高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米CuO/硅溶胶制剂处理杨木性能的研究

赵鹏炜 徐国祺 杨鸿

赵鹏炜, 徐国祺, 杨鸿. 纳米CuO/硅溶胶制剂处理杨木性能的研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210299
引用本文: 赵鹏炜, 徐国祺, 杨鸿. 纳米CuO/硅溶胶制剂处理杨木性能的研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210299
Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of nano-CuO/silica sol formulations for treating poplar wood[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210299
Citation: Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of nano-CuO/silica sol formulations for treating poplar wood[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210299

纳米CuO/硅溶胶制剂处理杨木性能的研究

doi: 10.12171/j.1000-1522.20210299
基金项目: 国家自然科学基金(31500470),黑龙江省自然科学基金(C2016014)
详细信息
    作者简介:

    赵鹏炜。主要研究方向:木材防腐。Email:zpw1104212976@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学工程技术学院

    责任作者:

    徐国祺,博士,副教授。研究方向:木材保护与改良。Email:xuguoqi_2004@126.com 地址:同上

  • 中图分类号: S781.72

Research on the performance of nano-CuO/silica sol formulations for treating poplar wood

  • 摘要:   目的  探究不同后处理方式对纳米木材防腐剂浸渍材的耐腐性,顺纹抗压强度以及对浸渍材中铜离子抗流失性的影响,旨在为纳米防腐剂的应用提供依据。  方法  通过机械共混制备了一种纳米CuO/硅溶胶制剂,并结合电感耦合等离子体发射光谱仪(ICP-OES)、扫描电镜(SEM)探究不同后处理方式(100 ℃蒸汽和−30 ℃冷冻)对浸渍材耐腐性、顺纹抗压强度、浸渍材制剂分布和铜离子抗流失性的变化。  结果  经过纳米CuO/硅溶胶制剂浸渍的杨木耐腐性显著提高,达到了 Ⅰ 级强耐腐标准,顺纹抗压强度较未处理材提高了24.42%。相比于浸渍试样,蒸汽后处理时间的延长使制剂更加均匀致密地分布在处理材中,而在冷冻后处理中呈颗粒状。经过蒸汽后处理90 min和冷冻后处理8 h的浸渍材质量损失率较普通浸渍材分别降低了18.30%,24.37%;在抗流失性方面,较短时间的蒸汽后处理可以提高浸渍材中铜离子的抗流失性,而经过不同时间冷冻后处理浸渍材中的铜离子抗流失性要优于普通浸渍材,铜离子流失量减少了8.72% ~ 34.40%。在抗压强度方面,蒸汽后处理浸渍材顺纹抗压强度要高于普通浸渍试样,强度提高了0.64% ~ 5.31%,而冷冻后处理浸渍材顺纹抗压强度较浸渍材略有下降。  结论  蒸汽后处理对提高纳米CuO/硅溶胶防腐剂浸渍材耐腐性和顺纹抗压强度有很大的帮助,而冷冻后处理在提高浸渍材中铜离子的抗流失性方面效果更显著。实验结果为不同处理方式在纳米防腐剂中的选择应用提供了参考。

     

  • 图  1  不同后处理试样pH和含水率变化

    Figure  1.  Changes in pH and moisture content of specimens with different post-treatments

    图  2  不同后处理方法对防腐剂分布的影响

    Figure  2.  Effects of different post-treatment methods on the distribution of preservatives

    图  3  不同后处理试样内部腐菌生长情况

    Figure  3.  Growth of fungi in the specimen inside after different treatments

    图  4  不同后处理试样铜离子流失量变化

    Figure  4.  Variation of copper ion leaching amount in different post-treatment specimens

    表  1  天然木材耐腐等级

    Table  1.   Natural wood decay resistance grade

    等级
    Grade
    阔叶材质量损失率
    Mass loss rate of broadleaf wood/%
    针叶材质量损失率
    Mass loss rate of coniferous wood/%
    强耐腐(Ⅰ) Strong decay resistance (Ⅰ) 0 ~ 10 0 ~ 10
    耐腐(Ⅱ) Decay resistance (Ⅱ) 11 ~ 30 11 ~ 20
    稍耐腐(Ⅲ) Slightly decay resistance (Ⅲ) 31 ~ 50 21 ~ 30
    不耐腐(Ⅳ) Not resistant to decay (Ⅳ) > 50 > 30
    注:此表引用自[15]。Note: this table is cited from reference [15].
    下载: 导出CSV

    表  2  不同后处理试样室内耐腐试验结果

    Table  2.   Results of lab decay resistance test of different post-treatment specimens

    处理方式
    Treatment method
    处理时间
    Treatment time
    平均载药量
    Average chemical retention/(kg·m−3)
    质量损失率
    Mass loss rate/%
    耐腐等级
    Decay resistance grade
    未处理 Untreated0 50.50 ± 1.18
    浸渍处理 Dipping treatment9.529.89 ± 2.20
    蒸汽后处理 Steaming post-treatment15 min9.499.50 ± 2.06
    30 min9.5110.23 ± 1.39
    45 min9.4610.62 ± 0.76
    60 min9.448.87 ± 0.84
    75 min9.508.20 ± 1.03
    90 min9.478.08 ± 0.66
    冷冻后处理 Freezing post-treatment4 h9.4815.12 ± 4.18
    6 h9.4613.77 ± 0.74
    8 h9.487.48 ± 0.83
    10 h9.4912.12 ± 1.16
    12 h9.4511.14 ± 2.06
    24 h9.4718.37 ± 3.66
    下载: 导出CSV

    表  3  不同后处理试样顺纹抗压强度试验结果

    Table  3.   Results of compression parallel to grain for different post-treatment specimens

    处理方式
    Treatment method
    处理时间
    Treatment time
    顺纹抗压强度
    Compression parallel to grain/MPa
    标准偏差
    Standard deviation
    变异系数
    Coefficient of variation/%
    未处理 Untreated21.321.697.94
    浸渍处理 Dipping treatment26.743.6213.54
    蒸汽后处理 Steaming post-treatment15 min26.183.1712.11
    30 min27.111.415.21
    45 min28.161.404.96
    60 min27.542.458.91
    75 min27.262.027.41
    90 min26.911.264.67
    冷冻后处理 Freezing post-treatment4 h19.930.994.96
    6 h21.292.1410.07
    8 h21.451.778.26
    10 h21.042.6312.54
    12 h21.491.999.26
    24 h23.042.9112.66
    下载: 导出CSV
  • [1] Gérardin P. New alternatives for wood preservation based on thermal and chemical modification of wood:a review[J]. Annals of Forest Science, 2016, 73(3): 559−570. doi: 10.1007/s13595-015-0531-4
    [2] 郭梦麟, 蓝浩繁, 邱坚. 木材腐朽与维护[M]. 北京: 中国计量出版社, 2010: 25−29.

    Guo M L, Lan H F, Qiu J. Wood deterioration and preservation [M]. Beijing: China Metrology Press, 2010: 25−29.
    [3] Goffredo G B, Accoroni S, Totti C, et al. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces[J]. Building and Environment, 2017, 112: 209−222. doi: 10.1016/j.buildenv.2016.11.034
    [4] Moya R, Rodriguez-Zuñiga A, Berrocal A, et al. Effect of silver nanoparticles synthesized with NPs Ag-ethylene glycol (C2H6O2) on brown decay and white decay fungi of nine tropical woods[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5233−5240. doi: 10.1166/jnn.2017.13814
    [5] de Filpo G, Palermo A M, Rachiele F, et al. Preventing fungal growth in wood by titanium dioxide nanoparticles[J]. International Biodeterioration & Biodegradation, 2013, 85: 217−222.
    [6] Civardi C, Schwarze F W M R, Wick P. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles[J]. Environmental Pollution, 2015, 200: 126−132. doi: 10.1016/j.envpol.2015.02.018
    [7] Xu G, Cappellazzi J, Konkler M J, et al. Effect of multiple leaching cycles on decay resistance of micronized copper azole-treated southern pine sapwood[J]. Forest Products Journal, 2020, 70(2): 178−181. doi: 10.13073/FPJ-D-19-00065
    [8] Matsunaga H, Kiguchi M, Evans P D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood[J]. Journal of Nanoparticle Research, 2009, 11(5): 1087−1098. doi: 10.1007/s11051-008-9512-y
    [9] Stirling R, Drummond J. Re-distribution of copper in the cell walls of wood treated with micronized copper quat[C]//The 40th Annual Meeting of the International Research Group on Wood Protection. Stockhom: IRG Secretariat, 2009.
    [10] 杨守禄, 姬宁, 黄安香, 等. 一种木材防腐剂的制备方法: 贵州, CN108189181A[P]. 2018−06−22.

    Yang S L, Ji N, Huang A X, et al. A preparation method of wood preservative: Guizhou, CN108189181A[P]. 2018−06−22.
    [11] 中华人民共和国国家林业局. 木材防腐剂对腐朽菌毒性实验室试验方法: LY/T 1283—2011[S]. 北京: 中国标准出版社, 2011.

    National Forestry Administration of the People’s Republic of China. Method of laboratory test for toxicity of wood preservatives to decay fungi: LY/T 1283−2011[S]. Beijing: Standards Press of China, 2011.
    [12] 中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材pH值测定方法: GB/T 6043—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method for determination of pH value of wood: GB/T 6043−2009 [S]. Beijing: Standards Press of China, 2009.
    [13] 中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材含水率测定方法: GB/T 1931—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method for determination of the moisture content of wood: GB/T 1931−2009 [S]. Beijing: Standards Press of China, 2009.
    [14] 中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材防腐剂流失率试验方法: GB/T 29905—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Laboratory method of determining the leachability of wood preservatives: GB/T 29905−2013[S]. Beijing: Standards Press of China, 2013
    [15] 许民, 李凤竹, 王佳贺, 等. CuO-ZnO纳米复合防腐剂对杨木抑菌性能的影响[J]. 西南林业大学学报(自然科学), 2014, 34(1):87−92.

    Xu M, Li F Z, Wang J H, et al. Study on antibacterial properties of poplar wood treated with CuO-ZnO nanocomposite preservative[J]. Journal of Southwest Forestry University (Natural Sciences), 2014, 34(1): 87−92.
    [16] 中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method of testing in compressive strength parallel to grain of wood: GB/T 1935−2009 [S]. Beijing: Standards Press of China, 2009.
    [17] 陈太安, 顾炼百, 孙照斌. 汽蒸处理对青冈栎干缩系数及气体渗透性的影响[J]. 南京林业大学学报(自然科学版), 2003(2):62−64. doi: 10.3969/j.issn.1000-2006.2003.02.015

    Chen T A, Gu L B, Sun Z B. The effects of steaming on the shrinkage coefficient and air permeability of oak[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003(2): 62−64. doi: 10.3969/j.issn.1000-2006.2003.02.015
    [18] Xu E, Zhang Y, Lin L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol[J]. Polymers, 2020, 12(8): 1632. doi: 10.3390/polym12081632
    [19] Awoyemi L, Femi-Ola T O, Aderibigbe E Y. Pre-freezing as a pre-treatment for thermal modification of wood. Part 2: surface properties and termite resistance[J]. Journal of the Indian Academy of Wood Science, 2010, 7(1): 19−24.
    [20] Awoyemi L. Influence of prefreezing on the fibre saturation point, sorption and swelling properties of birch (Betula pubescens) wood[J]. Journal of the Institute of Wood Science, 2006, 17(4): 225−227. doi: 10.1179/wsc.2006.17.4.225
    [21] Chafe S C. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F. Muell[J]. Wood Science and Technology, 1990, 24(4): 311−326.
    [22] Chafe S C. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans F. Muell[J]. Wood Science and Technology, 1992, 27(3): 205−217.
    [23] Kookandeh M G, Taghiyari H R, Siahposht H. Effects of heat treatment and impregnation with zinc-oxide nanoparticles on physical, mechanical, and biological properties of beech wood[J]. Wood Science and Technology, 2014, 48(4): 727−736. doi: 10.1007/s00226-014-0627-2
    [24] Taghiyari H R. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra[J]. Wood Science and Technology, 2011, 45(2): 399−404. doi: 10.1007/s00226-010-0343-5
    [25] Zhang J, Kamdem D P. Interaction of copper-amine with southern pine: retention and migration[J]. Wood and Fiber Science, 2000, 32(3): 332−339.
    [26] Guo A, Cooper P A, Ung T. Fixation and leaching characteristics of acid copper chromate (ACC) compared to other chromium-based wood preservatives[J]. Forest Products Journal, 2005, 5(7/8): 72−75.
    [27] Tascioglu C, Cooper P A, Ung T. Rate and extent of adsorption of ACQ preservative components in wood[J]. Holzforschung, 2005, 59: 574−580. doi: 10.1515/HF.2005.094
    [28] 于丽丽. 后处理对ACQ-D处理材流失性影响及固着机理研究[D]. 北京: 北京林业大学, 2010.

    Yu L L. Effects of post-treatments on leaching and fixation mechanism of ACQ-D treated wood[D]. Beijing: Beijing Forestry University, 2010.
    [29] 马世春. 汽蒸处理改善木材尺寸稳定性初探[J]. 木材工业, 1998(5):35−36,38.

    Ma S C. Study on improving dimensional stability of wood after saturated steam treatment[J]. Chinese Journal of Wood Science and Technology, 1998(5): 35−36,38.
    [30] Szmutku M B, Campean M, Porojan M. Strength reduction of spruce wood through slow freezing[J]. European Journal of Wood and Wood Products, 2013, 71(2): 205−210. doi: 10.1007/s00107-013-0667-6
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  19
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 网络出版日期:  2021-10-11

目录

    /

    返回文章
    返回