Evolution and expression analysis of the class Ⅲ peroxidase family in olive
-
摘要:
目的 Ⅲ类过氧化物酶(PRX)是一类植物特有的氧化还原酶,在植物生长发育和胁迫响应方面具有十分重要的作用。本研究拟探讨油橄榄Ⅲ类PRX基因家族的进化和表达模式,旨在为油橄榄分子育种提供参考。 方法 利用生物信息学方法鉴定并分析了油橄榄Ⅲ类PRX基因家族的系统发育关系、分组、染色体分布、复制基因、基序分布、基因结构图、顺式作用元件分布和在不同组织和不同非生物胁迫下的表达,并对部分成员基因进行了实时荧光定量PCR验证。 结果 (1)鉴定得到了106个OePRX基因,根据其与拟南芥和毛果杨PRX蛋白序列的系统进化关系分为了14个组。(2)OePRX基因不均匀地分布于23条染色体上;片段复制是该基因家族扩张的主要动力,且复制基因在进化过程中受到了较强的纯化选择;与拟南芥相比,油橄榄PRX基因与毛果杨PRX基因的亲缘关系更近。(3)同一组中OePRX蛋白的等电点、分子量、基序分布、基因结构、信号肽分布、在不同组织中的表达模式均比较保守;OePRX基因启动子中含有较多的生长发育元件和激素应答元件;在油橄榄干热胁迫和水涝胁迫下,38%的OePRX基因显著差异表达。 结论 油橄榄OePRX基因家族明显的进化扩张和多变的表达模式暗示了其功能的复杂性,尤其是复制基因的新功能化对油橄榄在地中海地区的广泛分布具有十分重要的适应性意义。 Abstract:Objective The class Ⅲ peroxidase is a group of plant-specific oxidoreductases, and plays an important role in plant development and stress response. This paper presents a detailed overview of evolution and expression of olive class Ⅲ PRX gene family, aiming to provide a reference for olive molecular breeding in the future. Method With some bioinformatic tools, we finished the identification of the olive class Ⅲ PRX genes, completed the analyses of phylogenetic relationship, gene mapping on the chromosomes, pairs of duplicates, motifs, gene structure, cis-acting elements and gene expression in different tissues or biotic stresses, and did a verification of RNA-seq by RT-qPCR. Result (1) 106 OePRX genes were obtained, and classified into 14 groups based on the phylogeny with AtPRX and PtPRX. (2) OePRX genes were unevenly located on 23 chromosomes, and ragment replication was the main driving force for the expansion of gene family. Compared with AtPRX, OePRX had a closer relationship with PtPRX. (3) The characterization of pI, MW, motifs, gene structure, signal peptide, and expression in different tissues had the expected group-conserved patterns. The promoters of OePRX contained a variety of development and harmone elements; 38% of OePRX genes was differentially expressed in heat, drought and waterlogged stress. Conclusion The differential expansion and differential expression patterns may imply flexibility in neofunctionalization of duplicated class Ⅲ peroxidase genes, which is of adaptive significance to the strong resistance of olive to a diversity of conditions, hence contributing to the importance of olive as a Mediterranean Basin staple food. -
Key words:
- Olea europaea /
- class Ⅲ peroxidase /
- replicator /
- new function /
- abiotic stress
-
图 5 油橄榄Ⅲ类PRX各复制基因对的Ka、Ks分析
Ka. 非同义替换;Ks. 同义替换;Oe-At. 油橄榄和拟南芥之间的PRX复制基因对;Oe-Pt. 油橄榄和毛果杨之间的PRX复制基因对。Ka, nonsynonymous substitution rate; Ks, synonymous substitution rate; Oe-At, PRX duplicate gene pairs between olive and Arabidopsis thaliana; Oe-Pt, PRX duplicate gene pairs between olive and black cottonwood.
Figure 5. Ka, Ks analyses of olive class Ⅲ PRX duplicated genes
图 8 油橄榄Ⅲ类PRX基因在不同器官或组织中的表达模式
模块A. 在不同组织中均高表达;模块B. 在不同组织中均有较高表达;模块C. 在不同组织中均较低表达;模块D. 在花中特异高表达;模块E. 在除果外的组织中高表达;模块F. 在除果外的组织较高表达. 模块G. 在根中特异高表达;模块H. 在各组织中低表达或几乎不表达。Module A, high expression in all tissues; module B, relative high expression in all tissues; module C, relative low expression in all tissues; module D, high specific expression in flower; module E, high expression in all tissues except fruit; module F, relative high expression in all tissues except fruit; module G, high specific expression in root; module H, low or no expression in all tissues.
Figure 8. Expression patterns of olive class Ⅲ PRX genes in different organs or tissues
图 10 油橄榄Ⅲ类PRX基因响应干热和水涝胁迫的差异表达模式
Day(−3). 干旱处理前3天;Day13. 干旱处理第13天且伴随高温;Day27. 干旱处理第27天;Day80. 复水后52天。模块1. 干旱期间基因表达下调,复水后上调;模块2. 干旱期间基因表达上调,复水后下调;模块3. 后期干旱期间基因表达上调,后期干旱及复水后下调;模块4. 仅在高温下基因表达上调,高温胁迫后,基因表达下调。复制基因名称的颜色与系统进化分组的颜色相对应。Day(−3), 3 d before drought treatment; Day13, 13th day of drought treatment with high temperature; Day27, 27th day after drought treatment; Day80, 52 d after re-irrigation. Module 1, gene expression is down regulated during drought and up regulated after rehydration; module 2, gene expression is upregulated during drought and downregulated after rehydration; module 3, gene expression is upregulated during late drought, and downregulated after late drought and rehydration; module 4, gene expression is upregulated only under high temperature, and downregulated after high temperature stress. The color of the replicated gene name corresponds to the color of the phylogenetic grouping.
Figure 10. Differential expression patterns of class Ⅲ PRX genes in olive oil in response to dry heat and waterlogging stresses
表 1 油橄榄Ⅲ类PRX 基因的命名及其理化性质
Table 1. Nomenclature and physicochemical properties of class Ⅲ PRX genes from olive
名称 Name ID 内含子相位
Intron phase蛋白质长度
Protein length/aa分子量
Molecular mass/kDa等电点
Isoelectric point信号肽
Signal peptide预测的亚细胞定位
Predicted subcellular localizationOePRX1 EVM0022477 0 344 38.40 6.10 无 No 胞外 Extracellular OePRX2 EVM0032926 0 266 29.38 8.97 无 No 细胞质 Cytosol OePRX3 EVM0020804 0 327 35.65 9.21 有 Yes 叶绿体 Chloroplast OePRX4 EVM0047797 100 327 35.92 8.24 无 No 细胞核 Nucleus OePRX5 EVM0009292 100 316 34.40 8.72 有 Yes 液泡膜 Vacular membrane OePRX6 EVM0060238 0 330 35.97 8.89 无 No 叶绿体 Chloroplast OePRX7 EVM0022620 12001000 276 30.39 8.66 无 No 细胞质 Cytosol OePRX8 EVM0017319 1200201 279 30.58 7.70 无 No 细胞质 Cytosol OePRX9 EVM0047458 20010 250 27.43 5.67 无 No 细胞质 Cytosol OePRX10 EVM0057886 0 319 34.48 6.98 有 Yes 叶绿体 Chloroplast OePRX11 EVM0047784 0 339 37.00 7.48 有 Yes 质膜 Plasma membrane OePRX12 EVM0039807 20 358 38.84 7.51 有 Yes 叶绿体 Chloroplast OePRX13 EVM0011450 0 317 34.35 9.14 有 Yes 叶绿体 Chloroplast OePRX14 EVM0019223 1 309 35.27 9.41 有 Yes 胞外 Extracellular OePRX15 EVM0012728 1 320 36.91 9.20 有 Yes 细胞质 Cytosol OePRX16 EVM0000231 0 336 37.28 7.08 有 Yes 叶绿体 Chloroplast OePRX17 EVM0024793 0 322 35.21 8.38 有 Yes 叶绿体 Chloroplast OePRX18 EVM0042519 0 321 34.96 8.76 有 Yes 叶绿体 Chloroplast OePRX19 EVM0059982 0 321 34.90 8.77 有 Yes 叶绿体 Chloroplast OePRX20 EVM0019685 0 333 36.73 5.68 无 No 质膜 Plasma membrane OePRX21 EVM0058087 0 324 35.74 8.53 有 Yes 细胞质 Cytosol OePRX22 EVM0027348 0 323 35.02 5.82 有 Yes 液液泡膜 Vacular membrane OePRX23 EVM0060830 0 331 36.34 9.41 有 Yes 胞外 Extracellular OePRX24 EVM0015621 0 247 27.39 8.88 无 No 细胞核 Nucleus OePRX25 EVM0010445 12101221 327 35.56 9.26 无 No 叶绿体 Chloroplast OePRX26 EVM0006524 0 338 37.53 6.45 有 Yes 胞外 Extracellular OePRX27 EVM0042768 22 304 32.63 6.58 有 Yes 叶绿体 Chloroplast OePRX28 EVM0048359 0 355 37.59 8.35 有 Yes 叶绿体 Chloroplast OePRX29 EVM0028664 0 317 34.49 9.09 有 Yes 液泡膜 Vacular membrane OePRX30 EVM0035621 0 327 34.85 5.51 有 Yes 胞外 Extracellular OePRX31 EVM0048816 100 324 36.67 6.26 有 Yes 胞外 Extracellular OePRX32 EVM0003637 1002 350 39.07 8.83 有 Yes 胞外 Extracellular OePRX33 EVM0019330 0 333 36.44 9.48 有 Yes 液泡膜 Vacular membrane OePRX34 EVM0033281 2100102 273 30.15 7.73 无 No 细胞质 Cytosol OePRX35 EVM0015060 10100000 319 35.73 6.63 无 No 叶绿体 Chloroplast OePRX36 EVM0017946 0 329 37.29 8.48 有 Yes 细胞质 Cytosol OePRX37 EVM0021366 − 331 36.79 9.34 有 Yes 叶绿体 Chloroplast OePRX38 EVM0060527 0 342 37.64 6.21 有 Yes 细胞质 Cytosol OePRX39 EVM0014494 0 321 35.37 6.18 有 Yes 胞外 Extracellular OePRX40 EVM0042196 0 319 34.12 9.41 有 Yes 叶绿体 Chloroplast OePRX41 EVM0015681 0 346 38.94 8.86 有 Yes 内质网 Endoplasmic reticulum OePRX42 EVM0047610 0 327 35.27 8.80 有 Yes 叶绿体 Chloroplast OePRX43 EVM0047452 20002 379 41.95 8.87 无 No 叶绿体 Chloroplast OePRX44 EVM0061929 0 319 34.23 4.45 有 Yes 胞外 Extracellular OePRX45 EVM0054999 0 291 32.27 5.44 无 No 胞外 Extracellular OePRX46 EVM0048606 0 328 35.67 6.51 有 Yes 液泡膜 Vacular membrane OePRX47 EVM0037058 20 315 34.41 7.55 无 No 内质网 Endoplasmic reticulum OePRX48 EVM0022847 20 413 45.85 9.56 无 No 叶绿体 Chloroplast OePRX49 EVM0020385 20 373 41.16 9.35 无 No 叶绿体 Chloroplast OePRX50 EVM0045080 0 317 34.55 9.02 有 Yes 叶绿体 Chloroplast OePRX51 EVM0044622 0 320 35.53 9.54 有 Yes 叶绿体 Chloroplast OePRX52 EVM0021425 0 324 36.14 6.17 有 Yes 胞外 Extracellular OePRX53 EVM0045494 0 327 35.52 8.71 有 Yes 液泡膜 Vacular membrane OePRX54 EVM0020915 20 306 33.46 8.90 有 Yes 液泡膜 Vacular membrane OePRX55 EVM0031491 0 314 34.07 9.32 有 Yes 叶绿体 Chloroplast OePRX56 EVM0005944 2 292 31.79 9.45 有 Yes 叶绿体 Chloroplast OePRX57 EVM0015088 0 317 34.42 9.13 有 Yes 胞外 Extracellular OePRX58 EVM0050632 0 314 34.04 9.25 有 Yes 叶绿体 Chloroplast OePRX59 EVM0028088 0 317 34.23 8.99 有 Yes 胞外 Extracellular OePRX60 EVM0025336 0 326 34.42 7.58 无 No 叶绿体 Chloroplast OePRX61 EVM0012469 0 317 34.68 9.33 有 Yes 胞外 Extracellular OePRX62 EVM0049574 0 340 37.08 6.25 有 Yes 胞外 Extracellular OePRX63 EVM0050273 10 240 26.55 6.22 无 No 叶绿体 Chloroplast OePRX64 EVM0050817 0 310 34.15 8.46 有 Yes 叶绿体 Chloroplast OePRX65 EVM0009492 0 322 34.85 4.99 有 Yes 叶绿体 Chloroplast OePRX66 EVM0047271 1200201 333 36.96 8.64 无 No 质膜 Plasma membrane OePRX67 EVM0005889 210122 509 58.00 8.73 无 No 细胞核 Nucleus OePRX68 EVM0026529 0 331 36.43 9.50 有 Yes 液泡膜 Vacular membrane OePRX69 EVM0038965 20 310 33.90 9.23 有 Yes 质膜 Plasma membrane OePRX70 EVM0024841 0 328 35.72 8.37 有 Yes 叶绿体 Chloroplast OePRX71 EVM0047959 3 314 34.07 6.94 有 Yes 叶绿体 Chloroplast OePRX72 EVM0059042 0 339 37.43 5.56 有 Yes 质膜 Plasma membrane OePRX73 EVM0022158 0 318 34.18 6.88 有 Yes 叶绿体 Chloroplast OePRX74 EVM0027175 0 326 36.14 9.75 有 Yes 叶绿体 Chloroplast OePRX75 EVM0057531 20 287 30.73 8.89 有 Yes 液泡膜 Vacular membrane OePRX76 EVM0032201 0 293 32.34 8.75 无 No 叶绿体 Chloroplast OePRX77 EVM0059919 0 339 37.61 8.36 有 Yes 液泡膜 Vacular membrane OePRX78 EVM0011789 0 355 39.51 8.06 无 No 质膜 Plasma membrane OePRX79 EVM0024970 − 329 36.54 9.19 有 Yes 叶绿体 Chloroplast OePRX80 EVM0047604 100 339 37.82 8.30 无 No 细胞质 Cytosol OePRX81 EVM0061300 0 330 36.94 5.94 有 Yes 叶绿体 Chloroplast OePRX82 EVM0042525 0 298 32.64 8.62 有 Yes 胞外 Extracellular OePRX83 EVM0045066 0 318 34.03 9.15 有 Yes 叶绿体 Chloroplast OePRX84 EVM0029808 0 354 39.38 5.68 无 No 胞外 Extracellular OePRX85 EVM0032932 1022010 247 27.30 5.65 无 No 细胞质 Cytosol OePRX86 EVM0038819 2001020 250 27.72 5.44 无 No 细胞质 Cytosol OePRX87 EVM0002745 200 321 34.58 4.77 无 No 细胞核 Nucleus OePRX88 EVM0038873 200 326 34.71 8.30 有 Yes 液泡膜 Vacular membrane OePRX89 EVM0026260 2 348 38.22 9.56 有 Yes 质膜 Plasma membrane OePRX90 EVM0044542 0 296 32.61 8.14 有 Yes 胞外 Extracellular OePRX91 EVM0046395 0 318 34.24 9.54 有 Yes 叶绿体 Chloroplast OePRX92 EVM0042595 0 316 33.95 7.51 有 Yes 叶绿体 Chloroplast OePRX93 EVM0047351 0 320 35.08 5.48 有 Yes 叶绿体 Chloroplast OePRX94 EVM0045920 0 332 35.75 4.63 有 Yes 胞外 Extracellular OePRX95 EVM0044144 0 325 35.63 8.75 无 No 叶绿体 Chloroplast OePRX96 EVM0048820 0 314 35.88 8.61 有 Yes 细胞质 Cytosol OePRX97 EVM0058650 0 350 38.67 6.94 有 Yes 叶绿体 Chloroplast OePRX98 EVM0026875 0 371 40.68 6.31 无 No 叶绿体 Chloroplast OePRX99 EVM0019820 0 340 36.88 6.59 有 Yes 胞外 Extracellular OePRX100 EVM0018143 20020200000 394 43.59 9.28 无 No 叶绿体 Chloroplast OePRX101 EVM0029423 0 343 37.01 8.94 有 Yes 叶绿体 Chloroplast OePRX102 EVM0036633 0 342 37.59 9.17 有 Yes 胞外 Extracellular OePRX103 EVM0041887 1 312 33.33 5.97 有 Yes 叶绿体 Chloroplast OePRX104 EVM0032297 0 327 35.71 8.57 有 Yes 胞外 Extracellular OePRX105 EVM0042746 0 302 33.53 8.96 有 Yes 胞外 Extracellular OePRX106 EVM0051394 0 343 37.01 8.94 有 Yes 叶绿体 Chloroplast 表 2 6个油橄榄Ⅲ类PRX基因RT-qPCR的引物
Table 2. Primers of six olive class Ⅲ PRX genes used for RT-qPCR
基因名称
Gene name引物(5′—3′) Primer sequence (5′−3′) 基因产物长度
Gene product length/bpOePRX1 F: TCCAGGAGTTGTTTCTTGTGC 114 R: CCTTCTTCCGTCTTTTCTTCC OePRX8 F: AAGGGCGCATCCTGAAAG 200 R: AGAAGGCATCTTCATCCTTAGC OePRX33 F: GGAAGCATAATAAGCGAGAAG 235 R: TTATTGGAGCCACTCAAACTG OePRX36 F: ACAAACGCCACAAGAACACTG 195 R: CACTCCCTCTCTAAAGCCTCC OePRX66 F: GATTCGCAATGAGGAGGAGTA 140 R: AGCAACAACACCAGCAAGC OePRX99 F: GCTCGGGCTTTTAGAATCATC 204 R: GAAGGAAGGTTTGCCAGTGTT -
[1] Unver T, Wu Z, Sterck L, et al. Genome of wild olive and the evolution of oil biosynthesis[J/OL]. Proceedings of the National Academy of Sciencesof the United States of America, 2017 [2017−10−09]. DOI: 10.1073/pnas.170862111. [2] Rao G, Zhang J, Liu X, et al. De novo assembly of a new Olea europaea genome accession using nanopore sequencing[J/OL]. Horticulture Research, 2021 [2021−04−01]. DOI: 10.1038/s41438-021-00498-y. [3] Mathé C, Barre A, Jourda C, et al. Evolution and expression of class Ⅲ peroxidases[J]. Archives of Biochemistry and Biophysics, 2010, 500(1): 58−65. doi: 10.1016/j.abb.2010.04.007 [4] Passardi F, Bakalovic N, Teixeira F K, et al. Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes[J]. Genomics, 2007, 89(5): 567−579. doi: 10.1016/j.ygeno.2007.01.006 [5] Shigeoka S, Ishikawa T, Tamoi M, et al. Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany, 2002, 53(372): 1305−1319. doi: 10.1093/jexbot/53.372.1305 [6] Skulachev V P. Cytochrome c in the apoptotic and antioxidant cascades[J]. FEBS Letters, 1998, 423(3): 275−280. doi: 10.1016/S0014-5793(98)00061-1 [7] Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, et al. A new versatile peroxidase from Pleurotus[J]. Biochemical Society Transactions, 2001, 29(Pt2): 116−122. [8] Passardi F, Cosio C, Penel C, et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255−265. doi: 10.1007/s00299-005-0972-6 [9] Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cell wall[J]. Trends in Plant Science, 2004, 9(11): 534−540. doi: 10.1016/j.tplants.2004.09.002 [10] Allison S D, Schultz J C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.)[J]. Journal of Chemical Ecology, 2004, 30(7): 1363−1379. doi: 10.1023/B:JOEC.0000037745.66972.3e [11] Gazaryan I G, Lagrimini L M, Ashby G A, et al. Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases[J]. The Biochemical Journal, 1996, 313(Pt3): 841−847. [12] Almagro L, Gómez Ros L V, Belchi-Navarro S, et al. Class Ⅲ peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2008, 60(2): 377−390. [13] Tognolli M, Penel C, Greppin H, et al. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129−138. [14] Passardi F, Longet D, Penel C, et al. The class Ⅲ peroxidase multigenic family in rice and its evolution in land plants[J]. Phytochemistry, 2004, 65(13): 1879−1893. doi: 10.1016/j.phytochem.2004.06.023 [15] Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class Ⅲ peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1): 95−108. doi: 10.1016/j.gene.2015.04.041 [16] Ren L L, Liu Y J, Liu H J, et al. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class Ⅲ peroxidase family[J]. The Plant Cell, 2014, 26(6): 2404−2419. doi: 10.1105/tpc.114.124750 [17] Cao Y, Han Y, Meng D, et al. Structural, evolutionary, and functional analysis of the class Ⅲ peroxidase gene family in chinese pear (Pyrus bretschneideri)[J/OL]. Frontier in Plant Science, 2016 [2016−12−09]. DOI: 10.3389/fpls.2016.01874. [18] Xiao H, Wang C, Khan N, et al. Genome-wide identification of the class Ⅲ POD gene family and their expression profiling in grapevine (Vitis vinifera L.)[J/OL]. BMC Genomics, 2020.[2020−06−29]. DOI: 10.1186/s12864-020-06828-z. [19] Wu C, Ding X, Ding Z, et al. The class Ⅲ peroxidase (POD) gene family in cassava: identification, phylogeny, duplication, and expression[J/OL]. International Journey of Molecular Sciences, 2019 [2019−06−03]. DOI: 10.3390/ijms20112730. [20] Yan J, Su P, Li W, et al. Genome-wide and evolutionary analysis of the class Ⅲ peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses[J/OL]. BMC Genomics, 2019 [2019−08−22]. DOI: 10.1186/s12864-019-6006-5. [21] Fernández-Pérez F, Pomar F, Pedreño M A, et al. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units[J]. Physiologia Plantarum, 2015, 154(3): 395−406. doi: 10.1111/ppl.12310 [22] Fernández-Pérez F, Vivar T, Pomar F, et al. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2015, 175(1): 86−94. [23] Herrero J, Fernández-Pérez F, Yebra T, et al. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis[J]. Planta, 2013, 237(6): 1599−1612. doi: 10.1007/s00425-013-1865-5 [24] Wu Y, Yang Z, How J, et al. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress[J]. Plant Molecular Biology, 2017, 95(1): 157−168. [25] Kidwai M, Dhar Y V, Gautam N, et al. Oryza sativa class Ⅲ peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification[J]. Journal of Hazardous Materials, 2019, 362(15): 383−393. [26] Ramírez-Tejero J A, Jiménez-Ruiz J, Leyva-Pérez M d l O, et al. Gene expression pattern in olive tree organs (Olea europaea L.)[J/OL]. Genes, 2020 [2020−05−12]. DOI: 10.3390/genes11050544. [27] Tsamir-Rimon M, Ben-Dor S, Feldmesser E, et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases[J]. New Phytologist, 2021, 229(3): 1398−1414. doi: 10.1111/nph.16907 [28] Dastkar E, Soleimani A, Jafary H, et al. Differential expression of genes in olive leaves and buds of ON- versus OFF-crop trees[J]. Scientific Reports, 2020, 10(1): 1−13. doi: 10.1038/s41598-019-56847-4 [29] Li H, Poulos T L. Structural variation in heme enzymes: a comparative analysis of peroxidase and P450 crystal structures[J]. Structure, 1994, 2(6): 461−464. doi: 10.1016/S0969-2126(00)00046-0 [30] Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2019, 48(D1): D265−D268. [31] Oliveira R A d C, de Andrade A S, Imparato D O, et al. Analysis of Arabidopsis thaliana redox gene network indicates evolutionary expansion of class Ⅲ peroxidase in plants[J/OL]. Scientific Reports, 2019 [2019−10−31]. DOI: 10.1038/s41598-019-52299-y. [32] Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691 [33] 芮伟康. 钙与过氧化物酶在梨石细胞合成中的关系[D]. 南京: 南京农业大学, 2017.Rui W K. Effects of calcium and peroxidase involved in stone cells formation in pear fruit[D]. Nanjing: Nanjing Agricultural Unversity, 2017. [34] 薛亚莉. 水稻Ⅲ类过氧化物酶基因OsPER2和OsPER4在细胞壁合成中的功能分析[D]. 武汉: 华中农业大学, 2021.Xue Y L. Functional analysis of rice class Ⅲ peroxdases genes OsPER2 and OsPER4 in cell wall synthesis[D]. Wuhan: Huazhong Agricultural University, 2021. [35] Teufel A I, Johnson M M, Laurent J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2018, 36(2): 304−314. [36] Shigeto J, Tsutsumi Y. Diverse functions and reactions of class Ⅲ peroxidases[J]. New Phytologist, 2016, 209(4): 1395−1402. doi: 10.1111/nph.13738 [37] Xu S, Chong K. Remembering winter through vernalisation[J]. Nature Plants, 2018, 4(12): 997−1009. doi: 10.1038/s41477-018-0301-z [38] Passardi F, Tognolli M, de Meyer M, et al. Two cell wall associated peroxidases from Arabidopsis influence root elongation[J]. Planta, 2006, 223(5): 965−974. doi: 10.1007/s00425-005-0153-4 [39] Kim Y H, Kim C Y, Song W K, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco[J]. Planta, 2008, 227(4): 867−881. doi: 10.1007/s00425-007-0663-3 [40] Kim B H, Kim S Y, Nam K H. Genes encoding plant-specific class Ⅲ peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant[J]. Molecules and Cells, 2012, 34(6): 539−548. doi: 10.1007/s10059-012-0230-z [41] Kumar S, Jaggi M, Sinha A K. Ectopic overexpression of vacuolar and apoplastic Catharanthus roseus peroxidases confers differential tolerance to salt and dehydration stress in transgenic tobacco[J]. Protoplasma, 2012, 249(2): 423−432. doi: 10.1007/s00709-011-0294-1 [42] Choi H W, Kim Y J, Lee S C, et al. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens[J]. Plant Physiology, 2007, 145(3): 890−904. doi: 10.1104/pp.107.103325 [43] Daudi A, Cheng Z, O’Brien J A, et al. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity[J]. The Plant Cell, 2012, 24(1): 275−287. doi: 10.1105/tpc.111.093039 [44] Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59−71. doi: 10.1016/j.molp.2019.10.012 -