• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同放牧方式对草地群落植物功能群组成和结构的影响

姜丽霞, 田赟, 刘新月, 张克斌

姜丽霞, 田赟, 刘新月, 张克斌. 不同放牧方式对草地群落植物功能群组成和结构的影响[J]. 北京林业大学学报, 2022, 44(1): 77-86. DOI: 10.12171/j.1000-1522.20210281
引用本文: 姜丽霞, 田赟, 刘新月, 张克斌. 不同放牧方式对草地群落植物功能群组成和结构的影响[J]. 北京林业大学学报, 2022, 44(1): 77-86. DOI: 10.12171/j.1000-1522.20210281
Jiang Lixia, Tian Yun, Liu Xinyue, Zhang Kebin. Effects of different grazing methods on the composition and structure of plant functional groups in grassland community[J]. Journal of Beijing Forestry University, 2022, 44(1): 77-86. DOI: 10.12171/j.1000-1522.20210281
Citation: Jiang Lixia, Tian Yun, Liu Xinyue, Zhang Kebin. Effects of different grazing methods on the composition and structure of plant functional groups in grassland community[J]. Journal of Beijing Forestry University, 2022, 44(1): 77-86. DOI: 10.12171/j.1000-1522.20210281

不同放牧方式对草地群落植物功能群组成和结构的影响

基金项目: 国家重点研发计划(2016YFC0500908)。
详细信息
    作者简介:

    姜丽霞。主要研究方向:水土保持与荒漠化防治。Email:2249499579@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    田赟,博士,讲师。主要研究方向:水土保持与荒漠化防治。Email:tianyun@bjfu.edu.cn 地址:同上

  • 中图分类号: S283

Effects of different grazing methods on the composition and structure of plant functional groups in grassland community

  • 摘要:
      目的  植物功能群及其多样性是维持群落结构复杂性和稳定性的基础,通过对不同放牧方式下植物功能群组成与结构的研究,深入了解呼伦贝尔草地生态系统植物功能群的构建、分布和环境适应机制,为草地生态系统群落演替方向的预测和永续经营提供科学依据。
      方法  本文以内蒙古呼伦贝尔市陈巴尔虎旗的家庭牧场为研究对象,分别对禁牧、休牧和常牧样地中草地植被的物种、株数、高度、密度和生物量进行观测,并采用植物生活型和水分生态型功能群的分类方法,分析不同放牧样地的群落特征、功能群的物种组成和综合优势比的差异性。
      结果  研究区内共记录物种35种,隶属于11个科,5种生活型,3种水分生态型。其中,菊科物种最多,占25.7%,禾本科占20%。常牧样地中寸草苔的重要值最高,而禁牧样地中羊草的重要值最高。休牧样地的物种丰富度指数和物种多样性指数显著高于禁牧和常牧样地。从植物生活型功能群来看,一、二年生草本功能群在常牧样地的综合优势比显著高于休牧和禁牧样地,而多年生丛生禾草功能群在常牧样地的综合优势比较低。从水分生态型功能群来看,本研究中植被类型以旱生植物为主,其综合优势比随放牧强度的增加而增加,而中生植物功能群则呈相反的变化趋势。
      结论  研究区草地群落中多年生根茎禾草功能群的物种均为中生植物,而一、二年生草本功能群的物种多为旱生植物。与长期禁牧相比,休牧显著提高了草地群落的物种多样性,并促使多年生禾草和中生植物功能群逐渐取代一、二年生草本和旱生植物功能群。因此,科学的休牧制度有助于草地植物多样性的保护和退化生态系统的恢复。
    Abstract:
      Objective  Plant functional groups (PFGs) and their diversity are crucial for maintaining the complexity and stability of communities. This study analyzed the composition and structure of PFGs under different grazing regimes, with the objectives to reveal the mechanisms underlying the assembly, distribution and adaptation of plant communities, and to provide insights into the prediction of community succession and sustainable management of grasslands.
      Method  We conducted a community survey (species, plant number, height, density and biomass) under different grazing regimes (no grazing, seasonal grazing and continuous grazing) in the Chen Barag Banner, Hulunbuir, Inner Mongolia of northern China, and then analyzed the summed dominance ratio (SDR4) of PFGs based on life forms and ecotypes.
      Result  A total of 35 plant species were recorded, belonging to 11 families, 5 life forms, and 3 water ecotypes, among which, Compositae had the most species, accounting for 25.7% of total abundance, followed by Gramineae, accounting for 20% of total abundance. The importance value of Carex duriuscula was the highest under continuous grazing, while Leymus chinensis was the most dominant species in no-grazing sample plots. Both Margalef richness index and Shannon-Wiener index were significantly higher in the seasonal-grazing sample plots than in continuous grazing and no-grazing sample plots. With regards to different life forms, annuals and biennials showed significantly higher SDR4 in continuous-grazing sample plot than in seasonal-grazing and no-grazing sample plots, whereas perennial bunch grasses showed relatively low SDR4 in continuous-grazing sample plots. With regard to ecotypes, most species were xerophytes, whose SDR4 increased with grazing intensity. In contrast, the SDR4 of mesophytes decreased with increasing grazing intensity.
      Conclusion  In the grassland community of the study area, the species of perennial rooting stem grass functional groups are mesophytes, while the species of primary and biennial herb functional groups are mostly xerophytes. Compared with long-term grazing prohibition, rest grazing significantly improves the species diversity of grassland community, and promotes the functional groups of perennial grasses and mesophytes to gradually replace the functional groups of primary and biennial herbs and xerophytes. Therefore, the scientific rest grazing system is conducive to the protection of grassland plant diversity and the restoration of degraded ecosystem.
  • 《北京林业大学学报》(原名《北京林学院学报》)创刊于1979年,由教育部主管、北京林业大学主办,国内外公开发行。历任主编分别为我国6位著名林学家汪振儒、沈国舫、关毓秀、王九龄、贺庆棠、尹伟伦。

    《北京林业大学学报》是中文核心期刊、中国科技核心期刊、中国科学引文数据库统计源期刊、中国科技论文统计源期刊。荣获第二届国家期刊奖提名奖、第三届国家期刊奖百种重点期刊、中国精品科技期刊、中国高校精品科技期刊、中国国际影响力优秀学术期刊、“中国科技论文在线优秀期刊”一等奖等。

    连续收录《北京林业大学学报》的著名检索期刊和数据库有:美国《化学文摘》(CA)、俄罗斯《文摘杂志》(AJ)、英国国际农业与生物学数据库(CABI)、英国《动物学记录》(ZR)、中国科学引文数据库(CSCD)、中国科技论文统计与引文分析数据库(CSTPCD)、《中国学术期刊文摘》《中国生物学文摘》、中国林业科技文献数据库等。

    《北京林业大学学报》是中国最有代表性的林业科学期刊之一,主要刊登代表中国林业科学研究前沿创新水平的稿件。期刊定位为“立足中国,面向世界”的全国性林业科学期刊。面向国内外作者广泛征稿,对校内外稿件的质量要求一视同仁。

    为保持学科特色,《北京林业大学学报》重点报道以林木遗传育种学、森林培育学、森林经理学、森林生态学、树木生理学、森林土壤学、森林植物学、森林保护学、自然保护区学、园林植物与观赏园艺、风景园林、水土保持与荒漠化防治、森林工程、木材科学与技术、林产化学加工工程、其他学科在林学上的应用等方面的论文。

    《北京林业大学学报》现拥有以北京林业大学、中国林业科学研究院、中国科学院、国内其他综合性大学、农林院校、工科院校以及国外有关科研机构和大学等单位的研究人员为主的作者队伍。近年来随着期刊学术水平和影响因子的不断提高,投稿量显著增加,其中校外作者的投稿量占总收稿量的2/3左右。在此,我们对所有给《北京林业大学学报》赐稿的作者表示衷心的感谢!

    《北京林业大学学报》自2015年起由原来的双月刊改为单月刊,大16开本,每月月底出版。每期定价50元。各地邮局发行,邮发代号:82−304。国内统一刊号:CN 11−1932/S。如当地邮局订阅不便或错过征订时间,也可直接汇款向本刊编辑部订阅。

    地址:北京市海淀区清华东路35号《北京林业大学学报》编辑部

    邮编:100083 发行电话:010−62338397 联系人:刘大林

    发行电子信箱:liudalin@bjfu.edu.cn

    网址:http://j.bjfu.edu.cnhttp://journal.bjfu.edu.cn

  • 图  1   不同放牧样地生活型功能群物种的水分生态型

    Pf. 多年生杂类草;Pr. 多年生根茎禾草;Pb. 多年生丛生禾草;Ab. 一、二年生草本;Ss. 灌木。下同。常牧和禁牧样地未发现灌木。Pf, perennial miscellaneous grass; Pr, perennial rhizome grass; Pb, perennial bunch grass; Ab, annual or biennial herb; Ss, shrub. Same as below. No shrub was found in continuous or no grazing sample plots.

    Figure  1.   Water ecotypes of life form functional group species in different grazing sample plots

    图  2   生活型和水分生态型功能群综合优势比

    Figure  2.   Comprehensive dominance ratio of life form and water ecotype functional groups

    表  1   不同放牧样地物种组成与重要值

    Table  1   Species composition and importance values of different grazing sample plots

    科 Family物种 Specie常牧 Continuous grazing休牧 Seasonal grazing禁牧 No grazing
    菊科 Compositae 猪毛蒿 Artemisia scoparia 13.30 0.50
    冷蒿 Artemisia frigida 2.30 1.50
    蒲公英 Taraxacum mongolicum 18.30 2.20
    草地风毛菊 Saussurea amara 8.40 3.30
    漏芦 Stemmacantha uniflora 0.30
    鹤虱 Lappula myosotis 1.30
    麻花头 Serratula centauroides 7.30
    蛇鞭菊 Liatris spicata 1.20
    苦荬菜 Ixeris polycephala 0.40
    禾本科 Gramineae 冰草 Agropyron cristatum 16.80 19.40
    糙隐子草 Cleistogenes squarrosa 13.70 8.90 7.20
    羊草 Leymus chinensis 8.60 4.90 39.20
    芦苇 Phragmites australis 5.50
    画眉草 Eragrostis pilosa 0.60
    大针茅 Stipa grandis 1.80
    针茅 Stipa capillata 6.70
    蔷薇科 Rosaceae 星毛委陵菜 Potentilla acaulis 3.10 3.90
    二裂委陵菜 Potentilla bifurca 1.20 1.30
    委陵菜 Potentilla chinensis 0.80
    地蔷薇 Chamaerhodos erecta 1.20
    鹅绒委陵菜 Potentilla anserina 0.70
    豆科 Leguminosae 柠条 Caragana korshinskii 3.60
    斜茎黄耆 Astragalus austrosibiricus 1.10
    苜蓿 Medicago sativa 0.70
    藜科 Chenopodiaceae 刺藜 Chenopodium aristatum 0.60
    灰绿藜 Chenopodium glaucum 3.60 0.90 0.70
    猪毛菜 Salsola collina 0.50
    刺沙蓬 Salsola ruthenica 0.50
    莎草科 Cyperaceae 寸草苔 Carex duriuscula 31.90 14.80 18.40
    十字花科 Cruciferae 独行菜 Lepidium apetalum 3.70
    蓼科 Polygonaceae 西伯利亚蓼 Polygonum sibiricum 2.20
    车前科 Plantaginaceae 车前 Plantago asiatica 0.50
    伞形科 Umbelliferae 防风 Saposhnikovia divaricata 2.70
    百合科 Liliaceae 砂韭 Allium bidentatum 6.60
    萝藦科 Asclepiadaceae 地梢瓜 Cynanchum thesioides 0.50
    注:“−”表示不存在。Note: “−” means non-existent.
    下载: 导出CSV

    表  3   不同放牧样地生活型功能群的物种组成

    Table  3   Species composition of life form functional groups under different grazing sample plots

    生活型功能群 Life form functional group指标 Index禁牧 No grazing休牧 Seasonal grazing常牧 Continuous grazing
    多年生根茎禾草 Perennial rhizome grass N 1 1 2
    P/% 6.25 5.00 13.30
    多年生丛生禾草 Perennial bunch grass N 2 4 1
    P/% 12.50 20.00 6.70
    多年生杂类草 Perennial forbs N 10 11 7
    P/% 62.50 55.00 46.70
    一、二年生草本 Annual or biennial herb N 3 3 5
    P/% 18.75 15.00 33.30
    灌木 Shrub N 0 1 0
    P/% 0 5.00 0
    注:N. 不同放牧样地中每个功能群出现的物种数;P. 不同功能群所占百分比,每个功能群中出现的物种数/样地中全部物种数 × 100%。下同。Notes: N is the species number of each functional group in grazing regimes; P is the percentage of plant functional groups, the species number of each PFG/total species in the grazing sample plot × 100%. The same below.
    下载: 导出CSV

    表  2   不同放牧样地的群落多样性指数

    Table  2   Community diversity indices under different grazing sample plots

    放牧样地
    Grazing sample plot
    物种丰富度指数
    Margalef richness index
    香农维纳多样性指数
    Shannon-Wiener index
    辛普森指数
    Simpson index
    均匀度指数
    Pielou index
    常牧 Continuous grazing 1.03 ± 0.05b 1.68 ± 0.07b 0.76 ± 0.02a 0.83 ± 0.03b
    休牧 Seasonal grazing 1.23 ± 0.05a 1.97 ± 0.08a 0.84 ± 0.01a 0.91 ± 0.01a
    禁牧 No grazing 0.92 ± 0.04b 1.70 ± 0.04b 0.79 ± 0.01a 0.90 ± 0.01a
    注:不同字母表示不同放牧样地间差异显著(P < 0.05);数值为平均值 ± 标准误。下同。Notes: different letters indicate significant differences among varied grazing sample plots (P < 0.05); the value is mean ± SE. The same below.
    下载: 导出CSV

    表  4   不同放牧样地水分生态型功能群的物种组成

    Table  4   Species composition of water ecotype functional groups in different grazing sample plots

    放牧样地
    Grazing
    sample plot
    指标 Index

    旱生植物
    Xerophyte
    中生植物
    Mesophyte
    中旱生植物
    Meso-xerophyte
    禁牧
    No grazing
    N853
    P/%50.0031.2518.75
    休牧
    Seasonal
    grazing
    N1163
    P/%55.0030.0015.00
    常牧
    Continuous
    grazing
    N762
    P/%46.6740.0013.33
    下载: 导出CSV
  • [1] 何亚婷, 董云社, 齐玉春, 等. 草地生态系统土壤微生物量及其影响因子研究进展[J]. 地理科学进展, 2010, 29(11):1350−1359. doi: 10.11820/dlkxjz.2010.11.020

    He Y T, Dong Y S, Qi Y C, et al. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors[J]. Progress in Geography, 2010, 29(11): 1350−1359. doi: 10.11820/dlkxjz.2010.11.020

    [2]

    Mowll W, Blumenthal D M, Cherwin K, et al. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming[J]. Oecologia, 2015, 177(4): 959−969. doi: 10.1007/s00442-015-3232-7

    [3] 李文怀, 郑淑霞, 白永飞. 放牧强度和地形对内蒙古典型草原物种多度分布的影响[J]. 植物生态学报, 2014, 38(2):178−187. doi: 10.3724/SP.J.1258.2014.00016

    Li W H, Zheng S X, Bai Y F. Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 178−187. doi: 10.3724/SP.J.1258.2014.00016

    [4] 朱爱民, 韩国栋, 康静, 等. 长期放牧对短花针茅荒漠草原植物功能群特征的影响[J]. 草地学报, 2019, 27(6):1459−1466.

    Zhu A M, Han G D, Kang J, et al. Effects of long-term grazing on characteristics of plant functional groups in Stipa breviflora desert steppe[J]. Acta Agrestia Sinica, 2019, 27(6): 1459−1466.

    [5] 张扬建, 朱军涛, 沈若楠, 等. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5):553−564. doi: 10.17521/cjpe.2019.0314

    Zhang Y J, Zhu J T, Shen R N, et al. Research progress on the effects of grazing on grassland ecosystem[J]. Chinese Journal of Plant Ecology, 2020, 44(5): 553−564. doi: 10.17521/cjpe.2019.0314

    [6]

    Bai Y X, Michalet R, She W W, et al. Contrasting responses of different functional groups stabilize community responses to a dominant shrub under global change[J]. Journal of Ecology, 2021, 109(4): 1676−1689. doi: 10.1111/1365-2745.13588

    [7]

    Drobnik J, Rmermann C, Bernhardt-Rmermann M, et al. Adaptation of plant functional group composition to management changes in calcareous grassland[J]. Agriculture Ecosystems & Environment, 2011, 145(1): 29−37.

    [8]

    Shahriari H, Vajari K A, Pilehvar B, et al. Diversity and biomass of different functional groups of herbaceous species along an altitudinal gradient in the semi-arid Zagros Mountain forests of Iran[J]. Journal of Forestry Research, 2020, 31(5): 1723−1731. doi: 10.1007/s11676-019-00947-4

    [9]

    Yan Y Z, Liu Q F, Zhang Q, et al. Adaptation of dominant species to drought in the Inner Mongolia grassland-species level and functional type level analysis[J]. Frontiers in Plant Science, 2019, 10: 231. doi: 10.3389/fpls.2019.00231

    [10] 喻阳华, 程雯, 钟欣平. 黔西北地区优势树种适应功能群及其特征[J]. 森林与环境学报, 2019, 39(1):48−53.

    Yu Y H, Cheng W, Zhong X P. Adaptive functional groups and their characteristics of dominant tree species in northwestern Guizhou Province[J]. Journal of Forest and Environment, 2019, 39(1): 48−53.

    [11]

    Navarro T, Alados C L, Cabezudo B. Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain[J]. Journal of Arid Environments, 2006, 64(2): 298−322. doi: 10.1016/j.jaridenv.2005.05.005

    [12] 范高华, 神祥金, 李强, 等. 松嫩草地草本植物生物多样性: 物种多样性和功能群多样性[J]. 生态学杂志, 2016, 35(12):3205−3214.

    Fan G H, Shen X J, Li Q, et al. Herbaceous plant biodiversity in Songnen grassland: species diversity and functional group diversity[J]. Chinese Journal of Ecology, 2016, 35(12): 3205−3214.

    [13] 何明珠. 阿拉善高原荒漠植被组成分布特征及其环境解释 Ⅲ. 植物功能群多样性对环境因素的响应[J]. 中国沙漠, 2010, 30(2):278−286.

    He M Z. Environmental effects on distribution and composition of desert vegetations in Alxa Plateau (Ⅲ): correlation between plant functional type’s diversity and environmental factors[J]. Journal of Desert Research, 2010, 30(2): 278−286.

    [14] 张继义, 赵哈林, 张铜会, 等. 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态[J]. 植物生态学报, 2004, 28(1):86−92. doi: 10.3321/j.issn:1005-264X.2004.01.013

    Zhang J Y, Zhao H L, Zhang T H, et al. Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2004, 28(1): 86−92. doi: 10.3321/j.issn:1005-264X.2004.01.013

    [15] 于丰源, 秦洁, 靳宇曦, 等. 放牧强度对草甸草原植物群落特征的影响[J]. 草原与草业, 2018, 30(2):31−37. doi: 10.3969/j.issn.2095-5952.2018.02.009

    Yu F Y, Qin J, Jin Y X, et al. Effect of grazing intensity on vegetation plant community characteristic of meadow steppe[J]. Grassland and Prataculture, 2018, 30(2): 31−37. doi: 10.3969/j.issn.2095-5952.2018.02.009

    [16] 姜汇, 高凯, 周立业, 等. 科尔沁沙地植物的生态及分布区型结构分析[J]. 草业科学, 2018, 35(2):311−322. doi: 10.11829/j.issn.1001-0629.2017-0253

    Jiang H, Gao K, Zhou L Y, et al. Analysis of structures of ecological and areal types of plant species in Horqin Sandy Land of China[J]. Pratacultural Science, 2018, 35(2): 311−322. doi: 10.11829/j.issn.1001-0629.2017-0253

    [17] 刘建荣. 云顶山草本植物功能群研究[J]. 北京林业大学学报, 2017, 39(9):76−82.

    Liu J R. Plant functional groups of the herbs of plant communities in Yunding Mountain, Shanxi of northern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 76−82.

    [18] 王百竹, 朱媛君, 山丹, 等. 呼伦贝尔典型草原群落退化对其物种多样性及生物量的影响[J]. 植物资源与环境学报, 2019, 28(4):68−76. doi: 10.3969/j.issn.1674-7895.2019.04.08

    Wang B Z, Zhu Y J, Shan D, et al. Effects of community degradation of Hulun Buir typical steppe on its species diversity and biomass[J]. Journal of Plant Resources and Environment, 2019, 28(4): 68−76. doi: 10.3969/j.issn.1674-7895.2019.04.08

    [19] 卫智军, 李霞, 刘红梅, 等. 呼伦贝尔草甸草原群落特征对不同放牧制度的响应[J]. 中国草地学报, 2011, 33(1):65−70.

    Wei Z J, Li X, Liu H M, et al. Response of meadow steppe community characteristics to different grazing systems in Hulunbeir[J]. Chinese Journal of Grassland, 2011, 33(1): 65−70.

    [20] 许宏斌. 不同放牧强度对呼伦贝尔草甸草原群落特征及群落生物量分布的影响[D]. 呼和浩特: 内蒙古大学, 2018.

    Xu H B. Effects of grazing intensity on the community characteristics and biomass distribution of meadow steppe in Hulunbuir[D]. Hohhot: Inner Mongolia University, 2018.

    [21] 刘琼, 席青虎, 乌仁其其格. 不同利用方式对呼伦贝尔草甸草原植物群落特征的影响[J]. 中国草地学报, 2020, 42(6):58−66.

    Liu Q, Xi Q H, Wurenqiqige. Effects of different utilization modes of plant community characteristics on Hulunbuir Meadow Grassland[J]. Chinese Journal of Grassland, 2020, 42(6): 58−66.

    [22] 乌云娜, 霍光伟, 宋彦涛, 等. 牧压梯度上呼伦贝尔典型草原植物群落学特征[J]. 草业学报, 2015, 24(1):176−182. doi: 10.11686/cyxb20150121

    Wuyunna, Huo G W, Song Y T, et al. Effect of grazing intensity on the phytosociological character of the Hulunbuir steppe[J]. Acta Prataculturae Sinica, 2015, 24(1): 176−182. doi: 10.11686/cyxb20150121

    [23] 杨勇, 刘爱军, 李兰花, 等. 不同干扰方式对内蒙古典型草原植物种组成和功能群特征的影响[J]. 应用生态学报, 2016, 27(3):794−802.

    Yang Y, Liu A J, Li L H, et al. Effects of different disturbance types on plant species composition and functional group characteristics of typical steppe in Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 794−802.

    [24] 刘玉, 常小峰, 田福平, 等. 放牧对草地群落与土壤特征的影响[J]. 西北植物学报, 2016, 36(12):2524−2532.

    Liu Y, Chang X F, Tian F P, et al. Effects of grazing on community and soil characteristics in the semi-arid grassland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2524−2532.

    [25] 刘哲荣, 刘果厚, 岳秀贤, 等. 鄂尔多斯成吉思汗陵周边野生种子植物区系研究[J]. 草地学报, 2015, 23(5):983−989.

    Liu Z R, Liu G H, Yue X X, et al. Flora of wild seed plants in the surrounding Mausoleum of Genghis Khan in Ordos[J]. Acta Agrestia Sinica, 2015, 23(5): 983−989.

    [26] 杨允菲, 李建东. 松嫩平原寸草苔无性系种群分株的结构[J]. 草业学报, 2001, 10(1):35−41. doi: 10.3321/j.issn:1004-5759.2001.01.005

    Yang Y F, Li J D. Structure of ramets in clonal population of Carex duriusula on Songnen Plain of China[J]. Acta Prataculturae Sinica, 2001, 10(1): 35−41. doi: 10.3321/j.issn:1004-5759.2001.01.005

    [27] 周建琴, 田赟, 吴雨晴, 等. 不同放牧方式下的草场植被群落特征及其与土壤因子的关系:以新巴尔虎左旗为例[J]. 生态环境学报, 2019, 28(6):1117−1126.

    Zhou J Q, Tian Y, Wu Y Q, et al. Characteristics of grassland vegetation community under different grazing management and its relationship with soil factors: a case study of Xin Barag Zuoqi[J]. Ecology and Environmental Sciences, 2019, 28(6): 1117−1126.

    [28] 张建鹏, 李玉强, 赵学勇, 等. 围封对沙漠化草地土壤理化性质和固碳潜力恢复的影响[J]. 中国沙漠, 2017, 37(3):491−499. doi: 10.7522/j.issn.1000-694X.2016.00169

    Zhang J P, Li Y Q, Zhao X Y, et al. Effects of enclosure on soil physicochemical properties and carbon sequestration potential recovery of desertified grassland[J]. Journal of Desert Research, 2017, 37(3): 491−499. doi: 10.7522/j.issn.1000-694X.2016.00169

    [29] 孙一梅, 田青, 郭爱霞, 等. 放牧和氮添加对半干旱沙质草地优势种糙隐子草及群落功能性状的影响[J]. 草地学报, 2021, 29(3):563−571.

    Sun Y M, Tian Q, Guo A X, et al. Effects of grazing and nitrogen addition on functional traits of dominant species Cleistogenes squarrosa and community in semi-arid sandy grassland[J]. Acta Agrestia Sinica, 2021, 29(3): 563−571.

    [30] 陈晨, 王寅, 王健铭, 等. 科尔沁沙地植物群落物种多样性及其主要影响因素[J]. 北京林业大学学报, 2020, 42(5):106−114. doi: 10.12171/j.1000-1522.20190284

    Chen C, Wang Y, Wang J M, et al. Species diversity of plant communities and its main influencing factors in Horqin Sandy Land, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 106−114. doi: 10.12171/j.1000-1522.20190284

    [31] 刘文亭, 卫智军, 吕世杰, 等. 放牧对短花针茅荒漠草原植物多样性的影响[J]. 生态学报, 2017, 37(10):3394−3402.

    Liu W T, Wei Z J, Lü S J, et al. The impacts of grazing on plant diversity in Stipa breviflora desert grassland[J]. Acta Ecologica Sinica, 2017, 37(10): 3394−3402.

    [32] 董乙强, 孙宗玖, 安沙舟. 放牧和禁牧影响草地物种多样性和有机碳库的途径[J]. 中国草地学报, 2018, 40(1):105−114.

    Dong Y Q, Sun Z J, An S Z. Effects of grazing and grazing exclusion on species diversity in grassland vegetation and organic carbon[J]. Chinese Journal of Grassland, 2018, 40(1): 105−114.

    [33] 吴婷, 宋乃平, 陈晓莹, 等. 围栏封育和放牧对盐池荒漠草原植物群落特征的影响[J]. 草地学报, 2019, 27(3):651−660.

    Wu T, Song N P, Chen X Y, et al. Effects of enclosure and grazing on the characteristics of plant communities in desert steppe of Yanchi[J]. Acta Agrestia Sinica, 2019, 27(3): 651−660.

    [34] 刘小丹, 张克斌, 王黎黎, 等. 封育对半干旱区沙化草地群落特征的影响[J]. 北京林业大学学报, 2015, 37(2):48−54.

    Liu X D, Zhang K B, Wang L L, et al. How enclosure affects community characteristics of the sandy grassland in semi-arid areas of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 48−54.

    [35] 肖金玉, 蒲小鹏, 徐长林. 禁牧对退化草地恢复的作用[J]. 草业科学, 2015, 32(1):138−145. doi: 10.11829/j.issn.1001-0629.2013-0730

    Xiao J Y, Pu X P, Xu C L. Effects of grazing prohibition on restoration of degraded grassland[J]. Pratacultural Science, 2015, 32(1): 138−145. doi: 10.11829/j.issn.1001-0629.2013-0730

    [36] 张小红, 宋彦涛, 乌云娜, 等. 放牧强度对克氏针茅草原植物功能群的影响[J]. 草业科学, 2017, 34(10):2033−2041. doi: 10.11829/j.issn.1001-0629.2017-0283

    Zhang X H, Song Y T, Wuyunna, et al. Effects of grazing intensity on plant functional groups of Stipa krylovii steppe[J]. Pratacultural Science, 2017, 34(10): 2033−2041. doi: 10.11829/j.issn.1001-0629.2017-0283

    [37] 刘玉, 刘振恒, 邓蕾, 等. 季节性放牧对草地植物多样性与功能群特征的影响[J]. 草业科学, 2016, 33(7):1403−1409. doi: 10.11829/j.issn.1001-0629.2016-0210

    Liu Y, Liu Z H, Deng L, et al. Species diversity and functional groups responses to different seasonal grazing in alpine grassland[J]. Pratacultural Science, 2016, 33(7): 1403−1409. doi: 10.11829/j.issn.1001-0629.2016-0210

    [38] 古琛, 杜宇凡, 乌力吉, 等. 载畜率对荒漠草原群落及植物功能群生物量的影响[J]. 生态环境学报, 2015, 24(12):1962−1968.

    Gu C, Du Y F, Wuliji, et al. Effects of stocking rates on the biomass of desert steppe community and plant functional group[J]. Ecology and Environmental Sciences, 2015, 24(12): 1962−1968.

    [39] 韩路, 潘伯荣, 王绍明, 等. 适度放牧对林间草原植物形态特征及生物多样性的影响[J]. 草业科学, 2015, 32(9):1405−1412. doi: 10.11829/j.issn.1001-0629.2015-0036

    Han L, Pan B R, Wang S M, et al. Effects of grazing on the morphological characteristics and biodiversity of the forest steppe in Yili[J]. Pratacultural Science, 2015, 32(9): 1405−1412. doi: 10.11829/j.issn.1001-0629.2015-0036

    [40] 张宇, 侯路路, 闫瑞瑞, 等. 放牧强度对草甸草原植物群落特征及营养品质的影响[J]. 中国农业科学, 2020, 53(13):2550−2561. doi: 10.3864/j.issn.057338-1752.2020.13.004

    Zhang Y, Hou L L, Yan R R, et al. Effects of grazing intensity on plant community characteristics and nutrient quality of herbage in a meadow steppe[J]. Scientia Agricultura Sinica, 2020, 53(13): 2550−2561. doi: 10.3864/j.issn.057338-1752.2020.13.004

    [41] 张振, 李元恒, 丁勇, 等. 典型草原群落及功能群物种多样性对放牧因素分解的响应[J]. 中国草地学报, 2020, 42(5):48−54.

    Zhang Z, Li Y H, Ding Y, et al. Responses of plant community diversity and functional community characteristics of typical grassland to grazing factors[J]. Chinese Journal of Grassland, 2020, 42(5): 48−54.

    [42] 席璐璐, 缑倩倩, 王国华, 等. 荒漠绿洲过渡带典型一年生草本植物对干旱胁迫的响应[J]. 生态学报, 2021, 41(13):5425−5434.

    Xi L L, Gou Q Q, Wang G H, et al. The responses of typical annual herbaceous plants to drought stress in a desert-oasis ecotone[J]. Acta Ecologica Sinica, 2021, 41(13): 5425−5434.

    [43] 邹慧, 高光耀, 傅伯杰. 干旱半干旱草地生态系统与土壤水分关系研究进展[J]. 生态学报, 2016, 36(11):3127−3136.

    Zou H, Gao G Y, Fu B J. The relationship between grassland ecosystem and soil water in arid and semiarid areas: a review[J]. Acta Ecologica Sinica, 2016, 36(11): 3127−3136.

    [44]

    Kang L, Han X, Zhang Z, et al. Grassland ecosystems in China: review of current knowledge and research advancement[J]. Philosophical Transactions of the Royal Society of London, 2007, 362: 997−1008. doi: 10.1098/rstb.2007.2029

    [45] 王婷, 杨思维, 花蕊, 等. 高寒草原植物功能群组成对退化程度的响应[J]. 生态学报, 2020, 40(7):2225−2233.

    Wang T, Yang S W, Hua R, et al. Response characteristics of composition of plant functional groups to various grassland degradation conditions in alpine steppe on the Tibetan Plateau, China[J]. Acta Ecologica Sinica, 2020, 40(7): 2225−2233.

    [46] 杨彦东. 不同封育年限对退化草原土壤理化性质和微生物的影响[J]. 草原与草业, 2021, 33(1):41−46. doi: 10.3969/j.issn.2095-5952.2021.01.008

    Yang Y D. Effects of different enclosure years on soil physicochemical properties and microorganisms in degraded grassland[J]. Grassland and Prataculture, 2021, 33(1): 41−46. doi: 10.3969/j.issn.2095-5952.2021.01.008

    [47] 张钊, 陈宝瑞, 辛晓平. 1960—2015年呼伦贝尔草原气温和降水格局变化特征[J]. 中国农业资源与区划, 2018, 39(12):121−128.

    Zhang Z, Chen B R, Xin X P. Variations of temperature and precipitation pattern in Hulunber Grassland from 1960 to 2015[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121−128.

    [48] 苗百岭, 梁存柱, 史亚博, 等. 降水变化对内蒙古典型草原地上生物量的影响[J]. 植物生态学报, 2019, 43(7):557−565. doi: 10.17521/cjpe.2018.0230

    Miao B L, Liang C Z, Shi Y B, et al. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2019, 43(7): 557−565. doi: 10.17521/cjpe.2018.0230

图(2)  /  表(4)
计量
  • 文章访问数:  1456
  • HTML全文浏览量:  849
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-08-15
  • 网络出版日期:  2021-12-28
  • 发布日期:  2022-01-24

目录

    /

    返回文章
    返回