Research on optimization method for LID controls distribution of greenspace in shallow mountain based on D8 and NSGA-Ⅱ algorithm
-
摘要:
目的 雨洪问题已经成为浅山区发展的关键制约因素,绿地低影响开发是解决浅山区雨洪问题的重要手段,构建一套面向径流控制效果、建设成本等多元目标的低影响开发设施的布局优化方法,能够为浅山区雨洪问题的高效解决提供重要技术支持,有助于浅山区的未来高质量发展。 方法 研究从浅山区绿地规划设计特征与径流特点入手,耦合D8与NSGA-Ⅱ算法,构建基于栅格数据的低影响开发布局优化平台,实现了协同径流控制效果与建设成本优化的低影响开发设施类型、规模空间量化布局,并将石家庄西山郊野公园作为实验对象,以验证方法的可行性。 结果 分别在重现期5、10和20年2 h降雨模拟情景中,得到实验对象低影响开发设施布局优化解集24、30和30个,并识别得到各模拟情景LID设施建设的“理想投资上限点”:7 514.1、6 634.4和6 065.1万元;在ArcGIS可视化各模拟情景所得“理想投资上限点”对应的LID设施布局方案,发现雨水花园、透水铺装、调蓄水体呈散点状分布,植草沟呈分散的小规模线性分布。 结论 D8与NSGA-Ⅱ耦合算法能够良好地匹配浅山区绿地的低影响开发情景,简化了传统绿地低影响开发繁琐的设计流程;实验结果表明,径流峰值流量与LID设施成本存在边际递减效益,且随着降雨重现期增大,边际递减效益加快;相对其他LID设施,透水铺装与雨水花园的建设性价更高;实验对象的可视化模拟结果基本符合设计原理与真实设计情景,能够良好地指导规划设计;未来应重点探究低影响开发设施布局优化与绿地规划设计的协同方法,同步规划设计方案以置入必要的约束条件,从而提升设施布置结果的合理性和指导性。 Abstract:Objective The stormwater problem has become a key restrictive factor for the development of shallow mountain areas and the low impact development (LID) of green space is an important means to solve such problem in shallow mountain areas. Forming an optimization method for LID controls distribution, for multi-objective such as runoff control and cost, can provide important technical support for the efficient solution of stormwater problems in shallow mountain areas, and contribute to the future high-quality development of this areas. Method Based on the characteristics of green space planning and design and runoff in shallow mountain area, the study forms a platform for optimal distribution of LID controls by D8 and NSGA-Ⅱ coupled algorithm, which realizes spatial quantitative optimization of the type and scale of LID controls based on collaborative optimization of runoff control and cost, in addition, Westmount country park in Shijiazhuang city is taken as the experimental object to verify the feasibility of the method. Result 24, 30 and 30 optimal solution sets for the optimal distribution of LID controls of experimental object are got in the simulated2-hour rainfall event under return periods of 5-year, 10-year and 20-year; The ‘ideal investment upper limit point’ of each simulated rainfall event is 75.141 million yuan, 66.344 million yuan and 60.651 million yuan respectively; Visual results of the distribution of most efficient cost based on ArcGIS show that raingarden, permeable pavement and water are scattered, and vegetative swale is scattered in small-scale linear distribution. Conclusion D8 and NSGA-Ⅱ coupled algorithm can well match the LID of green space in shallow mountain area, and simplify the cumbersome design process of LID in traditional green space; there is marginal diminishing benefit between peak flow of runoff and LID controls cost, which accelerates with the increase of rainfall return period; the permeable pavement and raingarden have more cost performance than other LID controls; the visual simulation results of the experimental object basically accord with the principle and pattern in real design, which verifies the feasibility and rationality of the method; in order to improve the rationality and guidance of simulated results of distribution, the further research should focus on the collaborative method for optimal distribution of LID controls and green space planning and design. -
Key words:
- shallow mountain /
- LID /
- multi-objective optimization method /
- NSGA-Ⅱ /
- landscape architecture
-
表 1 下游栅格坐标换算表
Table 1. Coordinate conversion table of downstream raster
坐标 coordinate 上游栅格
upstream raster下游栅格 downstream raster 正东
east正南
south正西
west正北
north东南
southeast东北
northeast西南
southwest西北
southwest横坐标X coordinate X x x + a x x − a x x + a x + a x − a x − a 纵坐标Y coordinate Y y y y − a y y + a y − a y + a y − a y + a 注:a为单位栅格精度。Note: a is the unit raster size. 表 2 LID设施参数设置表
Table 2. Table of parament of LID controls
LID设施名称
LID controlLID设施主要SWMM模型参数
Main parament of LID controls in SWMM单位成本/(元·m−2)
Unit cost /(yuan·m−2)雨水花园
Raingarden表面
Surface深度400 mm 植被覆盖0.3 表面粗糙系数0.4 表面坡度0.3Height 400 mm Vegetation volume fraction 0.3 Surface roughness 0.1 Surface slope 0.3 600 土壤
Soil厚度300 mm 孔隙率0.5 产水能力0.2 枯萎点0.1 导水率10 mm/h 导水坡度10 吸水头88.9 mmThickness 300 mm Porosity 0.5 Field capacity 0.2 Wilting point 0.1 Conductivity 10 Conductivity slope 10 suction head 88.9 透水铺装
Permeable pavement表面
Surface深度5 mm 表面粗糙系数0.01 表面坡度0.3Height 5 mm Surface roughness 0.01 Surface slope 0.3 260 土壤
Soil厚度150 mm孔隙率0.25导水率800 mm/hThickness 150 mm Porosity 0.25 Conductivity 800 mm/h 蓄水
Storage厚度300 mm 孔隙比0.5 渗透率1.8 mm/hThickness 300 mm Void ratio 0.5 Seepage rate 1.8 mm/h 调蓄水体
Water蓄水
Storage深度 300 mm
Height 300 mm530 植草沟
Vegetative swale表面
Surface深度300 mm 植被覆盖0.2 表面粗糙系数0.3 表面坡度0.3Height 300 mm Vegetation volume fraction 0.2 Surface roughness 0.3 Surface slope 0.3 150 土壤
Soil厚度300 mm
Thickness 300 mm -
[1] 冯艺佳. 风景园林视角下的北京市浅山区绿色空间理想格局构建策略研究[D]. 北京: 北京林业大学, 2016.Feng Y J. Study on the ideal pattern construction strategy of green space in shallow mountain of Beijing through the view of landscape architecture[D]. Beijing: Beijing Forestry University, 2016. [2] 时薏, 李运远, 戈晓宇, 等. 华北地区城市浅山区海绵绿道设计方法研究: 以石家庄鹿泉区山前大道为例[J]. 北京林业大学学报, 2017, 39(11): 82−91.Shi Y, Li Y Y, Ge X Y, et al. Design methods of sponge greenway in urban shallow mountainous area in northern China: taking the greenway of Luquan District in Shijiazhuang as an example[J]. Journal of Beijing Forestry University, 2017, 39(11): 82−91. [3] 陈泓宇. 雨洪调控视角下的北京浅山区森林湿地公园规划设计研究[D]. 北京林业大学, 2020.Chen H Y. Research on the planning and design of forest-wetland park in foothill area in Beijing from the perspective of rainwater management[D]. Beijing Forestry University, 2020. [4] 林俏, 刘喆, 吕英烁, 等. 基于水文模型的北京浅山区雨洪管理措施探究: 以夹括河上游为例[J]. 北京林业大学学报, 2020, 42(5): 132−142. doi: 10.12171/j.1000-1522.20190116Lin Q, Liu Z, Lv Y S, et al. Stormwater management measures in Beijing suburban hilly area based on hydrological model: taking the upper reaches of Jiakuohe River as an example[J]. Journal of Beijing Forestry, 2020, 42(5): 132−142. doi: 10.12171/j.1000-1522.20190116 [5] 丁佳. 基于雨洪管理的“青岛小镇”浅山区冲沟公共绿地景观设计[D]. 清华大学, 2014.Ding J. Research on landscape architecture design of gully landform green space in peri-urban of ‘Tsingtao Village’ project base on stormwater management[D]. Tsinghua University, 2014. [6] 牛思亚, 刘志成. 雨洪管理视角下的浅山区冲沟公共绿地设计策略研究[J]. 中国城市林业, 2019, 17(2): 92−95. doi: 10.3969/j.issn.1672-4925.2019.02.003Niu S Y, Liu Z C. Research on design strategy of gully landform green space in hillside area from stromwater management perspective[J]. Journal of Chinese Urban Forestry, 2019, 17(2): 92−95. doi: 10.3969/j.issn.1672-4925.2019.02.003 [7] 冯梦珂, 王思思, 苏毅, 等. 北方浅山区冲沟景观生态规划与设计[J]. 北京规划建设, 2019, 184(1): 108−112.Feng M K, Wang S S, Su Y, et al. Ecological planning and design of gully landscape in northern shallow mountainous area[J]. Beijing Planning and Construction, 2019, 184(1): 108−112. [8] 刘颂, 赖思琪. 国外雨洪管理绩效评估研究进展及启示[J]. 南方建筑, 2018, 185(3): 46−52. doi: 10.3969/j.issn.1000-0232.2018.03.046Liu S, Lai S Q. Review of and inspiration from overseas stormwater management performance evaluation[J]. South Architecture, 2018, 185(3): 46−52. doi: 10.3969/j.issn.1000-0232.2018.03.046 [9] 沈洁, 龙若愚, 陈静. 基于景观绩效系列(LPS)的中美雨水管理绩效评价比较研究[J]. 风景园林, 2017, 149(12): 107−116.Shen J, Long R Y, Chen J. Comparative research on performance assessment of stormwater management between China and America based on landscape performance series (LPS)[J]. Landscape Architecture, 2017, 149(12): 107−116. [10] Wang J, Liu J, Wang H, et al. Approaches to multi-objective optimization and assessment of green infrastructure and their multi-functional effectiveness: a review[J]. Water, 2020, 12(10): 2714. doi: 10.3390/w12102714 [11] 李旦, 叶长青. 基于耦合SWMM模型和NSGA-Ⅱ算法的多目标低影响开发措施优化设计方法及应用[J]. 水电能源科学, 2019, 226(6): 64−67.Li D, Ye C Q. Multi-objective optimization of low impact development using SWMM model and NSGA-Ⅱ method and its application[J]. Water Resources and Power, 2019, 226(6): 64−67. [12] Martin-Mikle C J, de Beurs K M, Julian J P, et al. Identifying priority sites for low impact development (LID) in a mixed-use watershed[J]. Landscape and urban planning, 2015, 140(4): 29−41. [13] Johnson R D, Sample D J. A semi-distributed model for locating stormwater best management practices in coastal environments[J]. Environmental Modelling & Software, 2017, 91(5): 70−86. [14] 林辰松, 董宇翔, 陈泓宇, 等. 基于NSGA-Ⅱ算法的集雨型绿地低影响开发设施规模优化计算方法及应用−以南阳院士小镇为例[J]. 风景园林, 2020, 27(12): 92−97.Lin C S, Dong Y X, Chen H Y, et al. Optimal calculation method of size of LID facilities for rainwater harvesting green space based on NSGA-Ⅱ algorithm and application: a case study of Nanyang academician town[J]. Landscape Architecture, 2020, 27(12): 92−97. [15] Ghodsi S H, Kerachian R, Zahmatkesh Z. A multi-stakeholder framework for urban runoff quality management: application of social choice and bargaining techniques[J]. Science of the Total Environment, 2016, 550: 574−585. doi: 10.1016/j.scitotenv.2016.01.052 [16] Lei X, Zhang J, Wang H, et al. Deriving mixed reservoir operating rules for flood control based on weighted non-dominated sorting genetic algorithm Ⅱ[J]. Journal of Hydrology, 2018, 564: 967−983. doi: 10.1016/j.jhydrol.2018.07.075 [17] Raei E, Alizadeh M R, Nikoo M R, et al. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty[J/OL]. Journal of Hydrology, 2019, 579: 124091[2021−05−16]. https://doi.org/10.1016/j.jhydrol.2019.124091. [18] 张维, 杨昕, 汤国安, 等. 基于DEM的平缓地区水系提取和流域分割的流向算法分析[J]. 测绘科学, 2012, 37(2): 94−96.Zhang W, Yang X, Tang G A, et al. DEM-based flow direction algorithms study of stream extraction and watershed delineation in the low relief areas[J]. Science of Surveying and Mapping, 2012, 37(2): 94−96. [19] 武静, 李梦婷. 基于景观地形的小流域单元减灾调控评价研究[J]. 风景园林, 2020, 27(1): 110−114.Wu J, Li M T. Evaluation of risk regulation and reduction of small watershed units based on landscape topography[J]. Landscape Architecture, 2020, 27(1): 110−114. [20] 毛华松, 罗评, 沙田. 响应山地水文特征的冲沟地段城市设计策略研究[J]. 中国园林, 2017, 33(2): 34−38. doi: 10.3969/j.issn.1000-6664.2017.02.007Mao H S, Luo P, Sha T. Study on urban design strategy of gully area in response to mountain hydrological characteristics[J]. Chinese Landscape Architecture, 2017, 33(2): 34−38. doi: 10.3969/j.issn.1000-6664.2017.02.007 [21] 卢奕芸, 戈晓宇. 基于水安全目标的城市绿地水体设计方法研究: 以第二届河北省园林博览会(秦皇岛)园区为例[J]. 风景园林, 2020, 27(11): 64−69.Lu Y Y, Ge X Y. Method for designing urban green space water system based on water security: a case study of 2nd Hebei Garden Expo(Qinhuangdao) Park[J]. Landscape Architecture, 2020, 27(11): 64−69. [22] 陈泓宇, 董宇翔, 闫娜, 等. 石家庄某郊野公园雨洪调控效益研究[J]. 给水排水, 2019, 55(12): 13−17,23.Chen H Y, Dong Y X, Yan N, et al. Research of stormwater management performance in suburban park in Shijiazhuang[J]. Water & Wastewater Engineering, 2019, 55(12): 13−17,23. [23] Blank J, Deb K. Pymoo: multi-objective optimization in python[J]. IEEE Access, 2020, 8: 89497−89509. doi: 10.1109/ACCESS.2020.2990567 [24] 刘欣, 朱苏加, 赵艳霞, 等. 河北浅山区土地利用时空演变图谱特征及地形效应[J]. 地理与地理信息科学, 2020, 36(4): 94−101.Liu X, Zhu S J, Zhao Y X, et al. Spatial – temporal evolution and terrain effects of land use based on geo-informatic Tupu in Hebei shallow mountainous areas[J]. Geography and Geo-information Science, 2020, 36(4): 94−101. [25] 任凯珍, 韩建超, 季为. 北京地区突发地质灾害分布规律研究[J]. 城市地质, 2015(S1): 46−49,84.Ren K Z, Han J C, Ji W. Present situation and study on the warning method of the debris flow calamity in Beijing[J]. Urban Geology, 2015(S1): 46−49,84. [26] 刘家琳, 李媛媛, 张建林. 重庆山地公园子汇水区产流特征与雨洪利用改造策略[J]. 西部人居环境学刊, 2019, 34(6): 42−49.Liu J L, Li Y Y, Zhang J L. Analysis on surface runoff property and stormwater utilization in urban mountain parks in Chongqing[J]. Journal of Human Settlements in West China, 2019, 34(6): 42−49. [27] 康嘉奇, 戈晓宇. 半湿润地区外源径流型海绵绿地设计方法研究: 以迁安市滨湖东路绿地为例[J]. 风景园林, 2019, 26(8): 77−82.Kang J Q, Ge X Y. Method for designing exogenous runoff sponge green space in semi-humid region –a Case study of the green space of east Binhu Road in Qian’an City[J]. Landscape Architecture, 2019, 26(8): 77−82. [28] 林辰松, 邵明, 葛韵宇, 等. 基于SWMM情境模拟的外源雨水型公园绿地雨洪调控效果研究[J]. 北京林业大学学报, 2016, 38(12): 92−103.Lin C S, Shao M, Ge Y Y, et al. Research of stormflood regulation efficiency of the low impact development of exogenous-rainwater park based on the SWMM simulation[J]. Journal of Beijing Forestry University, 2016, 38(12): 92−103. [29] 孙会航, 李俐频, 田禹, 等. 基于多目标优化与综合评价的海绵城市规划设计[J]. 环境科学学报, 2020, 40(10): 3605−3614.Sun H H, Li L P, Tian Y, et al. Sponge city planning and design based on multi-objective optimization and comprehensive evaluation[J]. Acta Scientiae Circumstantiae, 2020, 40(10): 3605−3614. [30] 邵明, 李雄, 戈晓宇, 等. 海绵城市视角下SUSTAIN模型在城市绿地设计中的应用[J]. 工业建筑, 2017, 47(5): 56−61.Shao M, Li X, Ge X Y, et al. Application of SUSTAIN model in urban green space construction from the perspective of sponge city[J]. Industrial Building, 2017, 47(5): 56−61. [31] Deb K, Sindhya K, Okabe T. Self-adaptive simulated binary crossover for real-parameter optimization[C]// GECCO '07: Proceedings of the 9th annual conference on genetic and evolutionary computation. New York: Association for Computing Machinery, 2007: 1187-1194. -