定性研究[D]. 北京: 北京林业大学, 2019.

    Liu M. Synergistic effect of alkali lignin and nano-montmorillonite on improvement of dimensional stability of Populus cathayana[D]. Beijing: Beijing Forestry University, 2019.
    [9] 周海珍. 碱木质素多尺度提升速生杨木尺寸稳定性研究[D]. 北京: 北京林业大学, 2018.

    Zhou H Z. Multiscale modifications on dimensional stability of Populus cathayana by alkali lignin[D]. Beijing: Beijing Forestry University, 2018.
    [10] Gurunathan T, Mohanty S, Nayak S K. Hyperbranched polymers for coating applications: a review[J]. Polymer-Plastics Technology and Engineering, 2016, 55(1): 92−117. doi: 10.1080/03602559.2015.1021482
    [11] 谭惠民. 超支化聚合物[M]. 北京: 化学工业出版社, 2005.

    Tan H M. Hyperbranched polymer[M]. Beijing: Chemical Industry Press, 2005.
    [12] Kim Y H, Webster O W. Water soluble hyperbranched polyphenylene: a unimolecular micelle?[J]. Journal of the American Chemical Society, 1990, 112(11): 4592−4593. doi: 10.1021/ja00167a094
    [13] Hawker C J, Chu F. Hyperbranched poly(ether ketones): manipulation of structure and physical properties[J]. Macromolecules, 1996, 29(12): 4370−4380. doi: 10.1021/ma9516706
    [14] Wang D, Jin Y, Zhu X, et al. Synthesis and applications of stimuli-responsive hyperbranched polymers[J]. Progress in Polymer Science, 2017, 64: 114−153. doi: 10.1016/j.progpolymsci.2016.09.005
    [15] Lai N J, Wu T, Ye Z B, et al. Preparation and properties of hyperbranched polymer containing functionalized Nano-SiO2 for low-moderate permeability reservoirs[J]. Russian Journal of Applied Chemistry, 2016, 89(10): 1681−1693. doi: 10.1134/S1070427216100189
    [16] Li Y F, Dong X Y, Liu Y X, et al. Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate[J]. International Biodeterioration & Biodegradation, 2011, 65(7): 1087−1094.
    [17] Li X Y, Xu J F, Long L, et al. Wood composites modified with waterborne hyperbranched polyacrylate dispersed organo‐montmorillonite emulsion and the permeability investigations by surface characterizations[J]. Polymer Composites, 2020, 41(9): 3798−3806. doi: 10.1002/pc.25677
    [18] Xu J F, Li X Y, Long L, et al. Enhancement of the physical and mechanical properties of wood using a novel organo-montmorillonite/hyperbranched polyacrylate emulsion[J]. Holzforschung, 2021, 75(6): 545−554. doi: 10.1515/hf-2020-0042
    [19] Omara S S, Abdel R M H, Ghoneim A, et al. Structure-property relationships of hyperbranched polymer/kaolinite nanocomposites[J]. Macromolecules, 2015, 48(18): 6562−6573. doi: 10.1021/acs.macromol.5b01693
    [20] Macromolecule Academy. Physical properties of macromolecules[M]. Tokyo: Kyoritsu Press, 1958.
    [21] Qi M W, Zhou Y F. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications[J]. Materials Chemistry Frontiers, 2019, 3(10): 1994−2009. doi: 10.1039/C9QM00442D
    [22] Wang Y L, Li B, Zhou Y F, et al. Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers[J]. Soft Matter, 2013, 9(12): 3293−3304. doi: 10.1039/c3sm27396b
    [23] Anandhan S, Patil H G, Babu R R. Characterization of poly(ethylene-co-vinyl acetate-co-carbon monoxide)/layered silicate clay hybrids obtained by melt mixing[J]. Journal of Materials Science, 2011, 46(23): 7423−7430. doi: 10.1007/s10853-011-5705-3
    [24] 李坚. 木材波谱学[M]. 北京: 科学出版社, 2003.

    Li J. Wood spectroscopy[M]. Beijing: Science Press, 2003.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  21
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 网络出版日期:  2021-10-12

目录

    /

    返回文章
    返回