Preliminary study on the interaction effect between genotypes and environment of growth traits in Pinus massoniana clones
-
摘要:目的 马尾松是我国南方重要速生用材树种之一。研究10个马尾松无性系在不同试验点胸径和树高生长性状的变异特征和遗传稳定性,筛选高遗传增益的优良基因型推广利用,为马尾松适地适基因型高效栽培和人工林提质增效提供试验依据。方法 以在广西宁明县(E1)、柳州市(E2)、博白县(E3)和钦州市(E4)营建的10个3年生马尾松无性系(M1 ~ M10)区域试验林为对象,测定胸径和树高生长,分析不同基因型生长性状差异和变异规律,开展无性系稳定性分析和综合评价,筛选生产力高和稳定性好的优良基因型。结果 马尾松无性系生长变异丰富,同一地点无性系间总变异和同一无性系地点间总变异均表现为胸径大于树高。多点联合方差分析表明:基因型、环境条件、基因型与环境互作效应对马尾松无性系胸径和树高生长都有极显著影响(P < 0.01),试验点内无性系间生长表现不同,无性系在不同试验点间生长表现也存在较大差异。不同地点无性系胸径和树高的重复力处于0.59 ~ 0.89之间,生长性状主要受遗传控制。遗传稳定性分析结果表明:M1、M2、M4、M5和M7等5个无性系胸径和树高生长速度较快且稳定性良好,M8对E1试验点具有特殊适应性。对4个试验点的马尾松无性系胸径和树高生长进行综合评价,筛选出M1、M2、M4、M5、M7 5个优良无性系,胸径和树高遗传增益分别比种子园良种实生苗提高37.90% ~ 45.65%和21.92% ~ 24.38%。结论 马尾松胸径和树高生长性状在无性系间变异丰富,基因型、环境和基因型与环境的互作效应对马尾松无性系的生长性状产生了极显著影响;M1、M2、M4、M5和M7等5个无性系生长迅速且稳定,遗传增益较高,可在马尾松栽培区适当推广。Abstract:Objective Pinus massoniana is one of the important fast-growing timber species in south China. In this study, phenotypic and genetic stability of DBH and tree height traits of 10 Pinus massoniana clones were studied at multiple sites, and excellent genotypes with high genetic gain were screened, so as to provide experimental basis for efficient cultivation of Pinus massoniana with suitable genotypes and quality and efficiency improvement of plantation.Method The DBH and tree height of 10 3-year-old Pinus massoniana clones (M1 − M10) were measured from regional experimental forest in Ningming County (E1), Liuzhou City (E2), Bobai County (E3) and Qinzhou City (E4) of Guangxi, southern China. The growth traits and phenotypic variation of different genotypes were analyzed. Clone stability analysis and comprehensive evaluation were carried out to screen excellent genotypes with high productivity and good stability.Result The growth variation of Pinus massoniana clones was rich, the total varation of DBH between clones at the same site and between clones at the same site was greater than tree height. Multi-point joint variance analysis showed that genotype, environmental conditions and genotype-environment interaction had significant effects on DBH and tree height growth of Pinus massoniana clones (P < 0.01). The growth performance of clones within the test site was different, and the growth performance of clones among different test sites was also different. The repeatability of DBH and tree height of clones at different sites was between 0.59 and 0.89, indicating they were mainly controlled by heredity. The results of genetic stability analysis showed that the DBH and tree height of M1, M2, M4, M5 and M7 clones grew faster and had good stability. Clone M8 had a special adaptability to the test site at Ningming County. Five superior clones (M1, M2, M4, M5, M7) were selected by comprehensive evaluation of DBH and tree height across four experimental sites. The genetic gains of DBH and tree height were increased by 37.90%−45.65% and 21.92%−24.38%, respectively, compared with the performance of seed orchard seedlings.Conclusion The DBH and tree height of Pinus massoniana vary greatly among clones. Genotype, environment and the interaction between genotype and environment have significant effects on the growth traits of Pinus massoniana clones. The five clones, M1, M2, M4, M5 and M7, grow rapidly and stably, and bring high genetic gain, which could be appropriately promoted in Pinus massoniana cultivation areas.
-
Keywords:
- Pinus massoniana /
- clone /
- interaction effect /
- genetic variation /
- growth trait
-
-
表 1 各试验点参试无性系胸径和树高多重比较
Table 1 Multiple comparison of DBH and tree height of tested clones in different sites
地点
Site无性系
Clone胸径
DBH/cm树高
Tree height/m地点 Site 无性系
Clone胸径
DBH/cm树高
Tree height/mE1 M1 7.4 ± 1.1 aAB 4.75 ± 0.52 abAB E3 M1 4.5 ± 1.4 aABC 3.53 ± 0.58 aAB M2 6.7 ± 1.3 cdBCD 4.58 ± 0.53 bcABCD M2 4.4 ± 1.2 aABC 3.41 ± 0.69 abAB M3 6.3 ± 1.3 defCDE 4.37 ± 0.69 cdCDE M3 3.1 ± 0.9 cD 2.67 ± 0.52 cC M4 6.8 ± 1.5 bcdABC 4.57 ± 0.59 bcABCD M4 4.6 ± 1.6 aAB 3.40 ± 0.84 abAB M5 7.5 ± 1.2 aA 4.78 ± 0.54 abAB M5 4.3 ± 1.4 aABC 3.35 ± 0.63 abAB M6 5.8 ± 1.3 fgEF 4.35 ± 0.49 cdCDE M6 4.0 ± 1.4 abABCD 3.23 ± 0.59 abAB M7 7.0 ± 1.3 abcABC 4.65 ± 0.54 bABC M7 4.7 ± 1.5 aA 3.58 ± 0.78 aA M8 7.3 ± 1.2 abAB 4.90 ± 0.58 aA M8 3.9 ± 1.1 abcABCD 2.98 ± 0.55 bcBC M9 6.4 ± 1.2 deCDE 4.54 ± 0.50 bcBCD M9 4.0 ± 1.4 abABCD 3.21 ± 0.70 abABC M10 6.0 ± 1.2 efgDEF 4.19 ± 0.59 deE M10 4.4 ± 1.3 aABC 3.27 ± 0.69 abAB CK 5.5 ± 1.2 gF 4.07 ± 0.64 eE CK 3.4 ± 1.3 bcCD 2.67 ± 0.48 cC E2 M1 4.9 ± 1.2 abA 3.68 ± 0.67 abAB E4 M1 6.1 ± 1.6 aA 3.71 ± 0.39 bcdAB M2 4.7 ± 0.9 abAB 3.63 ± 0.57 abcAB M2 6.0 ± 0.9 aA 3.96 ± 0.34 abA M3 4.8 ± 1.2 abA 3.65 ± 0.67 abAB M3 5.4 ± 1.8 abcABC 3.66 ± 0.48 bcdAB M4 4.8 ± 1.1 abA 3.72 ± 0.66 aA M4 6.1 ± 1.6 aA 3.93 ± 0.56 abcA M5 5.1 ± 1.5 aA 3.74 ± 0.72 aA M5 6.2 ± 1.3 aA 4.05 ± 0.49 aA M6 3.6 ± 1.2 cdCD 3.12 ± 0.58 defBC M6 4.4 ± 0.9 deCD 3.43 ± 0.33 deBC M7 4.7 ± 1.5 abAB 3.52 ± 0.82 abcdAB M7 5.8 ± 1.1 abAB 3.86 ± 0.37 abcAB M8 4.2 ± 1.2 bcABC 3.21 ± 0.64 cdefABC M8 4.8 ± 0.7 bcdeABCD 3.47 ± 0.36 deBC M9 3.7 ± 1.5 cdBCD 3.28 ± 0.79 bcdeABC M9 4.9 ± 1.3 bcdeABCD 3.65 ± 0.31 bcdAB M10 4.6 ± 1.5 abAB 3.52 ± 0.7 6abcdAB M10 5.3 ± 1.4 abcdABCD 3.61 ± 0.49 cdAB CK 3.2 ± 1.0 dCD 2.89 ± 0.59 efC CK 4.0 ± 0.6 eD 3.15 ± 0.47 eC 注:不同小写字母和大写字母分别表示同一地点不同无性系之间每个性状在0.05和0.01水平上差异显著。Notes: different lowercase and uppercase letters indicate significant differences in each trait between different clones at the same site at the level of 0.05 and 0.01, respectively. 表 2 各试验点马尾松无性系生长性状表型变异系数
Table 2 Phenotypic variation coefficients of growth traits of P. massoniana clones at different sites
% 无性系
Clone胸径 DBH 总变异
Total variation树高 Tree height 总变异
Total variationE1 E2 E3 E4 E1 E2 E3 E4 M1 15.27 25.10 31.33 26.07 30.06 10.95 18.21 16.43 10.51 19.30 M2 19.10 20.64 27.95 16.00 27.04 11.57 15.70 20.23 8.59 18.41 M3 20.79 25.63 31.61 33.52 33.08 15.79 18.36 19.48 13.11 22.78 M4 21.62 22.71 35.65 26.07 30.73 12.91 17.74 24.71 14.25 20.52 M5 16.27 28.63 33.49 20.32 30.81 11.30 19.25 18.81 12.10 20.29 M6 22.24 32.78 34.00 21.82 33.76 11.26 18.59 18.27 9.62 20.66 M7 18.29 32.13 31.70 18.10 29.86 11.61 23.30 21.79 9.59 20.65 M8 16.99 27.62 28.72 15.00 34.78 11.84 19.94 18.46 10.37 26.50 M9 19.06 40.27 35.50 26.94 35.66 11.01 24.09 21.81 8.49 22.57 M10 19.83 31.74 29.55 25.85 28.39 14.08 21.59 21.10 13.57 19.91 总变异
Total variation20.45 30.22 33.57 25.64 12.91 20.51 22.39 12.30 表 3 各试验点无性系生长性状方差分析
Table 3 Variance analyses of growth traits of clones in each test site
性状
Trait地点
Site平均值
Mean标准差
Standard deviationF 无性系重复力
Clonal repeatability胸径 DBH/cm E1 6.7 1.37 9.468** 0.89 E2 4.5 1.36 4.417** 0.77 E3 4.2 1.41 2.466* 0.59 E4 5.5 1.41 3.809** 0.74 树高 Tree height/m E1 4.57 0.59 6.851** 0.85 E2 3.51 0.72 2.994** 0.67 E3 3.93 0.88 3.494** 0.71 E4 3.74 0.46 5.273** 0.81 注:*表示在0.05水平上差异显著,**表示在0.01水平上差异显著,下同。Notes: * means significant difference at P < 0.05 level, ** means significant difference at P < 0.01 level. The same below. 表 4 各试验点参试无性系生长性状联合方差分析
Table 4 Joint analysis of variance for growth traits of tested clones in different sites
生长性状
Growth trait变异来源
Variation source自由度
Degree of freedom平方和
Sum of square均方
Mean squareF 胸径 DBH 地点 Site 3 1 281.843 427.281 254.208** 无性系 Clone 9 187.378 20.820 12.387** 地点 × 无性系 Site × clone 27 96.461 3.573 2.126** 误差 Error 1 099 1 847.234 1.681 树高 Tree height 地点 Site 3 346.457 115.486 322.876** 无性系 Clone 9 25.568 2.841 7.942** 地点 × 无性系 Site × clone 27 24.176 0.895 2.503** 误差 Error 1 099 393.089 0.358 表 5 马尾松无性系生长性状与环境互作效应值和适生范围
Table 5 Interaction effect value and suitable range of growth traits and environment of P. massoniana clones
无性系
Clone无性系 × 环境 Clone × environment 适宜范围
Suitable areaE1 E2 E3 E4 M1 0.105 3 0.019 9 0.004 9 −0.130 1 E1、E2、E3 M2 −0.230 2 0.035 3 0.025 3 0.169 5 E2、E3、E4 M3 −0.128 3 0.733 9 −0.637 8 0.218 0 E2、E4 M4 −0.341 7 −0.049 2 0.375 8 0.035 0 E3、E4 M5 0.265 7 −0.017 5 −0.336 6 0.155 9 E1、E4 M6 0.015 0 −0.226 1 0.347 2 −0.193 6 E1、E3 M7 0.085 5 0.017 0 0.329 1 0.153 7 E1、E2、E3、E4 M8 0.484 4 −0.165 9 −0.070 1 −0.313 4 E1 M9 0.317 9 −0.223 5 −0.127 6 0.072 4 E1、E4 M10 −0.359 0 0.052 3 0.265 6 0.023 1 E2、E3、E4 表 6 各试验点马尾松无性系生长性状综合评价
Table 6 Comprehensive evaluation of growth traits of P. massoniana clones in different sites
E1 E2 E3 E4 平均值 Mean 排名
Ranking无性系
CloneQi 无性系
CloneQi 无性系
CloneQi 无性系
CloneQi 无性系
CloneQi M8 1.25 M5 1.17 M7 1.15 M5 1.26 M5 1.20 1 M5 1.25 M1 1.16 M1 1.14 M4 1.25 M1 1.19 2 M1 1.24 M4 1.15 M4 1.13 M2 1.25 M4 1.18 3 M7 1.22 M3 1.15 M2 1.12 M1 1.23 M7 1.18 4 M4 1.21 M2 1.14 M5 1.11 M7 1.23 M2 1.18 5 M2 1.20 M7 1.13 M10 1.11 M3 1.19 M10 1.14 6 M9 1.19 M10 1.12 M6 1.08 M10 1.18 M8 1.13 7 M3 1.17 M8 1.07 M9 1.08 M9 1.16 M9 1.12 8 M6 1.15 M9 1.05 M8 1.05 M8 1.14 M3 1.12 9 M10 1.14 M6 1.03 M3 0.97 M6 1.12 M6 1.09 10 平均值 Mean 1.20 1.12 1.10 1.20 1.15 表 7 马尾松优良无性系遗传增益估算
Table 7 Genetic gain estimation of superior clones of P. massoniana
无性系
Clone平均胸径
Average DBH/cm与CK相比
Compared with CK平均树高
Average tree height/m与CK相比
Compared with CK现实增益
Practical gain/%遗传增益
Genetic gain/%现实增益
Practical gain/%遗传增益
Genetic gain/%M1 5.9 47.82 43.99 4.05 26.58 23.12 M2 5.6 41.20 37.90 4.02 25.53 22.21 M4 5.7 42.55 39.14 4.01 25.19 21.92 M5 6.0 49.62 45.65 4.10 28.03 24.38 M7 5.7 43.31 39.85 4.02 25.61 22.28 平均值 Mean 5.8 44.75 41.17 4.04 26.25 22.84 -
[1] 林元震. 林木基因型与环境互作的研究方法及其应用[J]. 林业科学, 2019, 55(5): 142−151. doi: 10.11707/j.1001-7488.20190516 Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications[J]. Scientia Silvae Sinicae, 2019, 55(5): 142−151. doi: 10.11707/j.1001-7488.20190516
[2] White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: CAB International, 2007.
[3] 刘宁, 丁昌俊, 李波, 等. 12个欧美杨无性系生长初期基因型与环境的互作效应[J]. 林业科学, 2020, 56(8): 63−72. doi: 10.11707/j.1001-7488.20200808 Liu N, Ding C J, Li B, et al. Effects of genotype by environment interaction of 12 Populus × euramericana clones in their early growth[J]. Scientia Silvae Sinicae, 2020, 56(8): 63−72. doi: 10.11707/j.1001-7488.20200808
[4] 姜岳忠, 李善文, 秦光华, 等. 黑杨派无性系区域化试验初报[J]. 林业科学, 2006, 42(12): 143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026 Jiang Y Z, Li S W, Qin G H, et al. Regional test of poplar clones in section Aigeiros[J]. Scientia Silvae Sinicae, 2006, 42(12): 143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026
[5] 徐焕文, 刘宇, 李志新, 等. 5年生白桦杂种子代多点稳定性分析及优良家系选择[J]. 北京林业大学学报, 2015, 37(23): 24−31. doi: 10.13332/j.1000-1522.20140466 Xu H W, Liu Y, Li Z X, et al. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test[J]. Journal of Beijing Forestry University, 2015, 37(23): 24−31. doi: 10.13332/j.1000-1522.20140466
[6] 王胤, 姚瑞玲. 马尾松组培苗的造林成效[J]. 东北林业大学学报, 2019, 47(11): 38−41. doi: 10.3969/j.issn.1000-5382.2019.11.008 Wang Y, Yao R L. Afforestation effect of Pinus massoniana tissue culture seedlings[J]. Journal of Northeast Forestry University, 2019, 47(11): 38−41. doi: 10.3969/j.issn.1000-5382.2019.11.008
[7] 郑仁华, 傅玉狮, 肖晖, 等. 马尾松优树子代基因型与环境互作及稳定性的研究[J]. 福建林业科技, 1999, 26(增刊): 40−44. doi: 10.13428/j.cnki.fjlk.1999.s1.012 Zheng R H, Fu Y S, Xiao H, et al. Study on the interaction and stability between genotype and environment of progeny of superior Pinus massoniana[J]. Journal of Fujian Forestry Science and Technology, 1999, 26(Suppl.): 40−44. doi: 10.13428/j.cnki.fjlk.1999.s1.012
[8] 李建民. 马尾松自由授粉家系遗传稳定性分析[J]. 福建林学院学报, 1994, 14(2): 120−127. doi: 10.13324/j.cnki.jfcf.1994.02.007 Li J M. Analysis of the genotypic stability of Masson pine’s open pollination families[J]. Journal of Fujian College of Forestry, 1994, 14(2): 120−127. doi: 10.13324/j.cnki.jfcf.1994.02.007
[9] 董虹妤, 刘青华, 金国庆, 等. 马尾松3代种质幼林生长性状遗传效应及其与环境互作[J]. 林业科学研究, 2015, 28(6): 775−780. doi: 10.3969/j.issn.1001-1498.2015.06.003 Dong H Y, Liu Q H, Jin G Q, et al. Genetic effects of growth traits for the third generation Pinus massoniana germplasm and the interaction with environment[J]. Forest Research, 2015, 28(6): 775−780. doi: 10.3969/j.issn.1001-1498.2015.06.003
[10] 陈天华, 徐立安, 王章荣. 马尾松种源试验试点效应与稳定性分析[J]. 南京林业大学学报, 1994, 18(3): 19−25. Chen T H, Xu L A, Wang Z R. Analysis of test locations effect and stability for provenance trial in Masson pine[J]. Journal of Nanjing Forestry University, 1994, 18(3): 19−25.
[11] 周志春, 金国庆. 马尾松不同产地的遗传稳定性和生态学基础[J]. 南京林业大学学报, 1998, 22(3): 75−80. Zhou Z C, Jin G Q. A study on genetic stability of different seed sources and its ecological basis of Masson pine[J]. Journal of Nanjing Forestry University, 1998, 22(3): 75−80.
[12] 解懿妮, 刘青华, 蔡燕灵, 等. 5年生马尾松生长性状3地点家系变异及评价[J]. 林业科学研究, 2020, 33(5): 1−12. doi: 10.13275/j.cnki.lykxyj.2020.05.001 Xie Y N, Liu Q H, Cai Y L, et al. Family variation and evaluation of growth traits of 5-year-old Pinus massoniana in three sites[J]. Forest Research, 2020, 33(5): 1−12. doi: 10.13275/j.cnki.lykxyj.2020.05.001
[13] 王胤, 姚瑞玲. 马尾松无性系苗期生长性状遗传多样性分析[J]. 西南林业大学学报, 2018, 38(6): 58−62. Wang Y, Yao R L. Analysis on genetic diversity of growth characters in seedlings stage of Pinus massoniana clones[J]. Journal of Southwest Forestry University, 2018, 38(6): 58−62.
[14] 王胤, 姚瑞玲. 马尾松无性系幼林生长性状变异分析[J]. 西南林业大学学报, 2020, 40(1): 11−16. doi: 10.11929/j.swfu.201901004 Wang Y, Yao R L. Variation analysis of growth characters in young clones forest of Pinus massoniana[J]. Journal of Southwest Forestry University, 2020, 40(1): 11−16. doi: 10.11929/j.swfu.201901004
[15] 王胤, 姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析[J]. 林业科学, 2020, 56(8): 38−46. doi: 10.11707/j.1001-7488.20200805 Wang Y, Yao R L. Rooting capacity of Pinus massoniana and the correlations endohormones levels during subcultur[J]. Scientia Silvae Sinicae, 2020, 56(8): 38−46. doi: 10.11707/j.1001-7488.20200805
[16] Wang Y, Yao R L. Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium[J]. Journal of Forestry Research, 2017, 28(6): 1169−1175. doi: 10.1007/s11676-017-0412-9
[17] 续九如. 林木数量遗传学[M]. 北京: 高等教育出版社, 2006. Xu J R. Quantitative genetics in forestry[M]. Beijing: Higher Education Press, 2006.
[18] 沈熙环. 林木育种学[M]. 北京: 中国林业出版社, 1990. Shen X H. Forest breeding[M]. Beijing: China Forestry Publishing House, 1990.
[19] 洪舟, 吴培衍, 张金文, 等. 漳州地区交趾黄檀幼龄期生长表现及适应性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 118−124. Hong Z, Wu P Y, Zhang J W, et al. Early growth performances and adaptability of Dalbergia cochinchinensis in Zhangzhou, Fujian Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(6): 118−124.
[20] 张平冬, 张锋, 孙静, 等. 三倍体毛白杨新无性系多性状与环境互作及稳定性分析[J]. 北京林业大学学报, 2019, 41(7): 31−38. doi: 10.13332/j.1000-1522.20190106 Zhang P D, Zhang F, Sun J, et al. Interactions between environment and traits and analysis of stability in new triploid clones of Populus tomentosa[J]. Journal of Beijing Forestry University, 2019, 41(7): 31−38. doi: 10.13332/j.1000-1522.20190106
[21] 赵曦阳, 李颖, 赵丽, 等. 不同地点白杨杂种无性系生长和适应性表现分析和评价[J]. 北京林业大学学报, 2013, 35(6): 7−17. doi: 10.13332/j.1000-1522.2013.06.010 Zhao X Y, Li Y, Zhao L, et al. Analysis and evaluation of growth and adaptive performance of white poplar hybrid clones in different sites[J]. Journal of Beijing Forestry University, 2013, 35(6): 7−17. doi: 10.13332/j.1000-1522.2013.06.010
[22] 赵曦阳, 马开峰, 沈应柏, 等. 白杨派杂种无性系植株早期性状变异与选择研究[J]. 北京林业大学学报, 2012, 34(2): 45−51. Zhao X Y, Ma K F, Shen Y B, et al. Characteristic variation and selection of forepart hybrid clones of Sect. Populus[J]. Journal of Beijing Forestry University, 2012, 34(2): 45−51.
[23] 刘宇, 徐焕文, 张广波, 等. 白桦半同胞子代多点生长性状测定及优良家系选择[J]. 北京林业大学学报, 2017, 39(3): 7−15. doi: 10.13332/j.1000-1522.20160154 Liu Y, Xiu H W, Zhang G B, et al. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(3): 7−15. doi: 10.13332/j.1000-1522.20160154
[24] 王军辉, 顾万春, 李斌, 等. 桤木优良种源/家系的选择研究−生长的适应性和遗传稳定性分析[J]. 林业科学, 2000, 36(3): 59−66. doi: 10.3321/j.issn:1001-7488.2000.03.010 Wang J H, Gu W C, Li B, et al. Study on selection of Alnus cremastogyne provenance/family-analysis of growth adaptation and genetic stability[J]. Scientia Silvae Sinicae, 2000, 36(3): 59−66. doi: 10.3321/j.issn:1001-7488.2000.03.010
[25] 李光友, 黎建民, Risto V, 等. 尾叶桉无性系多点遗传分析及优良无性系选择[J]. 西北林学院学报, 2006, 21(5): 84−88. doi: 10.3969/j.issn.1001-7461.2006.05.020 Li G Y, Li J M, Risto V, et al. Growth and genetic analysis of Eucalyptus urophylla clones in 3 sites in Guangxi[J]. Journal of Northwest Forestry University, 2006, 21(5): 84−88. doi: 10.3969/j.issn.1001-7461.2006.05.020
[26] 王克胜, 卞学瑜, 李淑梅, 等. 欧美杨无性系区域试验的效应分析与稳定性测定[J]. 林业科学研究, 1996, 9(1): 92−96. doi: 10.13275/j.cnki.lykxyj.1996.01.017 Wang K S, Bian X Y, Li S M, et al. Analysis on effect and stability of the regional test of Populus × euramericana clones[J]. Forest Research, 1996, 9(1): 92−96. doi: 10.13275/j.cnki.lykxyj.1996.01.017
[27] McKeand S E, Eriksson G, Roberds J H. Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine[J]. Theoretical and Applied Genetics, 1997, 94(8): 1015−1022. doi: 10.1007/s001220050509
[28] Zheng R H, Hong Z, Su S D, et al. Inheritance of growth and survival in two 9-year-old, open-pollinated progenies of an advanced breeding population of Chinese firs in southeastern China[J]. Journal of Forestry Research, 2016, 27(5): 1067−1075. doi: 10.1007/s11676-016-0250-1
[29] Woodward F I. Climate and plant distribution[M]. London: Cambridge University Press, 1987.
[30] 魏润鹏. 气候变化背景下森林资源发展的机遇[J]. 世界林业研究, 2013, 26(1): 1−6. doi: 10.13348/j.cnki.sjlyyj.2013.01.012 Wei R P. Opportunities in forest resources development under climate change[J]. World Forestry Research, 2013, 26(1): 1−6. doi: 10.13348/j.cnki.sjlyyj.2013.01.012
[31] Alia R, Gil L, Pardos J A. Performance of 43 Pinus pinaster Ait. provenances on 5 locations in central Spain[J]. Silvae Genetica, 1995, 44(2): 75−80.
[32] Rehfeldt G E, Ying C C, Spittlehouse D L, et al. Genetic response to climate in Pinus contorta: niche breadth, climate change, and reforestation[J]. Ecological Monographs, 1999, 69(3): 375−407. doi: 10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2
[33] 孔繁玲. 植物数量遗传学[M]. 北京: 中国农业大学出版社, 2006. Kong F L. Quantitative genetics in plants[M]. Beijing: China Agricultural University Press, 2006.
[34] 顾万春. 毛白杨优良无性系选育−生产力、遗传稳定性和适应性评价[J]. 林业科学研究, 1990, 3(3): 222−223. Gu W C. The selection breeding of excellent clones of Populus tomentosa-an evaluation of productivity, genetic stability and adaptability[J]. Forest Research, 1990, 3(3): 222−223.
[35] 李火根, 黄敏仁, 潘惠新, 等. 美洲黑杨无性系生长遗传稳定性分析[J]. 东北林业大学学报, 1997, 25(6): 1−5. Li H G, Huang M R, Pan H X, et al. The genetic stability analysis of growth for new cottonwood clones[J]. Journal of Northeast Forestry University, 1997, 25(6): 1−5.
[36] 王云鹏, 张蕊, 周志春, 等. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9): 78−86. doi: 10.11707/j.1001-7488.20200909 Wang Y P, Zhang R, Zhou Z C, et al. Dynamic patterns of genetic variation in early growth traits of the open-pollinated families of Schima superba plus tree[J]. Scientia Silvae Sinicae, 2020, 56(9): 78−86. doi: 10.11707/j.1001-7488.20200909
-
期刊类型引用(12)
1. 于宏影,闫晓娜,王晓红,王思瑶,韦睿,黄艳. 东北茶藨子果实氨基酸组成分析. 林业科技通讯. 2024(09): 72-76 . 百度学术
2. 刘哲,叶英,罗黎霞,王虹,张祎睿. 狭果茶藨子营养成分分析与氨基酸提取工艺优化及评价. 食品与发酵工业. 2022(13): 188-195 . 百度学术
3. 刘九庆,谢力. 植物导管中穿孔板的流体力学建模与流阻分析. 森林工程. 2022(05): 93-103 . 百度学术
4. 罗敏蓉. 基于不同方法的毛茛族(毛茛科)导管穿孔板比较研究. 广西植物. 2021(01): 123-132 . 百度学术
5. 邓睿,张梅丽,周明,郑宝江. 中国茶藨子属1新记录种. 南京林业大学学报(自然科学版). 2021(02): 231-233 . 百度学术
6. 杜习武,叶康,胡永红,邵文,陈奕飞,廖梓洋,曾丽,秦俊. 淹水胁迫对星花玉兰木质部水分运输的影响. 植物生理学报. 2021(10): 1963-1973 . 百度学术
7. 张丽,乔枫. 茶藨子属植物逆境生理研究进展. 世界林业研究. 2018(01): 18-22 . 百度学术
8. 王美娟,赵千里,李芯妍,郑宝江. 12种茶藨子属植物叶表皮微形态特征及其分类学意义. 植物研究. 2018(04): 490-496 . 百度学术
9. 刘虹,薛青,黄文,覃瑞. 茶藨子属ITS2序列二级结构的预测和比较分析. 中南民族大学学报(自然科学版). 2018(03): 42-47 . 百度学术
10. 杜婉,王丰,潘彪,陈昕. 花楸属3种1变种植物茎次生构造的比较. 安徽农业大学学报. 2017(05): 857-861 . 百度学术
11. 刘灵,韦睿,于宏影,王千雪,申方圆. 东北茶藨子果实性状变异研究. 西南林业大学学报(自然科学). 2017(06): 23-29 . 百度学术
12. 韦睿,黄艳,王晓红,刘灵. 东北茶藨子研究现状及开发前景展望. 北方园艺. 2016(14): 202-206 . 百度学术
其他类型引用(12)