Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games
-
摘要:目的 通过调查和研究冬奥场馆周边小流域人工林枯落物层和土壤层水文性能的变化规律及差异性,为研究区人工林的恢复、经营以及水源涵养能力的提升提供理论支撑。方法 以崇礼区西沟流域的5种人工林配置模式(落叶松纯林、樟子松纯林、落叶松柠条混交林、樟子松柠条混交林和樟子松落叶松柠条混交林)为研究对象,通过测定林内枯落物层和土壤层特征,定量分析和比较不同配置模式枯落物和土壤的水文特征。结果 (1)不同人工林配置模式枯落物的蓄积量和厚度均为半分解层小于未分解层。(2)不同人工林配置模式枯落物持水表现为:樟子松纯林的最大持水量最大(2.94 t/hm2),落叶松纯林的最小(1.95 t/hm2);樟子松柠条混交林的有效持水量最大(1.46 t/hm2),落叶松纯林的最小(1.17 t/hm2)。(3)不同人工林配置模式枯落物持水量与浸水时间呈对数函数关系,枯落物吸水速率与浸水时间呈幂函数关系。(4)不同人工林配置模式的土壤物理性质和入渗性能整体上都表现为人工林混交配置模式优于纯林配置模式,土壤入渗速率与入渗时间呈幂函数关系。结论 人工林混交配置模式的枯落物层和土壤层水文性能优于纯林,建议在植被重建和恢复初期充分考虑乡土树种和配置模式,用于人工林的快速重建和健康经营,为下一步小流域森林植被空间结构优化与对位配置奠定基础。Abstract:Objective By investigating and studying the variation and differences of the hydrological properties of the litter layer and soil layer of the artificial forests in small watersheds surrounding the Winter Olympic venues, this study aimed to provide theoretical support for the restoration and management of plantation forests and enhancement of water conservasion capacity for the study area.Method We conducted field work in the Xigou Watershed of Chongli District by investigating five types of plantation configuration pattern plots (Larix gmelinii pure forest, Pinus sylvestris pure forest, Larix gmelinii and Caragana korshinskii mixed forest, Pinus sylvestris and Caragana korshinskii mixed forest, Pinus sylvestris, Larix gmelinii and Caragana korshinskii mixed forest). Characteristics of the litter layer and soil layer in the plots were measured, and hydrological characteristics of litter and soil in different plots were quantitatively analyzed and compared.Result (1) The accumulation and thickness of litter in the semi-decomposed layer were smaller than in the undecomposed layer of different plantations . (2) The litter water holding capacity of different plantation configuration patterns was as follows: the pure forest of Pinus sylvestris showed the largest (2.94 t/ha) maximum water holding capacity and the pure forest of Larix gmelinii was the smallest (1.95 t/ha); the effective water holding capacity in the mixed forest of Pinus sylvestris and Caragana korshinskii was the largest (1.46 t/ha) and the pure forest of larch was the smallest (1.17 t/ha). (3) The water holding capacity of litter in different plantation configurations showed a logarithmic relationship with the soaking time, and the water absorption rate of litter showed a power function relationship with the soaking time. (4) Soil physical properties and infiltration rates of different plantation configurations showed that the mixed artificial forest was better than the pure forest, and the soil infiltration rates showed a power function relationship with the infiltration time.Conclusion The hydrological performance of the artificial forest mixed configuration pattern is better than that of the pure forest, it is recommended that native tree species and allocation patterns should be fully considered in the initial stage of vegetation reconstruction and restoration for the rapid reconstruction and healthy management of artificial forests, laying the foundation for the next step in the optimization of the spatial structure and alignment of forest vegetation in small watersheds.
-
Keywords:
- artificial forest /
- configuration pattern /
- hydrological characteristics /
- soil /
- litter
-
森林作为最重要的陆地生态系统,具有消减洪峰、涵养水源等生态服务功能,通常被称为“森林水库”[1]。森林水源涵养的能力主要体现在其枯落物层和土壤层[2],是森林发挥水源涵养功能的主体部分[3]。枯落物是森林生态系统结构中重要的一环[4]。作为降水降落至地表面先于土壤接触到的部分,枯落物具有涵养水源、拦蓄降水与径流、维持土壤湿度等重要作用[5]。林地土壤层的水文效则通过自身蓄水能力和入渗特性所体现,对降水分配、水分循环和土壤流失等过程具有显著作用[6]。研究枯落物和土壤的水文特征,揭示枯落物和土壤与生态环境要素之间的定性与定量关系,对研究森林生态系统的水土保持能力,合理规划和利用水资源方面具有重要意义[7]。
国内外学者对不同区域、不同森林植被类型的枯落物和土壤水文效应进行了大量研究[8-10],不同林分枯落物及土壤水文效应随立地条件、树种配置以及林分结构的变化而产生显著差异。近年来对冀北地区林地水源涵养功能的研究也取得一定成果,但多以完全郁闭的成熟林为研究对象,重点集中在不同林分类型、林分密度的比较研究[11-12],相较于人工成熟林,人工幼龄林处于植被恢复的初期,也是目前人工抚育和经营管理的主要作业阶段,了解人工幼龄林的水源涵养能力,后期通过适宜的抚育方式和经营措施,优化林分结构,促进林木生长,抑制不利因素的发生,可为其发挥水源涵养主导功能提供支持,而目前对植被恢复下的不同人工幼龄林及其与灌木混交配置模式下的水源涵养功能研究甚少。
河北省崇礼区西沟流域植被稀少,大部分为荒山秃岭,且裸岩率较高[13],加上人为不合理开垦、放牧,使得该地区已有植被被破坏,水土流失问题严重,导致该地区植被水源涵养等生态服务功能难以充分发挥,严重制约区域社会和经济发展。为恢复和改善生态环境,西沟流域自2009年以来,先后通过人工营造、自然恢复等手段,建设了大面积的针叶纯林及其与灌木的乔灌混交林。由于地处崇礼区冬奥场馆周边,如何快速且充分发挥人工针叶幼龄林及乔灌混交林的水源涵养与水土保持功能,对于保障崇礼赛区冬奥场馆的正常运营、改善冬奥场馆周边小流域生态环境尤为重要。因此,亟需对人工针叶幼龄林及其不同混交配置模式的生态服务功能进行深入研究。为研究项目实施后冬奥周边小流域的林地水源涵养能力,以崇礼区西沟−羊草沟流域的5种典型配置模式的人工针叶幼龄林为研究对象,定量分析和比较其枯落物层及土壤层的水源涵养能力,为冬奥会崇礼赛区乃至整个冀北地区人工林的恢复、经营和水源涵养、水土保持功能的研究提供理论依据和科学参考。
1. 研究区概况
研究区位于河北省张家口市崇礼区驿马图乡的羊草沟流域(图1),地处冀北接坝山区,属于清水河支流−崇礼西沟流域,清水河(永定河水系上游)源头即起源于此,地理坐标为41°04′05″ ~ 41°08′30″N,114°58′30″ ~ 115°02′30″E,海拔在1 084 ~ 1 575 m之间,属温带大陆性季风气候,地形大部分为山地,地势东高西低、北高南低,受地形影响,结霜期较晚,年均降雨量456.8 mm,全年降雨集中在6—9月,降雨时空分布不均。土壤以山地褐土和栗钙土为主。
图 1 研究区地理位置图Ⅰ.落叶松纯林,Ⅱ.樟子松纯林,Ⅲ.落叶松柠条混交林,Ⅳ.樟子松柠条混交林,Ⅴ.樟子松落叶松柠条混交林。下同。Ⅰ, Larix gmelinii pure forest;Ⅱ, Pinus sylvestris pure forest;Ⅲ, Larix gmelinii and Caragana korshins mixed forest;Ⅳ, Pinus sylvestris and Caragana korshins mixed forest;Ⅴ, Pinus sylvestris, Larix gmelinii and Caragana korshins mixed forest. Same as below.Figure 1. Geographical location map of the study area2010年开始在荒山荒坡内实施封山育林和人工造林相结合的植被恢复与重建,坝头山地以营造水土保持林、防风固沙林和水源涵养林为主;阴坡、半阴坡土层较厚的坡面以落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var. mongolica)为主;阳坡、半阳坡土层较薄,树种设计以樟子松、油松(Pinus tabuliformis)为主;沟壑设计栽植沙棘(Hippophae rhamnoides)、杨树(Populus simonii var. przewalskii),乔灌混交达到7∶3。混交方式以不规则块状混交和班间混交为主,现已形成华北落叶松(Larix gmelinii var. principis-rupprechtii)针叶纯林、樟子松针叶纯林、华北落叶松柠条(Caragana korshinskii)混交林、樟子松柠条混交林、华北落叶松樟子松柠条混交林5种主要人工林地。灌木林地主要有山杏(Armeniaca sibirica)、沙棘(Hippophae rhamnoides)等。
2. 研究方法
2.1 样地调查
于2021年5月初,在流域内选取了代表该区域管理后植被恢复都为12年的5块面积为20 m × 20 m的标准样地,包括Ⅰ落叶松纯林、Ⅱ樟子松纯林、Ⅲ落叶松柠条混交林、Ⅳ樟子松柠条混交林、Ⅴ樟子松落叶松柠条混交林(图1),并对5种不同配置模式的造林地进行了野外调查,包括GPS定位、每木检尺调查,并记录了海拔、坡向、坡度、郁闭度以及林分密度等,生长季初期林下无草本生长。表1记录了5个采样点的植物种类和地形信息。
表 1 样地类型和基本特征Table 1. Sample plot types and basic characteristics林分类型
Forest stand type海拔
Altitude/m坡度
Slope/(°)林龄/a
Stand age/year树高
Tree height/mDBH/cm 林分密度/(株·hm−2)
Forest density/(tree·ha−1)Ⅰ 1 521 20 12 2.35 3.75 950 Ⅱ 1 493 22 12 2.21 4.17 1 075 Ⅲ 1 286 22 12 3.24 3.55 1 250 Ⅳ 1 569 22 12 3.52 4.37 1 275 Ⅴ 1 249 23 12 2.68 3.86 1 125 2.2 枯落物调查
枯落物储量调查在每个样地内都选取3个(坡上、坡中、坡下)面积为0.2 m × 0.2 m的小样方,用钢尺分别测量未分解层和半分解层的厚度并记录,分层取样后装入牛皮纸袋中进行称鲜质量,然后带回放入烘箱在105 ℃下烘12 h后称干质量。
枯落物持水测定采用室内浸泡法[14]进行枯落物持水量和持水速率的测定。
枯落物有效拦蓄量计算通过枯落物持水、蓄积量以及自然含水率[15]进行推算,得到枯落物的有效拦蓄量。
2.3 土壤调查
土壤物理性质测定采用剖面法,在每块样地内选取3个样点挖取土壤剖面,由于该地区土层较薄,且多为砾石,加上每个样地土层深度不同,为保证所有样地取土层相同,所以仅在0 ~ 10 cm的土层取环刀土样,并用环刀法[16]测定土壤密度、孔隙度等物理性质。
土壤入渗测定采用原状土双环法[17]测定土壤入渗,在每块样地随机选取3个样点进行试验。
2.4 数据处理
采用Excel 2016和SPSS 22.0软件进行数据处理,使用ArcGIS 10.4.1和Origin 2021进行做图,采用单因素方差分析进行差异显著性分析(P < 0.05)。
3. 结果与分析
3.1 不同配置模式的枯落物蓄积量
由表2可知:5种配置模式的枯落物总厚度处于5.10 ~ 6.70 mm之间,总蓄积量处于2.55 ~ 4.50 t/hm2之间,其大小排序为樟子松纯林(4.50 t/hm2) > 樟子松落叶松柠条混交林(3.81 t/hm2) > 樟子松柠条混交林(3.76 t/hm2) > 落叶松纯林(3.64 t/hm2) > 落叶松柠条混交林(2.55 t/hm2)。5种配置模式枯落物的半分解层蓄积量及厚度均小于对应未分解层的蓄积量及厚度,半分解层枯落物的蓄积量大小排序为樟子松纯林 > 樟子松柠条混交林 > 落叶松纯林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林;未分解层枯落物的蓄积量大小排序为樟子松纯林 > 樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松纯林 > 落叶松柠条混交林,落叶松柠条混交林与3种有樟子松的林地都表现为差异显著(P < 0.05)。
表 2 不同配置模式的枯落物厚度及持水情况Table 2. Litter thickness and water holding capacity of different configuration models林分类型
Stand type枯落物层
Litter layer枯落物蓄积量/(t·hm−2)
Litter volume/(t·ha−1)枯落物厚度
Litter thickness/mmⅠ 半分解层 Semi-decomposed layer 1.68 ± 0.15a 2.60 ± 0.34ab Ⅱ 2.03 ± 0.32a 2.90 ± 0.29a Ⅲ 1.08 ± 0.06b 2.30 ± 0.15b Ⅳ 1.69 ± 0.49a 2.80 ± 0.17a Ⅴ 1.61 ± 0.35ab 2.70 ± 0.14ab Ⅰ 未分解层 Undecomposed layer 1.96 ± 0.12ab 3.30 ± 0.11b Ⅱ 2.47 ± 0.15a 3.80 ± 0.06a Ⅲ 1.47 ± 0.11b 2.80 ± 0.09c Ⅳ 2.07 ± 0.63a 3.30 ± 0.26b Ⅴ 2.20 ± 0.08a 3.50 ± 0.05b 注:同列不同小写字母表示同一分解状态下各处理间差异显著(P < 0.05);表中数据为平均值 ± 标准差。下同。Notes: different lowercase letters in the same column indicate significant differences between treatments at the same decomposed layer(P < 0.05); the data in the table are mean ± standard deviation. The same below. 3.2 不同配置模式的枯落物持水能力
3.2.1 枯落物最大持水量和最大持水率
由表3可知:5种配置模式的枯落物总的最大持水率处于231.20% ~ 333.05%之间,其大小排序为樟子松落叶松柠条混交林 > 落叶松纯林 > 落叶松柠条混交林 > 樟子松柠条混交林 > 樟子松纯林。在半分解层和未分解层中,樟子松落叶松柠条混交林的枯落物最大持水率都为最大,分别是161.42%和171.63%,樟子松纯林的枯落物最大持水率都为最小,分别是126.70%和104.50%。
表 3 不同配置模式枯落物层的拦蓄能力Table 3. Interception capacity of litter layer of different configuration models林分类型
Stand type枯落物层 Litter layer 自然含水率
Natural moisture content/%最大持水率
Maximum water holding rate/%最大持水量/(t·hm−2)
Maximum water holding capacity/(t·ha−1)有效拦蓄率
Effective interception rate/%有效拦蓄量/(t·hm−2)
Effective interception capacity/(t·ha−1)Ⅰ 半分解层
Semi-decomposed layer15.09 ± 0.02ab 149.46 ± 40.02a 0.95 ± 0.32b 107.58 ± 40.33a 0.63 ± 0.04a Ⅱ 17.76 ± 0.03a 126.70 ± 33.18a 1.48 ± 0.34ab 92.60 ± 25.81a 0.70 ± 0.04a Ⅲ 15.09 ± 0.02ab 159.93 ± 50.38a 1.46 ± 0.35ab 123.52 ± 41.39a 0.71 ± 0.05a Ⅳ 17.76 ± 0.03a 151.23 ± 8.96a 1.30 ± 0.61a 123.59 ± 9.97a 0.68 ± 0.04a Ⅴ 11.01 ± 0.01b 161.42 ± 33.51a 1.33 ± 0.22ab 127.85 ± 27.67a 0.68 ± 0.05a Ⅰ 未分解层 Undecomposed layer 11.97 ± 0.04a 147.65 ± 27.28a 1.00 ± 0.07b 113.41 ± 25.04a 0.54 ± 0.02c Ⅱ 16.78 ± 0.06a 104.50 ± 11.61b 1.46 ± 0.41ab 74.56 ± 8.92b 0.71 ± 0.03b Ⅲ 11.97 ± 0.04a 120.11 ± 3.94b 1.17 ± 0.04ab 92.44 ± 2.58b 0.65 ± 0.03b Ⅳ 16.78 ± 0.06a 106.44 ± 5.14b 1.59 ± 0.33a 83.94 ± 3.93b 0.78 ± 0.04a Ⅴ 10.06 ± 0.02a 171.63 ± 9.42a 1.37 ± 0.16ab 137.33 ± 6.79a 0.69 ± 0.04b 枯落物总的最大持水量处于1.95 ~ 2.94 t/hm2之间,其大小排序为樟子松纯林 > 樟子松柠条混交林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林 > 落叶松纯林。在半分解层中,樟子松纯林的枯落物最大持水量最大,为1.48 t/hm2,而落叶松纯林最小,为0.95 t/hm2,5种配置模式之间无显著差异;在未分解层中,樟子松 柠条混交林的枯落物最大持水量最大,为1.59 t/hm2,而落叶松纯林最小,为1.00 t/hm2,樟子松柠条混交林和落叶松纯林差异显著(P < 0.05)。
3.2.2 枯落物有效拦蓄量
由表3可知:5种配置模式的有效拦蓄量处于1.17 ~ 1.46 t/hm2之间,其大小排序为樟子松柠条混交林 > 樟子松纯林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林 > 落叶松纯林。在半分解层中落叶松柠条混交林的枯落物有效拦蓄量最大,落叶松纯林的最小;在未分解层中樟子松柠条混交林的枯落物有效拦蓄量最大,落叶松纯林的最小。方差分析表明5种配置模式的有效拦蓄量在半分解层和未分解层的显著性与最大持水量一致,即5种配置模式在半分解层之间无显著差异,在未分解层樟子松纯林,落叶松柠条混交林和樟子松落叶松 柠条混交林之间无显著差异,但他们与另外两种配置模式之间差异显著(P < 0.05)。
3.2.3 枯落物持水过程
5种配置模式的枯落物半分解层和未分解层的持水过程变化趋势总体上大致相同(图2),在2 h内都快速上升,2 h后上升的速率逐渐减小,直到8 h后逐渐趋于稳定,在浸泡12 h时都已趋于饱和状态。对不同配置模式枯落物持水量和浸水时间进行统计分析,得出5种林分的关系式为(表4)Q = alnt + b,式中:Q为枯落物持水量(g/kg),t为枯落物浸水时间(h),a、b为方程系数[18]。
表 4 不同配置模式枯落物层持水量、吸水速率与浸水时间的关系式Table 4. Relationship between water holding capacity, water absorption rate and immersion time ofdifferent configuration models in litter layers林分类型
Stand type枯落物层
Litter layer持水过程
Water holding procedure吸水过程
Water absorption procedure回归方程
Regression equationR2 回归方程
Regression equationR2 Ⅰ 半分解层 Semi-decomposed layer Q = 138.28lnt + 1 087.4 0.989 4 V = 5 632.4t−1.822 0.951 1 Ⅱ Q = 137.38lnt + 883.7 0.964 1 V = 4 335.3t−1.770 0.947 1 Ⅲ Q = 96.27lnt + 1 310.4 0.980 1 V = 5 740.4t−1.758 0.944 5 Ⅳ Q = 121.49lnt + 1 051.0 0.979 1 V = 1 379.5t−0.935 0.999 7 Ⅴ Q = 191.92lnt + 1 185.7 0.951 3 V = 5 560.5t−1.837 0.948 5 Ⅰ 未分解层 Undecomposed layer Q = 133.70lnt + 1 100.7 0.976 6 V = 5 780.1t−1.829 0.948 7 Ⅱ Q = 107.70lnt + 745.9 0.971 9 V = 3 714.6t−1.786 0.946 0 Ⅲ Q = 88.59lnt + 920.2 0.958 7 V = 6 793.0t−1.840 0.953 6 Ⅳ Q = 86.81lnt + 824.8 0.977 2 V = 5 102.8t−1.887 0.957 3 Ⅴ Q = 153.35lnt + 1 286.5 0.970 5 V = 4 444.9t−1.862 0.951 9 3.2.4 枯落物吸水过程
由图3可知:5种配置模式的枯落物吸水速率变化规律基本一致,在2 h内最大且快速下降,2 h后吸水速率逐渐减慢,到6 h后逐渐趋于稳定,24 h时已经接近零。对不同配置模式枯落物吸水速率和浸水时间进行统计分析,得出5种配置模式的关系式为(表4)V = mtn,式中:V为枯落物吸水速率,g/(kg·h);t为枯落物浸水时间,h;m为方程系数;n为指数[19]。
3.3 土壤水文物理性质
3.3.1 土壤物理性质及持水能力
由表5可知:5种配置模式的土壤密度大小排序为落叶松纯林 > 樟子松纯林 > 落叶松柠条混交林 > 樟子松柠条混交林 > 樟子松落叶松柠条混交林。5种配置模式的土壤总孔隙度大小排序为:樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松柠条混交林 > 樟子松纯林 > 落叶松纯林。樟子松落叶松柠条混交林的非毛管孔隙度和毛管孔隙度都最大,分别为7.93%和33.16%,落叶松纯林的非毛管孔隙度和毛管孔隙度都最小,分别为3.25%和28.19%。
表 5 不同配置模式土壤层的土壤持水及物理性质Table 5. Soil water holding capacity and physical properties of soil layers in different configuration models林分类型
Stand type土壤密度
Soil density/
(g·cm−3)非毛管孔隙度
Non-capillary porosity/%毛管孔隙度
Capillary porosity/%总孔隙度
Total porosity/%最大持水量/(t·hm−2)
Maximum water holding capacity/(t·ha−1)毛管持水量/(t·hm−2)
Capillary water holding capacity/(t·ha−1)有效持水量/(t·hm−2)
Effective water holding capacity/(t·ha−1)Ⅰ 1.62 ± 0.07a 3.25 ± 0.26b 28.19 ± 0.46b 31.44 ± 0.63b 516.21 ± 6.04b 468.45 ± 2.54b 47.76 ± 4.60b Ⅱ 1.56 ± 0.12ab 3.58 ± 0.52b 28.33 ± 1.28b 31.91 ± 1.80b 529.40 ± 13.21ab 477.28 ± 13.79ab 52.12 ± 2.88b Ⅲ 1.44 ± 0.02bc 5.14 ± 0.28ab 28.51 ± 0.87b 34.11 ± 1.51ab 550.89 ± 20.75ab 474.45 ± 18.70ab 76.44 ± 2.05a Ⅳ 1.42 ± 0.02bc 5.60 ± 0.75ab 29.27 ± 0.54ab 34.42 ± 0.33ab 557.10 ± 7.57ab 475.87 ± 3.43ab 81.23 ± 4.18a Ⅴ 1.20 ± 0.03c 7.93 ± 0.38a 33.16 ± 0.44a 41.09 ± 0.63a 645.36 ± 10.07a 558.57 ± 6.99a 86.79 ± 6.10a 5种配置模式土壤的最大持水量处于516.21 ~ 645.36 t/hm2,其大小排序为:樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松柠条混交林 > 樟子松纯林 > 落叶松纯林,这与土壤总孔隙度、毛管孔隙度和非毛管孔隙度的变化规律一致。林地内有效持水量处于47.76 ~ 86.79 t/hm2之间,其中樟子松落叶松柠条混交林的有效持水量最大,是落叶松纯林的有效持水量的1.82倍。
方差分析表明:整体上,樟子松落叶松柠条混交林和2种纯林配置模式的土壤水文物理性质差异显著(P < 0.05),混交配置模式表现为樟子松落叶松柠条混交林和其他2种混交林配置模式的土壤水文物理性质无显著差异。
3.3.2 土壤入渗
由表6可知:5种配置模式的初渗速率和稳渗速率分别处于9.60 ~ 16.57 mm/min和2.10 ~ 5.34 mm/min之间。5种配置模式初渗速率和稳渗速率的大小排序都为:樟子松落叶松柠条混交林(Ⅴ) > 樟子松柠条混交林(Ⅳ) > 落叶松柠条混交林(Ⅲ) > 樟子松纯林(Ⅱ) > 落叶松纯林(Ⅰ)。樟子松落叶松柠条混交林初渗速率和稳渗速率分别是落叶松纯林初渗速率和稳渗速率的1.73倍和2.54倍。方差分析表明2种纯林和3种混交林配置模式的初渗速率差异显著(P < 0.05),且3种混交林配置模式的初渗速率之间差异显著(P < 0.05),落叶松纯林的稳渗速率与3种混交林配置模式都存在显著性差异(P < 0.05)。对土壤入渗的时间和速率进行拟合,得出二者符合幂函数关系:y = at−b,式中:y为入渗速率(mm/min);a、b都为方程系数;t为入渗时间(min)。
表 6 不同配置模式的土壤渗透速率及模型Table 6. Soil infiltration rate and model of different configuration models林分类型
Stand type初渗速率
Initial infiltration rate/(mm·min−1)稳渗速率
Steady infiltration rate/(mm·min−1)回归方程
Regression equationR2 Ⅰ 9.60 ± 0.28d 2.10 ± 0.26c y = 8.97t−0.47 0.932 9 Ⅱ 10.04 ± 0.34d 3.39 ± 0.33bc y = 9.82t−0.31 0.929 1 Ⅲ 11.71 ± 0.36c 3.54 ± 0.31b y = 10.43t−0.35 0.955 3 Ⅳ 13.91 ± 0.42b 4.61 ± 0.39ab y = 10.65t−0.26 0.919 8 Ⅴ 16.57 ± 0.38a 5.34 ± 0.35a y = 11.65t−0.24 0.865 8 4. 讨 论
4.1 不同配置模式下枯落物的蓄积量
枯落物储量的大小受树种组成、林龄、水热环境、凋落量、分解速率、地表累积时间等要素的综合影响[20-21]。本研究中,5种配置模式的枯落物厚度和蓄积量各不相同,樟子松纯林由于自身结构较优且适应能力强,其厚度和蓄积量均为最大(表2);5种配置模式下,枯落物的半分解层厚度和蓄积量均小于未分解层,这可能是由于所有树种都处于幼龄林阶段且分解时间较短,加上研究区总体降水量较低(401.6 mm/a),平均气温偏冷(3.5 ℃),且处于高寒半干旱地区,特定的地理气候环境导致枯落物累积和分解速率均较慢,这也与公博等[12]的研究结果一致。
4.2 不同配置模式下枯落物层的水文特征
枯落物的持水能力受树种、枯落物组成、蓄积量和分解速率等多重影响[22]。本研究中,5种配置模式的枯落物最大持水量、最大持水率以及有效拦蓄量的变化规律并不一致,这与枯落物的生物量及其自身结构有关[9]。总体而言,不论乔灌混交林还是纯林,樟子松林的枯落物持水量均偏大(表5),这可能是由于同龄樟子松本身适应能力强,生长状况更好,加之同龄樟子松叶片轮廓均大于落叶松,使得樟子松的外型与枯落物厚度较之同龄的落叶松均更大;另外一个可能原因是,樟子松林地的林分密度较高(表1),受林内环境因素的影响,樟子松林地的持水量均普遍较大。尽管枯落物持水量和吸水速率都与浸水时间呈现出较好的函数关系,但樟子松和落叶松林地持水和吸水变化规律与邓继峰等[23]、孙拥康等[24]的研究结果不同,这种差异可能与树种的生长阶段不同直接相关,也可能是区域、树种生物学特性等差异的影响所导致。
4.3 不同配置模式下土壤层的水文特征
由于不同森林植被类型生态学特性的差异,同一区域相同生境内,不同配置模式的土壤层蓄水渗透性能也表现出差异[6]。本研究中,5种配置模式的土壤水文物理性质变化规律一致,即3种混交配置模式的土壤物理性质和入渗性能均优于纯林,其中,樟子松落叶松柠条混交林在5种配置模式中均为最优,可能是由于樟子松 落叶松柠条混交林相对于其他4种配置,其树种组成,土壤层的腐殖物质以及根系生物量更为复杂多样(本研究测得樟子松落叶松柠条混交林的平均根质量密度最大,为2.13 kg/m3,落叶松纯林的平均根质量密度最小,为1.93 kg/m3)。腐殖物质和根系对土壤的改良调控作用导致土壤理化性质和入渗性能的变化显著。一方面,说明与柠条混交的配置模式对于林地土壤密度、孔隙度等土壤物理性质的提升显著,另一方面,说明樟子松和落叶松的混交配置模式产生的枯落物及其分解过程对林地蓄水能力提升有一定改善,三者的相互耦合,使得林地土壤的蓄水能力得到显著提高,从而为混交林地中不同植被的生长生存提供了更有利的土壤水文条件。这也与廖军[25]、公博等[12]的研究结论一致,不同配置模式的土壤水文物理性质存在一定的差异,混交林配置模式由于树种、枯落物组成以及根系分布更加复杂,比人工纯林有更强的水源涵养能力,可以有效地延缓地表径流的产生,减少水土流失,改善生态质量[26]。
5. 结 论
综合来看,樟子松落叶松柠条混交林的枯落物层和土壤层的水文性能都高于其他林地,即该人工林的水源涵养能力最强,足以说明树种选择和配置方式在人工林重建和恢复过程中的重要性,可以作为该地区首选的植被恢复模式。恢复方式对于新营造的森林结构和功能至关重要[27],然而当前研究区人工林经营和抚育作业开展仍较少,大多以单次人工林营造为主,并且仍存在林分结构单一、不合理的现象。目前的恢复方式侧重于树种组成、结构、自然栖息地、生态系统过程和服务的恢复[28]。人工造林对生态系统服务功能的构建不仅与造林区域的气候与土壤有关[29],也与造林树种、造林密度和经营管理措施的差异有关[30]。森林结构的复杂性在调节森林生态系统功能方面起着至关重要的作用,并强烈影响生物多样性[31]。林分空间结构是林分特征的重要研究内容之一,而林分结构对森林功能的发挥有重要影响作用[32],混交林的林分结构相较于纯林更为复杂,物种更加丰富多样。因此,迫切需要加强人工林经营管理,根据不同的环境条件,充分考虑树种和配置模式,通过结构化森林经营技术[33-34],实施针叶纯林改造技术,改善林分状态,提高林分稳定性。
-
图 1 研究区地理位置图
Ⅰ.落叶松纯林,Ⅱ.樟子松纯林,Ⅲ.落叶松柠条混交林,Ⅳ.樟子松柠条混交林,Ⅴ.樟子松落叶松柠条混交林。下同。Ⅰ, Larix gmelinii pure forest;Ⅱ, Pinus sylvestris pure forest;Ⅲ, Larix gmelinii and Caragana korshins mixed forest;Ⅳ, Pinus sylvestris and Caragana korshins mixed forest;Ⅴ, Pinus sylvestris, Larix gmelinii and Caragana korshins mixed forest. Same as below.
Figure 1. Geographical location map of the study area
表 1 样地类型和基本特征
Table 1 Sample plot types and basic characteristics
林分类型
Forest stand type海拔
Altitude/m坡度
Slope/(°)林龄/a
Stand age/year树高
Tree height/mDBH/cm 林分密度/(株·hm−2)
Forest density/(tree·ha−1)Ⅰ 1 521 20 12 2.35 3.75 950 Ⅱ 1 493 22 12 2.21 4.17 1 075 Ⅲ 1 286 22 12 3.24 3.55 1 250 Ⅳ 1 569 22 12 3.52 4.37 1 275 Ⅴ 1 249 23 12 2.68 3.86 1 125 表 2 不同配置模式的枯落物厚度及持水情况
Table 2 Litter thickness and water holding capacity of different configuration models
林分类型
Stand type枯落物层
Litter layer枯落物蓄积量/(t·hm−2)
Litter volume/(t·ha−1)枯落物厚度
Litter thickness/mmⅠ 半分解层 Semi-decomposed layer 1.68 ± 0.15a 2.60 ± 0.34ab Ⅱ 2.03 ± 0.32a 2.90 ± 0.29a Ⅲ 1.08 ± 0.06b 2.30 ± 0.15b Ⅳ 1.69 ± 0.49a 2.80 ± 0.17a Ⅴ 1.61 ± 0.35ab 2.70 ± 0.14ab Ⅰ 未分解层 Undecomposed layer 1.96 ± 0.12ab 3.30 ± 0.11b Ⅱ 2.47 ± 0.15a 3.80 ± 0.06a Ⅲ 1.47 ± 0.11b 2.80 ± 0.09c Ⅳ 2.07 ± 0.63a 3.30 ± 0.26b Ⅴ 2.20 ± 0.08a 3.50 ± 0.05b 注:同列不同小写字母表示同一分解状态下各处理间差异显著(P < 0.05);表中数据为平均值 ± 标准差。下同。Notes: different lowercase letters in the same column indicate significant differences between treatments at the same decomposed layer(P < 0.05); the data in the table are mean ± standard deviation. The same below. 表 3 不同配置模式枯落物层的拦蓄能力
Table 3 Interception capacity of litter layer of different configuration models
林分类型
Stand type枯落物层 Litter layer 自然含水率
Natural moisture content/%最大持水率
Maximum water holding rate/%最大持水量/(t·hm−2)
Maximum water holding capacity/(t·ha−1)有效拦蓄率
Effective interception rate/%有效拦蓄量/(t·hm−2)
Effective interception capacity/(t·ha−1)Ⅰ 半分解层
Semi-decomposed layer15.09 ± 0.02ab 149.46 ± 40.02a 0.95 ± 0.32b 107.58 ± 40.33a 0.63 ± 0.04a Ⅱ 17.76 ± 0.03a 126.70 ± 33.18a 1.48 ± 0.34ab 92.60 ± 25.81a 0.70 ± 0.04a Ⅲ 15.09 ± 0.02ab 159.93 ± 50.38a 1.46 ± 0.35ab 123.52 ± 41.39a 0.71 ± 0.05a Ⅳ 17.76 ± 0.03a 151.23 ± 8.96a 1.30 ± 0.61a 123.59 ± 9.97a 0.68 ± 0.04a Ⅴ 11.01 ± 0.01b 161.42 ± 33.51a 1.33 ± 0.22ab 127.85 ± 27.67a 0.68 ± 0.05a Ⅰ 未分解层 Undecomposed layer 11.97 ± 0.04a 147.65 ± 27.28a 1.00 ± 0.07b 113.41 ± 25.04a 0.54 ± 0.02c Ⅱ 16.78 ± 0.06a 104.50 ± 11.61b 1.46 ± 0.41ab 74.56 ± 8.92b 0.71 ± 0.03b Ⅲ 11.97 ± 0.04a 120.11 ± 3.94b 1.17 ± 0.04ab 92.44 ± 2.58b 0.65 ± 0.03b Ⅳ 16.78 ± 0.06a 106.44 ± 5.14b 1.59 ± 0.33a 83.94 ± 3.93b 0.78 ± 0.04a Ⅴ 10.06 ± 0.02a 171.63 ± 9.42a 1.37 ± 0.16ab 137.33 ± 6.79a 0.69 ± 0.04b 表 4 不同配置模式枯落物层持水量、吸水速率与浸水时间的关系式
Table 4 Relationship between water holding capacity, water absorption rate and immersion time ofdifferent configuration models in litter layers
林分类型
Stand type枯落物层
Litter layer持水过程
Water holding procedure吸水过程
Water absorption procedure回归方程
Regression equationR2 回归方程
Regression equationR2 Ⅰ 半分解层 Semi-decomposed layer Q = 138.28lnt + 1 087.4 0.989 4 V = 5 632.4t−1.822 0.951 1 Ⅱ Q = 137.38lnt + 883.7 0.964 1 V = 4 335.3t−1.770 0.947 1 Ⅲ Q = 96.27lnt + 1 310.4 0.980 1 V = 5 740.4t−1.758 0.944 5 Ⅳ Q = 121.49lnt + 1 051.0 0.979 1 V = 1 379.5t−0.935 0.999 7 Ⅴ Q = 191.92lnt + 1 185.7 0.951 3 V = 5 560.5t−1.837 0.948 5 Ⅰ 未分解层 Undecomposed layer Q = 133.70lnt + 1 100.7 0.976 6 V = 5 780.1t−1.829 0.948 7 Ⅱ Q = 107.70lnt + 745.9 0.971 9 V = 3 714.6t−1.786 0.946 0 Ⅲ Q = 88.59lnt + 920.2 0.958 7 V = 6 793.0t−1.840 0.953 6 Ⅳ Q = 86.81lnt + 824.8 0.977 2 V = 5 102.8t−1.887 0.957 3 Ⅴ Q = 153.35lnt + 1 286.5 0.970 5 V = 4 444.9t−1.862 0.951 9 表 5 不同配置模式土壤层的土壤持水及物理性质
Table 5 Soil water holding capacity and physical properties of soil layers in different configuration models
林分类型
Stand type土壤密度
Soil density/
(g·cm−3)非毛管孔隙度
Non-capillary porosity/%毛管孔隙度
Capillary porosity/%总孔隙度
Total porosity/%最大持水量/(t·hm−2)
Maximum water holding capacity/(t·ha−1)毛管持水量/(t·hm−2)
Capillary water holding capacity/(t·ha−1)有效持水量/(t·hm−2)
Effective water holding capacity/(t·ha−1)Ⅰ 1.62 ± 0.07a 3.25 ± 0.26b 28.19 ± 0.46b 31.44 ± 0.63b 516.21 ± 6.04b 468.45 ± 2.54b 47.76 ± 4.60b Ⅱ 1.56 ± 0.12ab 3.58 ± 0.52b 28.33 ± 1.28b 31.91 ± 1.80b 529.40 ± 13.21ab 477.28 ± 13.79ab 52.12 ± 2.88b Ⅲ 1.44 ± 0.02bc 5.14 ± 0.28ab 28.51 ± 0.87b 34.11 ± 1.51ab 550.89 ± 20.75ab 474.45 ± 18.70ab 76.44 ± 2.05a Ⅳ 1.42 ± 0.02bc 5.60 ± 0.75ab 29.27 ± 0.54ab 34.42 ± 0.33ab 557.10 ± 7.57ab 475.87 ± 3.43ab 81.23 ± 4.18a Ⅴ 1.20 ± 0.03c 7.93 ± 0.38a 33.16 ± 0.44a 41.09 ± 0.63a 645.36 ± 10.07a 558.57 ± 6.99a 86.79 ± 6.10a 表 6 不同配置模式的土壤渗透速率及模型
Table 6 Soil infiltration rate and model of different configuration models
林分类型
Stand type初渗速率
Initial infiltration rate/(mm·min−1)稳渗速率
Steady infiltration rate/(mm·min−1)回归方程
Regression equationR2 Ⅰ 9.60 ± 0.28d 2.10 ± 0.26c y = 8.97t−0.47 0.932 9 Ⅱ 10.04 ± 0.34d 3.39 ± 0.33bc y = 9.82t−0.31 0.929 1 Ⅲ 11.71 ± 0.36c 3.54 ± 0.31b y = 10.43t−0.35 0.955 3 Ⅳ 13.91 ± 0.42b 4.61 ± 0.39ab y = 10.65t−0.26 0.919 8 Ⅴ 16.57 ± 0.38a 5.34 ± 0.35a y = 11.65t−0.24 0.865 8 -
[1] 陈波, 杨新兵, 赵心苗, 等. 冀北山地6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2012, 26(2): 196−202. Chen B, Yang X B, Zhao X M, et al. Hydrological effects of six natural pure forests litter and soil in northern mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2012, 26(2): 196−202.
[2] 柳晓娜, 贾国栋, 余新晓. 不同密度杨树人工林的林地涵养水源功能研究[J]. 环境科学与技术, 2017, 40(10): 8−13. Liu X N, Jia G D, Yu X X. Study on water conservation function of poplar plantation with different densities[J]. Environmental Science & Technology, 2017, 40(10): 8−13.
[3] 孙浩, 刘晓勇, 何齐发, 等. 修河上游流域4种森林类型的水源涵养功能评价[J]. 水土保持研究, 2017, 24(4): 337−341, 348. Sun H, Liu X Y, He Q F, et al. Assessments of four types of forests on soil water conservation functions in the upper reaches of Xiu River[J]. Research of Soil and Water Conservation, 2017, 24(4): 337−341, 348.
[4] 郭宇嘉, 牛庆花, 陆贵巧, 等. 承德市第三乡林场不同林分类型枯落物和土壤的持水特性[J]. 水土保持通报, 2018, 38(3): 38−44. Guo Y J, Niu Q H, Lu G Q, et al. Water-holding capacity of litter and soil in different forests in Disanxiang Forest Farm of Chengde City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 38−44.
[5] Facceli J M, Pickett S T A. Plant litter: its dynamics and effects on plant community structure[J]. Botanical Review, 1991, 57(1): 1−32.
[6] 黄进, 杨会, 张金池. 桐庐生态公益林主要林分类型的土壤水文效应[J]. 生态环境学报, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054 Huang J, Yang H, Zhang J C. Soil hydrological function of main forest types in Tonglu’s ecological noncommercial forest[J]. Ecology and Environmental Sciences, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054
[7] 耿琦, 王海燕, 张美娜, 等. 森林枯落物持水特性影响因素研究进展[J]. 生态科学, 2020, 39(5): 220−226. Geng Q, Wang H Y, Zhang M N, et al. Review on factors affecting water-holding characteristics of forest litter[J]. Ecological Science, 2020, 39(5): 220−226.
[8] 宣立辉, 康凡, 谷建才, 等. 冀北地区典型林分枯落物层与土壤层的水文效应[J]. 水土保持研究, 2018, 25(4): 86−91. Xuan L H, Kang F, Gu J C, et al. Hydrological effects of litter and soil layers in typical stands of North Hebei[J]. Research of Soil and Water Conservation, 2018, 25(4): 86−91.
[9] 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2): 251−257. Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.
[10] 胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1): 55−63. Hu X C, Huang Q L, Jin L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 55−63.
[11] 王颖, 杨新兵. 冀北山地6种林分类型土壤水分−物理性质变化[J]. 水土保持研究, 2017, 24(3): 108−112. Wang Y, Yang X B. Soil water-physical properties of six forest types in northern mountains of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(3): 108−112.
[12] 公博, 师忱, 何会宾, 等. 冀北山区6种人工林的林地水源涵养能力[J]. 干旱区资源与环境, 2019, 33(3): 165−170. Gong B, Shi C, He H B, et al. The water conservation capacity of 6 kinds of planted forests in northern mountains of Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 165−170.
[13] 温亚飞, 杨新兵, 胡静霞, 等. 2022年冬奥会崇礼赛区主要林分类型空间结构特征分析[J]. 内蒙古农业大学学报, 2017, 38(1): 29−35. Wen Y F, Yang X B, Hu J X, et al. Analysis of forest spatial structure for main forest types in the 2022 Winter Olympics of Chongli[J]. Journal of Inner Mongolia Agricultural University, 2017, 38(1): 29−35.
[14] 邢晓光, 沈会涛, 马文才, 等. 冀西北山地华北落叶松和白桦林下枯落物水文特征[J]. 水土保持通报, 2016, 36(5): 126−130. Xing X G, Shen H T, Ma W C, et al. Hydrological effects of Larix principis-rupprechtii and Betula platyphylla forest litters in northwest mountain of Hebei Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 126−130.
[15] 孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化[J]. 水土保持学报, 2019, 33(1): 104−110. Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(1): 104−110.
[16] 杨建伟, 杨建英, 何会宾, 等. 冀北山区滦平县4种新造林地水源涵养能力研究[J]. 生态学报, 2019, 39(18): 6731−6737. Yang J W, Yang J Y, He H B, et al. Study of water conservation capacity of four new woodlands in the northern Hebei mountain area of Luanping County[J]. Acta Ecologica Sinica, 2019, 39(18): 6731−6737.
[17] 胡静霞, 杨新兵, 朱辰光, 等. 冀西北地区4种纯林枯落物及土壤水文效应[J]. 水土保持研究, 2017, 24(4): 304−310. Hu J X, Yang X B, Zhu C G, et al. Hydrological effects of litter in four pure forests and soils in northwest of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(4): 304−310.
[18] 张缓, 穆兴民, 高鹏. 黄土高原不同立地条件下枯落物蓄积量及持水特征[J]. 水土保持研究, 2021, 28(3): 45−52. Zhang H, Mu X M, Gao P. Variation of litter accumulation and water-holding capacity at different site conditions in the Loess Plateau[J]. Research of Soil and Water Conservation, 2021, 28(3): 45−52.
[19] 刘宇, 郭建斌, 王彦辉, 等. 宁夏六盘山不同密度华北落叶松人工林枯落物水文效应[J]. 北京林业大学学报, 2016, 38(8): 36−44. Liu Y, Guo J B, Wang Y H, et al. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China[J]. Journal of Beijing Forestry University, 2016, 38(8): 36−44.
[20] 董伯骞, 黄选瑞, 夏明瑞. 退化华北落叶松林枯落物对近自然经营的短期响应[J]. 中国水土保持科学, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010 Dong B Q, Huang X R, Xia M R. Short-term response of litter of degraded Larix pricipis-rupprechtii forest to close-to natural management[J]. Science of Soil and Water Conservation, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010
[21] 魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10): 2589−2598. Wei Q, Ling L, Zhang G Z, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2589−2598.
[22] 陈倩, 周志立, 史琛媛, 等. 河北太行山丘陵区不同林分类型枯落物与土壤持水效益[J]. 水土保持学报, 2015, 29(5): 206−211. Chen Q, Zhou Z L, Shi C Y, et al. Litter and soil water-holding capacity of different typical forests in hilly region of Taihang Mountain in Hebei Province[J]. Journal of Soil and Water Conservation, 2015, 29(5): 206−211.
[23] 邓继峰, 丁国栋, 吴斌, 等. 宁夏盐池地区3种林分枯落物层和土壤水文效应[J]. 北京林业大学学报, 2014, 36(2): 108−114. Deng J F, Ding G D, Wu B, et al. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2014, 36(2): 108−114.
[24] 孙拥康, 汤景明, 王怡. 亚热带日本落叶松人工林枯落物及土壤层水文效应[J]. 北京林业大学学报, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259 Sun Y K, Tang J M, Wang Y. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions[J]. Journal of Beijing Forestry University, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259
[25] 廖军, 薛建辉, 施建敏. 竹阔混交林的水文效应[J]. 南京林业大学学报(自然科学版), 2002, 26(4): 6−10. Liao J, Xue J H, Shi J M. Hydrological effects of mixed forest of moso bamboo and broad-leaved trees[J]. Journal of Nanjing Forestry University (Nature Science Edition), 2002, 26(4): 6−10.
[26] 刘小林, 李惠萍, 郑子龙, 等. 小陇山林区主要林地类型土壤入渗特征[J]. 甘肃农业大学学报, 2016, 51(6): 89−94. Liu X L, Li H P, Zheng Z L, et al. Soil infiltration characteristics of main forest lands in Xiaolongshan region[J]. Journal of Gansu Agricultural University, 2016, 51(6): 89−94.
[27] Jones P D, Edwards S L, Demarais S, et al. Vegetation community responses to different establishment regimes in loblolly pine (Pinus taeda) plantations in southern MS, USA[J]. Forest Ecology and Management, 2009, 257(2): 553−560.
[28] Maestre F T, Cortina J, Vallejo R. Are ecosystem composition, structure, and functional status related to restoration success? A test from semiarid mediterranean steppes[J]. Restoration Ecology, 2006, 2(14): 258−266.
[29] 袁秀锦, 肖文发, 潘磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4): 26−34. Yuan X J, Xiao W F, Pan L, et al. Effect of Pinus massoniana stand structure on hydrological effects of litter layer and soil layer[J]. Forest Research, 2020, 33(4): 26−34.
[30] 孙菲菲, 张增祥, 左丽君, 等. 冀西北水源涵养区不同类型人工针叶林生态功能差异性评估[J]. 自然资源学报, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608 Sun F F, Zhang Z X, Zuo L J, et al. Difference assessment on ecological functions of artificial coniferous forests in water conservation area of northwestern Hebei[J]. Journal of Natural Resources, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608
[31] Ehbrecht M, Seidel D, Annighfer P, et al. Global patterns and climatic controls of forest structural complexity[J]. Nature Communications, 2021, 12(1): 1−12. doi: 10.1038/s41467-020-20314-w
[32] 刘凤芹. 冀北山区典型林分类型结构特征研究[D]. 北京: 北京林业大学, 2011. Liu F Q. Study on forest structure characteristics of typical stands types in North Mountain of Hebei Province[D]. Beijing: Beijing Forestry University, 2011.
[33] 惠刚盈, 胡艳波, 徐海. 结构化森林经营[M]. 北京: 中国林业出版社, 2007. Hui G Y, Hu Y B, Xu H. Structured forest management[M]. Beijing: China Forestry Publishing House, 2007.
[34] 万盼, 刘文桢, 刘瑞红, 等. 结构化经营对栎松混交林林分空间结构及稳定性的影响[J]. 林业科学, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404 Wan P, Liu W Z, Liu R H, et al. Effects of structure-based forest management on stand space structure and its stability of mixed oak-pine forest[J]. Scientia Silvae Sinicae, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404
-
期刊类型引用(6)
1. 宋学雨,简尊吉,王少博,党英侨,魏可,王小艺,肖文发. 松材线虫入侵对湖北三峡地区马尾松林水源涵养能力的影响. 林业科学研究. 2024(01): 10-20 . 百度学术
2. 沙晓玮,武昱鑫,贾国栋,余新晓. 冀北山地植被恢复对不同坡位土壤可蚀性与养分的影响. 水土保持学报. 2024(04): 11-19+28 . 百度学术
3. 蔚阿龙,温慧,丛日春,侯美娟,李瀚之. 坝上地区不同森林类型凋落物层水文效应. 浙江农林大学学报. 2024(05): 959-969 . 百度学术
4. 蔚阿龙,温慧,于生龙,许星,于燕琴,丛日春. 冀西北清水河流域4种森林的枯落物层及土壤层水文效应. 陆地生态系统与保护学报. 2023(01): 34-46 . 百度学术
5. 安金玲,牛赟,车宗玺,郝虎. 祁连山高寒山区典型植被类型水源涵养功能的灰色关联分析. 中南林业科技大学学报. 2023(08): 93-101 . 百度学术
6. 闫佳兴,石文凯,韩海荣,吴会峰,程小琴,康峰峰,王洁茹,李华一. 晋北黄土丘陵沟壑区柠条锦鸡儿化学计量特征及影响因素. 西北林学院学报. 2023(06): 29-37 . 百度学术
其他类型引用(1)