Study on the relationship between airborne pollen concentration and vegetation spatial structure in Beijing in spring based on CART decision tree model
-
摘要:目的 开展气传花粉浓度与植被空间结构关系的研究,归纳总结不同花粉浓度阈值下植被空间结构,将其应用于植物群落设计及提升过程中,为北京市城市绿地设计、建造及改造提供数据支撑,对城市绿地空间环境的营造具有实际指导意义。方法 研究应用Durham花粉采集器于2021年04月03日—04月09日对北京市内92个采样点的气传花粉浓度进行监测,通过CART决策树算法对不同花粉浓度的植被空间进行分类,最终归纳总结出高、中、低3个花粉浓度阈值所对应的植被空间结构模式图。结果 (1)乔木盖度是区别不同植被空间花粉浓度的主要控制指标,其与花粉浓度的关系并非单一线性,而是呈现一定波动性。当0.698 < 乔木盖度 ≤ 0.777时,花粉浓度最小,预测值为74粒/(103 mm2);当乔木盖度 > 0.777时,花粉浓度最大,预测值为285粒/(103 mm2);当0.600 < 乔木盖度 ≤ 0.698时,花粉浓度预测值为207粒/(103 mm2);当乔木盖度 ≤ 0.600时,花粉浓度预测值为133粒/ (103 mm2)。(2)除乔木盖度外,区别不同植被空间花粉浓度的控制指标还有灌木平均高度、乔木平均高度、地被平均高度和乔木平均枝下高等高度指标,以及群落结构类型、乔木占比和地被三维绿量等指标。(3)低花粉浓度的植被空间结构主要表现为上层高大、中下层低矮,植被类型主要为分支点高的大型乔木;高花粉浓度的植被空间结构主要有两种情况,一种是上层乔木覆盖程度较低时,中下层植被茂密,另一种是上层乔木覆盖程度极高,植物群落整体浓密,植被类型主要为常绿乔木和树冠浓密的落叶乔木,以及枝杈丰富的灌木。结论 本研究为气传花粉致敏植物的栽植与优化改造提供科学依据,对于新建城市绿地,致敏植物尽量应用于与高花粉浓度的植被空间结构类似的群落内部;对于已建成包含气传花粉致敏植物的群落,可通过增加植物将原本为低花粉浓度的植被空间改造为高花粉浓度的植被空间,尽可能将花粉在植被空间内部滞留沉降,减少分散到城市内部的花粉量,缓解气传花粉致敏植物对过敏人群的健康威胁。Abstract:Objective The research on the relationship between airborne pollen concentration and vegetation spatial structure, aiming to summarize the vegetation spatial structure under different pollen concentration sections, would be applied to the design and transformation of plant community. The conclusion can provide data support for the design, construction and transformation of urban green space in Beijing and has practical guiding significance for the construction of urban green space environment.Method The research applied the Durham pollen collector to monitor the airborne pollen concentration of 92 sampling points in Beijing from April 3, 2021 to April 9, 2021. The vegetation spaces with different pollen concentrations were classified by CART, which obtained the vegetation spatial structure model maps corresponding to high, medium and low pollen concentration sections.Result (1) Coverage of arbors was the main control index to distinguish the pollen concentration of different squares. And the relationship between coverage of arbors with pollen concentration was not a single linearity but a certain degree of volatility. When the coverage of arbors was between 0.698 and 0.777, the pollen concentration was the lowest, and the predicted value was 74 grain/(103 mm2). When the coverage of arbors was greater than 0.777, the pollen concentration was the largest and the predicted value was 285 grain/(103 mm2). When the coverage of arbors was between 0.600 and 0.698, the predicted value of pollen concentration was 207 grain/(103 mm2). When the coverage of arbors was less than 0.600, the predicted value of pollen concentration was 133 grain/(103 mm2). (2) In addition to the coverage of arbors, the control indicators for pollen concentrations of different vegetation space included the average height of shrubs, average height of arbors, average height of ground cover plant, average height under branches of arbors, structure types of plant communities, percentage of arbors and three-dimensional green quantity of ground cover plant, etc. (3) The vegetation spatial structure with low pollen concentration was mainly with high trees in the upper layer and low shrubs in the middle and lower layer. The vegetation type was mainly large trees with high branch points. There were two main types of the vegetation spatial structure with high pollen concentration. One was that when the coverage of upper trees was lower, the vegetation in the middle and lower layers was dense, the other was that the coverage of upper trees was very high, and the vegetation community was very dense. The vegetation types were mainly evergreen trees, deciduous trees with dense canopy, and shrubs with rich branches.Conclusion The scientific basis for the planting and optimization of airborne pollen allergenic plants was provided. For new urban green space, the allergenic plants should be used as much as possible in communities with similar structures to vegetation with high pollen concentrations. For established communities containing airborne pollen allergenic plants, the original low pollen concentration vegetation space could be transformed into the high pollen concentration vegetation space by increasing plants. The pollen would be retained and settled in the vegetation space as far as possible, so the amount of pollen dispersed into the city would be reduced and the health threat of airborne pollen allergenic plants to allergic people would be alleviated.
-
-
表 1 植被空间结构因子
Table 1 Spatial structure factors of vegetation
植被空间结构因子
Spatial structure factor of vegetation细分类别
Subdivided category占比
Percentage乔木占比
Percentage of arbor灌木占比
Percentage of shrub高度
Height乔木平均枝下高
Average height under branches of arbors乔木平均高度
Average height of arbor灌木平均高度
Average height of shrub地被平均高度
Average height of ground cover plant冠幅
Crown breadth乔木平均冠幅
Average crown breadth of arbor灌木平均冠幅
Average crown breadth of shrub三维绿量
Three-dimensional green quantity乔木三维绿量
Three-dimensional green quantity of arbor灌木三维绿量
Three-dimensional green quantity of shrub地被三维绿量
Three-dimensional green quantity of ground cover plant总三维绿量
Total three-dimensional green quantity阔叶植物三维绿量
Three-dimensional green quantity of broadleaved plant针叶植物三维绿量
Three-dimensional green quantity of conifer落叶植物三维绿量
Three-dimensional green quantity of deciduous plant常绿植物三维绿量
Three-dimensional green quantity of evergreen plant盖度
Coverage乔木盖度
Arbor coverage灌木盖度
Shrub coverage地被盖度
Ground cover plant coverage总盖度
Total coverage郁闭度
Canopy closure表 2 花粉浓度与植物空间结构因子的CART决策树路径
Table 2 CART decision tree path of pollen concentration and spatial structure factors of vegetation
项目 Item Ⅰ Ⅱ Ⅲ Ⅰ-1 Ⅰ-2 Ⅱ-1 Ⅱ-2 Ⅱ-3 Ⅱ-4 Ⅱ-5 Ⅱ-6 Ⅲ-1 Ⅲ-2 终端节点
Terminal nodeR2 R8 R1 R3 R4 R6 R7 R9 R5 R10 样本个数
Sample number17 4 14 11 2 2 9 3 3 3 花粉浓度预测值/(粒·10−3 mm−2)
Predictive value of pollen concentration/(grain·10−3 mm−2)57 74 117 169 270 176 207 227 383 342 植被空间因子
Spatial factor of
vegetation乔木盖度
Arbor coverage≤ 0.600 (0.698,
0.777]≤ 0.600 ≤ 0.600 ≤ 0.600 ≤ 0.600 (0.600,
0.698]> 0.777 ≤ 0.600 > 0.777 灌木平均高度
Average height of shrub/m≤ 2.550 ≤ 2.550 ≤ 2.550 ≤ 2.550 > 2.550 > 2.550 乔木平均高度
Average height of arbor/m> 3.826 > 3.826 > 3.826 > 3.826 乔木平均枝下高
Average height under branches of arbor/m≤ 2.819 ≤ 2.819 ≤ 2.819 > 2.819 乔木占比
Percentage of arbor> 0.667 ≤ 0.667 地被三维绿量
Three-dimensional green quantity of ground cover plant/m³≤ 45.641 ≤ 45.641 > 45.641 地被平均高度
Average height of ground cover plant/m> 0.030 ≤ 0.030 群落结构类型
Structure type of plant community乔草
Arbor and grass structure乔灌
Arbor and shrub structure注:Ⅰ. 低花粉浓度(0~100粒/(103 mm2));Ⅱ. 中花粉浓度(100 ~ 300粒/(103 mm2))Ⅲ. 高花粉浓度(300 ~ 500粒/(103 mm2)。Ⅰ-1为低花粉浓度样本编号,以此类推。Notes: Ⅰ, low pollen concentration (0−100 grain/(103 mm2)); Ⅱ, medium pollen concentration (100 − 300 grain/(103 mm2)); Ⅲ, high pollen concentration (300 − 500 grain/(103 mm2)). Ⅰ-1 is the sample number of low pollen concentration, and so on. 表 3 低花粉浓度植被空间结构模式图
Table 3 Spatial structure model of vegetation with low pollen concentration
项目
ItemⅠ-1 Ⅰ-2 平面图
Plan立面图
Elevation表 4 高花粉浓度植被空间结构模式图
Table 4 Spatial structure model of vegetation with high pollen concentration
项目
ItemⅢ-1 Ⅲ-2 平面图
Plan立面图
Elevation表 5 中花粉浓度植被空间结构模式图
Table 5 Spatial structure model of vegetation with medium pollen concentration
项目
ItemⅡ-1 Ⅱ-2 Ⅱ-3 平面图
Plan立面图
Elevation项目
ItemⅡ-4 Ⅱ-5 Ⅱ-6 平面图
Plan立面图
Elevation -
[1] 孟龄, 王效科, 欧阳志云, 等. 北京城区气传花粉季节特征及与气象条件关系[J]. 环境科学, 2016, 37(2): 452−458. doi: 10.13227/j.hjkx.2016.02.007 Meng L, Wang X K, Ouyang Z Y, et al. Season dynamics of airborne pollens an its relationship with meteorological factors in Beijing urban area[J]. Environmental Science, 2016, 37(2): 452−458. doi: 10.13227/j.hjkx.2016.02.007
[2] 郄光发, 杨颖, 王成. 北京城区硬质地面近地空间树木花粉浓度日变化及小气候因子的影响[J]. 林业科学, 2010, 46(8): 39−44. doi: 10.11707/j.1001-7488.20100806 Qie G F, Yang Y, Wang C. Diurnal variation of tree pollen concentration and its relation to microclimate factors on hard ground surface in Beijing urban area[J]. Scientia Silvae Sinicae, 2010, 46(8): 39−44. doi: 10.11707/j.1001-7488.20100806
[3] 张曼琳, 潘妮, 赵娟娟, 等. 城市花粉致敏植物种类构成、分布与潜在危害评估: 以深圳市为例[J]. 生态学报, 2021, 41(22): 8746−8757. Zhang M L, Pan N, Zhao J J, et al. Analysis on the composition distribution and potential hazard of allergenic pollen plants in urban areas: a case study of Shenzhen[J]. Acta Ecologica Sinica, 2021, 41(22): 8746−8757.
[4] 王成. 城市花粉、飞絮飞毛等植源性污染特征及其防治[J]. 中国城市林业, 2018, 16(1): 1−6. doi: 10.3969/j.issn.1672-4925.2018.01.001 Wang C. Characteristics of plant-caused pollution and its control measures in urban area[J]. China Urban Forestry, 2018, 16(1): 1−6. doi: 10.3969/j.issn.1672-4925.2018.01.001
[5] 欧阳昱晖, 李颖, 安羽三, 等. 中国北方夏秋季致敏花粉种属和浓度分析[J]. 中国耳鼻咽喉头颈外科, 2020, 27(4): 184−187. Ouyang Y H, Li Y, An Y S, et al. Analysis of pollen species and concentration in summer and autumn in northern China[J]. Chinese Otorhinolaryngology-Head and Neck Surgery, 2020, 27(4): 184−187.
[6] 李琳, 李宜垠. 长白山阔叶红松林花粉通量的时空变化及其与气象因子的关系[J]. 第四纪研究, 2021, 41(6): 1749−1763. doi: 10.11928/j.issn.1001-7410.2021.06.20 Li L, Li Y Y. Temporal and spatial variation of pollen influx and its relationship with meteorological factors in broadleaved Korean pine forest in Changbai Mountains[J]. Quaternary Sciences, 2021, 41(6): 1749−1763. doi: 10.11928/j.issn.1001-7410.2021.06.20
[7] 刘宜纲, 吕世华, 刘建忠, 等. 2012—2016年海淀区气传花粉物候特征及其与气象要素的关系[J]. 应用生态学报, 2019, 30(10): 3563−3571. Liu Y G, Lü S H, Liu J Z, et al. Phenological characteristics of airborne pollen and its relationship with meteorological factors in Haidian District, Beijing, China during the period of 2012−2016[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3563−3571.
[8] Severova E, Volkova O. Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters[J]. Aerobiologia, 2017, 33(2): 253−264.
[9] Haskouri F E, Bouziane H, del Mar T M, et al. Airborne ascospores in Tetouan (NW Morocco) and meteorological parameters[J]. Aerobiologia, 2016, 32(4): 669−681.
[10] 闫珂. 北京4种常见树种花粉飘散规律及致敏潜力分析[D]. 北京: 北京林业大学, 2020. Yan K. Analysis of four common tree’s pollen dispersion regulation and allergenic potential evaluation in Beijing[D]. Beijing: Beijing Forestry University, 2020.
[11] 郄光发, 杨颖, 王成. 软质与硬质地表对树木花粉日飘散变化的影响[J]. 生态学报, 2010, 30(15): 3974−3981. Qie G F, Yang Y, Wang C. The influence of urban surface condition on diurnal variation of tree pollen dispersal[J]. Acta Ecologica Sinica, 2010, 30(15): 3974−3981.
[12] 卞萌, 郭树毅, 王威, 等. 融合植被遥感数据的北京市次日花粉浓度预测[J]. 地球信息科学学报, 2021, 23(9): 1705−1713. doi: 10.12082/dqxxkx.2021.200475 Bian M, Guo S Y, Wang W, et al. Next-day prediction of pollen concentration in Beijing by integrating remote sensing derived leaf area index[J]. Journal of Geo-information Science, 2021, 23(9): 1705−1713. doi: 10.12082/dqxxkx.2021.200475
[13] Ritenberga O, Sofiev M, Kirillova V, et al. Statistical modelling of non-stationary processes of atmospheric pollution from natural sources: example of birch pollen[J]. Agricultural and Forest Meteorology, 2016, 226−227: 96−107. doi: 10.1016/j.agrformet.2016.05.016
[14] Astray G, Fernández-González M, Rodríguez-Rajo F J, et al. Airborne castanea pollen forecasting model for ecological and allergological implementation[J]. Science of the Total Environment, 2016, 548−549: 110−121. doi: 10.1016/j.scitotenv.2016.01.035
[15] 孟龄, 王效科, 欧阳志云, 等. 北京城区气传花粉季节分布特征[J]. 生态学报, 2013, 33(8): 2381−2387. doi: 10.5846/stxb201204100502 Meng L, Wang X K, Ouyang Z Y, et al. Seasonal dynamics of airborne pollen in Beijing urban area[J]. Acta Ecologica Sinica, 2013, 33(8): 2381−2387. doi: 10.5846/stxb201204100502
[16] 周江鸿, 夏菲, 李洁, 等. 北京颐和园春季树木花粉飞散规律研究[J]. 安徽农业科学, 2020, 48(5): 117−122. doi: 10.3969/j.issn.0517-6611.2020.05.032 Zhou J H, Xia F, Li J, et al. The dispersal regularity of airborne tree pollens in spring of the Summer Palace[J]. Journal of Anhui Agricultural Sciences, 2020, 48(5): 117−122. doi: 10.3969/j.issn.0517-6611.2020.05.032
[17] 周江鸿, 夏菲, 刘育俭, 等. 北京天坛公园春季树木花粉飞散规律研究[J]. 江苏农业科学, 2020, 48(15): 192−198. Zhou J H, Xia F, Liu Y J, et al. Study on despersal regularity of airborne tree pollens in spring in Heaven Park Temple of Beijing City[J]. Jiangsu Agricultural Sciences, 2020, 48(15): 192−198.
[18] 申媛媛, 邬锦雯, 刘鑫东. 基于CART决策树回归的乡村信息化水平测度模型研究[J]. 科技管理研究, 2020, 40(14): 91−98. doi: 10.3969/j.issn.1000-7695.2020.14.012 Shen Y Y, Wu J W, Liu X D. Rural informatization measurement model based on CART regression[J]. Science and Technology Management Research, 2020, 40(14): 91−98. doi: 10.3969/j.issn.1000-7695.2020.14.012
[19] 王嫣然, 张学霞, 赵静瑶. 2013—2014年北京地区PM_(2.5)时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016, 25(1): 103−111. Wang Y R, Zhang X X, Zhao J Y. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013−2014[J]. Ecology and Environmental Sciences, 2016, 25(1): 103−111.
[20] 李全生, 江盛学, 李欣泽, 等. 中国气传致敏花粉的季节和地理播散规律[J]. 解放军医学杂志, 2017, 42(11): 951−955. doi: 10.11855/j.issn.0577-7402.2017.11.03 Li Q A, Jiang S X, Li X Z, et al. Seasonal and geographical dispersal regularity of airborne pollens in China[J]. Medical Journal of Chinese People’s Liberation Army, 2017, 42(11): 951−955. doi: 10.11855/j.issn.0577-7402.2017.11.03
[21] Breiman L, Friedman J, Olshen R, et al. Classification and regression trees[M]. Monterey: Wadsworth International Group, 1984: 1−358.
[22] 李倩. 北京市空气花粉污染的研究[D]. 北京: 首都师范大学, 2004. Li Q. Study on air pollen pollution in Beijing[D]. Beijing: Capital Normal University, 2004.
[23] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6): 533−548. doi: 10.3724/SP.J.1003.2009.09253 Fang J Y, Wang X P, Shen Z H, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 17(6): 533−548. doi: 10.3724/SP.J.1003.2009.09253
[24] 钱晓东. 数据挖掘中分类方法综述[J]. 图书情报工作, 2007(3): 68−71, 108. doi: 10.3969/j.issn.0252-3116.2007.03.017 Qian X D. Summary of classification methods in data mining[J]. Library and Information Work, 2007(3): 68−71, 108. doi: 10.3969/j.issn.0252-3116.2007.03.017
[25] You W, Xia Y P, Huang Y T, et al. Research on selection method of LIBS feature variables based on CART regression tree[J]. Spectroscopy and Spectral Analysis, 2021, 41(10): 3240−3244.
[26] 赵萍, 傅云飞, 郑刘根, 等. 基于分类回归树分析的遥感影像土地利用/覆被分类研究[J]. 遥感学报, 2005, 9(6): 708−716. doi: 10.11834/jrs.200506103 Zhao P, Fu Y F, Zheng L G, et al. Research on land use/cover classification of remote sensing images based on classification regression tree analysis[J]. Journal of Remote Sensing, 2005, 9(6): 708−716. doi: 10.11834/jrs.200506103
[27] 张睎伟, 王磊, 汪西原. 基于CART决策树的沙地信息提取方法研究[J]. 干旱区地理, 2019, 42(5): 1133−1140. Zhan X W, Wang L, Wang X Y. Research on sand information extraction method based on cart decision tree[J]. Arid Area Geography, 2019, 42(5): 1133−1140.
[28] Steckling-Muschack N, Mertes H, Mittermeie I, et al. A systematic review of threshold values of pollen concentrations for symptoms of allergy[J]. Aerobiologia, 2021, 37: 395−424. doi: 10.1007/s10453-021-09709-4
[29] Ravindra K, Goyal A, Mor S. Does airborne pollen influence COVID-19 outbreak? [J/OL]. Sustainable Cities and Society, 2021, 70: 102887[2021−10−19]. https://www.sciencedirect.com/science/article/pii/S2210670721001761. [30] Shah R C B, Shah R A D, Retzinger D G, et al. Competing bioaerosols may influence the seasonality of influenza-like illnesses, including COVID-19: the Chicago experience[J/OL]. Pathogens, 2021, 10(9): 1204[2021−10−19]. https://www.mdpi.com/2076-0817/10/9/1204. [31] Hoogeveen M J, van Gorp E C M, Hoogeveen E K. Can pollen explain the seasonality of flu-like illnesses in the Netherlands? [J/OL]. Science of the Total Environment, 2020, 755(2): 143182[2021−10−19]. https://www.sciencedirect.com/science/article/pii/S0048969720367127. -
期刊类型引用(24)
1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术
其他类型引用(20)