高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烯效唑对盆栽芍药生理特性及显微结构的影响

董志君 高健洲 于晓南

董志君, 高健洲, 于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响[J]. 北京林业大学学报, 2022, 44(7): 117-125. doi: 10.12171/j.1000-1522.20210325
引用本文: 董志君, 高健洲, 于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响[J]. 北京林业大学学报, 2022, 44(7): 117-125. doi: 10.12171/j.1000-1522.20210325
Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. doi: 10.12171/j.1000-1522.20210325
Citation: Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. doi: 10.12171/j.1000-1522.20210325

烯效唑对盆栽芍药生理特性及显微结构的影响

doi: 10.12171/j.1000-1522.20210325
基金项目: 国家自然科学基金项目(32071817)
详细信息
    作者简介:

    董志君,博士生。主要研究方向:花卉繁殖与栽培。Email:13167338933@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    于晓南,博士,教授。主要研究方向:园林植物资源与育种。Email:yuxiaonan626@126.com 地址:同上

  • 中图分类号: S682.1+2

Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora

  • 摘要:   目的  探究烯效唑对盆栽芍药生理特性和显微结构的影响,以期为盆栽芍药的商品化生产提供一定的参考。  方法  以盆栽芍药品种‘大富贵’为试验材料,以叶面喷施烯效唑(40 mg/L)为处理组,以叶面喷施清水(0 mg/L)为对照组,对处理后盆栽芍药4个不同生长发育时期(展叶期、现蕾期、透色期、盛花期)的叶片和根部的生理特性以及显微结构进行了测定和观察。  结果  与对照相比,烯效唑处理可明显降低盆栽芍药叶片和根部中硫代巴比妥酸反应物的生成量和积累量,提高细胞膜透性,维持细胞膜的稳定性,从而提高盆栽芍药对环境的适应性;随着处理天数的增加,盆栽芍药叶片总叶绿素含量和类胡萝卜素含量均呈先升高后降低的变化趋势,在透色期左右出现峰值;烯效唑处理后,盆栽芍药的叶片较厚,栅栏组织厚度增加,海绵组织和栅栏组织细胞排列紧密有序,根部髓所占比例较对照变大,皮层所占比例变小。  结论  叶面喷施烯效唑能够有效提高盆栽芍药对环境的适应能力,增加光合色素含量,改善叶和根内部组织结构,从而提升盆栽芍药的产品质量。

     

  • 图  1  烯效唑对盆栽芍药叶片和根部性状的影响

    A. 现蕾期(S2)冠幅;B. 从上到下第一片复叶;C. 盛花期(S4)根部性状;D. 侧根;A、B、C、D图中从左到右分别是对照组(CK)和40 mg/L烯效唑处理组(U40)。A, crown width at the budding stage (S2); B, the first compound leaf from top to bottom; C, root traits at the blooming stage (S4); D, the lateral roots; the pictures from left to right in A, B, C, D are the control (CK) and 40 mg/L uniconazole treatment (U40), respectively.

    Figure  1.  Effects of uniconazole on traits of leaves and roots of potted Paeonia lactiflora

    图  2  烯效唑对盆栽芍药叶片(A)和根部(B)硫代巴比妥酸反应物(TBARS)含量的影响

    S1. 展叶期;S2. 现蕾期;S3. 透色期;S4. 盛花期。不同字母表示处理组与对照组之间在0.05水平存在显著性差异(P < 0.05)。下同。S1, leaf-expansion stage; S2, flower-bud stage; S, pigmented stage; S4, full-flowering stage. Different letters indicate significant differences between U40 and CK (P < 0.05). Same as below.

    Figure  2.  Effects of uniconazole on thiobarbituric acid reactive substance (TBARS) contents of leaves (A) and roots (B) of potted P. lactiflora

    图  3  烯效唑对盆栽芍药叶片总叶绿素(A)和类胡萝卜素(B)含量的影响

    Figure  3.  Effects of uniconazole on total chlorophyll (A) and carotenoid (B) contents of leaves of potted P. lactiflora

    图  4  烯效唑对盆栽芍药叶片显微结构的影响

    A. 对照组主叶脉;B. 处理组主叶脉;C. 对照组叶片;D. 处理组叶片;A、B、C、D图中从左到右分别是S1、S2、S3、S4。vb. 维管束;c. 皮层;ue. 上表皮;pp. 栅栏组织;sp. 海绵组织;le. 下表皮。A, main veins of the control group; B, main veins of the treatment group; C, leaves of the control group; D, leaves of the treatment group; the pictures from left to right in A, B, C, D are S1, S2, S3, S4, respectively. vb, vascular bundle; c, cortex; ue, upper epidermis; pp, palisade parenchyma; sp, spongy parenchyma; le, lower epidermis.

    Figure  4.  Effects of uniconazole on the leaf microstructure of potted P. lactiflora

    图  5  烯效唑对盆栽芍药根部显微结构的影响

    A. 对照组根;B. 处理组根;C. 对照组根表皮细胞;D. 处理组根表皮细胞;A、B、C、D图中从左到右分别是S1、S2、S3、S4。pe. 周皮;sp. 次生韧皮部;vc. 维管形成层;sx. 次生木质部;pi. 髓。A, roots of the control group; B, roots of the treatment group; C, root epidermal cells of the control group; D, root epidermal cells of the treatment group;the pictures from left to right in A, B, C, D are S1, S2, S3, S4, respectively. pe, periderm;sp, secondary phloem;vc, vascular cambium;sx, secondary xylem;pi, pith.

    Figure  5.  Effects of uniconazole on the root microstructure of potted P. lactiflora

    表  1  烯效唑对盆栽芍药叶片和根部显微结构参数的影响

    Table  1.   Effects of uniconazole on leaf and root microstructure of potted P. lactiflora

    器官 Organ显微结构参数 Microstructure parameter对照组 Control处理组 Treatment
    叶 Leaf 厚度 Thickness/µm 154.85 ± 5.35b 178.05 ± 7.22a
    主脉厚度 Main vein thickness/µm 317.18 ± 15.06b 366.82 ± 11.86a
    栅栏组织厚度 Palisade parenchyma thickness/µm 32.60 ± 2.27b 41.17 ± 2.36a
    海绵组织厚度 Spongy parenchyma thickness/µm 94.40 ± 3.23b 107.56 ± 3.02a
    栅栏组织厚度/厚度 × 100% Palisade parenchyma thickness/thickness × 100% 21.03% 23.11%
    根 Root 直径 Diameter/µm 11617.02 ± 125.33b 12033.92 ± 83.49a
    皮层厚度 Cortex thickness/µm 503.92 ± 8.80a 461.57 ± 14.20b
    髓直径 Pith diameter/µm 4978.43 ± 70.88b 5352.45 ± 120.14a
    皮层厚度/直径 × 100% Cortex thickness/diameter × 100% 4.34% 3.84%
    髓直径/直径 × 100% Pith diameter/diameter × 100% 42.86% 44.47%
    注:表中数据为平均值 ± 标准差,试验数据均5个重复。Notes: statistical data are expressed as mean ± SD of five replicates.
    下载: 导出CSV
  • [1] 李琬, 项洪涛, 何宁, 等. 烯效唑(S3307)提高作物抗逆性研究进展[J]. 中国农学通报, 2020, 36(20): 101−106.

    Li W, Xiang H T, He N, et al. Uniconazole (S3307) improving resistance of crops: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 101−106.
    [2] Ahmad I, Ahmad S, Yang X N, et al. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density[J]. Plant Biology, 2021, 23(3): 485−496. doi: 10.1111/plb.13235
    [3] Luo K, Xie C, Wang J, et al. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system[J]. Journal of Plant Growth Regulation, 2020: 1−12.
    [4] 魏世林. 植物生长调节剂对高粱生长发育的影响及调节剂筛选[D]. 保定: 河北农业大学, 2021.

    Wei S L. Effects of plant growth regulators on growth and development of sorghum and selection of regulators[D]. Baoding: Hebei Agricultural University, 2021.
    [5] 项洪涛, 李琬, 郑殿峰, 等. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070

    Xiang H T, Li W, Zheng D F, et al. Effect of uniconazole and waterlogging stress in seeding stage on the physiology and yield in adzuki bean[J]. Acta Agronomica Sinica, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070
    [6] Huang Y L, Yue C J, Xiang J L, et al. Gene expression profile indicates involvement of uniconazole in Coix lachryma‐jobi L. seedlings at low temperature[J]. Food Science & Nutrition, 2020, 8(1): 534−546.
    [7] 周秀琳. 多效唑和烯效唑对金边吊兰的矮化效应研究[D]. 杭州: 浙江大学, 2017.

    Zhou X L. Studies on the dwarfing effect of paclobutrazol and uniconazole to Chlorophytum capense ‘Vittatum’ [D]. Hangzhou: Zhejiang University, 2017.
    [8] 郑日如, 廖金, 吴昀, 等. 烯效唑对东方百合‘索邦’生长的影响[J]. 北方园艺, 2012(3): 72−74.

    Zheng R R, Liao J, Wu Y, et al. Effect of uniconazole on growth of Lilium Oriental Hybrids ‘Sorbonne’[J]. Northern Horticulture, 2012(3): 72−74.
    [9] 钟颖颖, 廖易, 陆顺教, 等. 矮化剂作用机制及其在观赏植物上的研究进展[J]. 中国农学通报, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718

    Zhong Y Y, Liao Y, Lu S J, et al. Dwarfing agent: mechanism of action and research progress in ornamental plant[J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718
    [10] 秦魁杰. 芍药[M]. 北京: 中国林业出版社, 2014.

    Qin K J. Peony[M]. Beijing: China Forestry Publishing House, 2014.
    [11] 刘利刚. 盆栽芍药研究[D]. 北京: 北京林业大学, 2009.

    Liu L G. Studies on cultivation of potted herb peony [D]. Beijing: Beijing Forestry University, 2009.
    [12] 叶露莹. 芍药盆栽无土栽培基质研究[D]. 北京: 北京林业大学, 2010.

    Ye L Y. Studies on potted soilless media of herb peony[D]. Beijing: Beijing Forestry University, 2010.
    [13] 解孝满. 菏泽芍药品种资源调查及盆栽促成栽培技术的研究[D]. 南京: 南京林业大学, 2005.

    Xie X M. Research on the resources and pot-facilitating cultivation of Paeonia lactiflora in Heze[D]. Nanjing: Nanjing Forestry University, 2005.
    [14] 孙晓梅. 芍药容器苗生产技术研究[D]. 北京: 北京林业大学, 2014.

    Sun X M. Studies on container plant production technology for herbaceous peony[D]. Beijing: Beijing Forestry University, 2014.
    [15] 董志君, 张建军, 范永明, 等. 3种植物生长延缓剂对盆栽芍药的矮化效应[J]. 东北林业大学学报, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012

    Dong Z J, Zhang J J, Fan Y M, et al. Dwarfing effects of paclobutrazol, uniconazole and chlormequat on potted Paeonia lactiflora[J]. Journal of Northeast Forestry University, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012
    [16] 于晓南. 观赏芍药[M]. 北京: 中国林业出版社, 2019.

    Yu X N. Herbaceous peonies[M]. Beijing: China Forestry Publishing House, 2019.
    [17] 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207−210.

    Zhao S J, Xu C C, Zou Q, et al. Improvements of method for measurement of malondialdehvde in plant tissues[J]. Plant Physiology Journal, 1994, 30(3): 207−210.
    [18] 孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008.

    Kong X S, Yi X F. Plant physiology experiment technology[M]. Beijing: China Agriculture Press, 2008.
    [19] 张建军, 陈莉祺, 李建光, 等. 芍药根茎解剖结构特征及生长轮分析[J]. 北京林业大学学报, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096

    Zhang J J, Chen L Q, Li J G, et al. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096
    [20] 许长成, 赵世杰, 邹琦, 等. 植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素[J]. 植物生理学通讯, 1993, 29(5): 361−363.

    Xu C C, Zhao S J, Zou Q, et al. Interference in measurement of lipid peroxidation by thiobarbituric acid test in plant tissues[J]. Plant Physiology Journal, 1993, 29(5): 361−363.
    [21] 师超, 徐朗莱. 盐胁迫诱导小麦根尖细胞的氧化伤害及死亡[J]. 南京农业大学学报, 2010, 33(1): 16−20.

    Shi C, Xu L L. Salt stress-induced oxidative damage and death of cell in wheat root tips[J]. Journal of Nanjing Agricultural University, 2010, 33(1): 16−20.
    [22] 王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988−2000.

    Wang S Y, Zheng D F, Feng N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988−2000.
    [23] Shi X D, Chen S Y, Jia Z K. The dwarfing effects of different plant growth retardants on Magnolia wufengensis L. Y. Ma et L. R. Wang[J]. Forests, 2020, 12(1): 19. doi: 10.3390/f12010019
    [24] 王士红, 荆奇, 戴廷波, 等. 不同年代冬小麦品种旗叶光合特性和产量的演变特征[J]. 应用生态学报, 2008, 19(6): 1255−1260.

    Wang S H, Jing Q, Dai T B, et al. Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1255−1260.
    [25] 冯立娟, 苑兆和, 尹燕雷, 等. 多效唑对大丽花叶片光合特性和超微结构的影响[J]. 草业学报, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414

    Feng L J, Yuan Z H, Yin Y L, et al. Effects of paclobutrazol on the photosynthetic characteristics and ultrastructure of Dahlia pinnata leaves[J]. Acta Prataculturae Sinica, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414
    [26] 罗栋. 植物生长延缓剂对地涌金莲矮化效应研究[D]. 北京: 中国林业科学研究院, 2009.

    Luo D. Dwarf effect of plant growth retardants on Musella lasiocarpa[D]. Beijing: Chinese Academy of Forestry, 2009.
    [27] Schwartz A, Wu W H, Tucker E B, et al. Inhibition of inward K + channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action[J]. Proceedings of the National Academy of Sciences, 1994, 91(9): 4019−4023. doi: 10.1073/pnas.91.9.4019
    [28] Jiang Y, Sun Y F, Zheng D F, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.)[J]. Scientific Reports, 2021, 11(1): 14476. doi: 10.1038/s41598-021-93820-6
    [29] Huang K W, Xiao Y Y, Dong Y P, et al. Effects of uniconazole on the physiological characteristics and cadmium accumulation of Cyphomandra betacea seedlings[J]. Environmental Progress & Sustainable Energy, 2021, 40(4): e13614.
    [30] 刘春娟, 宋双伟, 冯乃杰, 等. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响[J]. 干旱地区农业研究, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34

    Liu C J, Song S W, Feng N J, et al. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment[J]. Agricultural Research in the Arid Areas, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34
    [31] 潘天天, 李彦, 王忠媛, 等. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系[J]. 林业科学, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206

    Pan T T, Li Y, Wang Z Y, et al. Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three Taxodiaceae species in humid area[J]. Scientia Silvae Sinicae, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206
    [32] 范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070

    Fan Z X, Chen Y Y, Fu H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070
    [33] 乌佳美, 唐敬超, 史作民, 等. 巴郎山糙皮桦叶片光合氮利用效率的海拔响应[J]. 应用生态学报, 2019, 30(3): 751−758.

    Wu J M, Tang J C, Shi Z M, et al. Response of photosynthetic nitrogen use efficiency in Betula utilis to altitudinal variation along Balang Mountain, Sichuan, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 751−758.
    [34] 李宁毅, 时彦平, 王吉振. 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响[J]. 西北植物学报, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019

    Li N Y, Shi Y P, Wang J Z. Effect of uniconazole on photosynthetic characters and leaf anatomical structure of Zinnia seedlings under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019
    [35] 孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988

    Meng N, Xu H, Wei M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988
    [36] Meister R, Rajani M S, Ruzicka D, et al. Challenges of modifying root traits in crops for agriculture[J]. Trends in Plant Science, 2014, 19(12): 779−788. doi: 10.1016/j.tplants.2014.08.005
    [37] Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943−1955. doi: 10.1104/pp.114.249037
    [38] 孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害[J]. 生态学杂志, 2018, 37(12): 3605−3609.

    Meng N, Wei S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots[J]. Chinese Journal of Ecology, 2018, 37(12): 3605−3609.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2022-06-09
  • 修回日期:  2022-06-08
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回