高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于火模拟的森林火灾风险定量评估

宗学政 田晓瑞 马帅 刘畅

宗学政, 田晓瑞, 马帅, 刘畅. 基于火模拟的森林火灾风险定量评估——以亚热带林业实验中心为例[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210328
引用本文: 宗学政, 田晓瑞, 马帅, 刘畅. 基于火模拟的森林火灾风险定量评估——以亚热带林业实验中心为例[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210328
Zong Xuezheng, Tian Xiaorui, Ma Shui, Liu Chang. Quantitative assessment for forest fire risk based on fire simulations: taking the Subtropical Forest Experimental Center as an example[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210328
Citation: Zong Xuezheng, Tian Xiaorui, Ma Shui, Liu Chang. Quantitative assessment for forest fire risk based on fire simulations: taking the Subtropical Forest Experimental Center as an example[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210328

基于火模拟的森林火灾风险定量评估

——以亚热带林业实验中心为例

doi: 10.12171/j.1000-1522.20210328
基金项目: 中国林业科学研究院基本科研业务费专项(CAFYBB2019ZB003)
详细信息
    作者简介:

    宗学政。主要研究方向:林火管理。Email:1173276896@qq.com 地址:100091北京市海淀区东小府2号

    责任作者:

    田晓瑞,博士,研究员。主要研究方向:林火管理。Email:tianxr@caf.ac.cn 地址:100091北京市海淀区东小府2号

  • 中图分类号: S762

Quantitative assessment for forest fire risk based on fire simulations: taking the Subtropical Forest Experimental Center as an example

  • 摘要:   目的  森林火灾风险评估是利用定量或定性的方法综合考虑一个区域的火发生可能性及对环境造成的潜在影响,识别区域内的高火灾风险区是开展科学林火管理的基础。本研究基于森林燃烧概率、潜在火行为和暴露性综合评估一个区域的森林火灾风险,为林火管理部门开展林火管理和可燃物处理提供指导。  方法  利用燃烧概率模型(Burn-P3)在景观尺度上模拟了亚热带林业实验中心所属林区的燃烧概率、潜在火强度、蔓延速度及火发生类型。根据火对周围城镇和水源的潜在环境和安全问题计算火灾暴露性。综合这些指标利用层次分析方法定量评估森林火灾风险,分析火灾风险的空间特征和不同类型植被的燃烧性差异。  结果  火模拟结果表明:研究区的平均燃烧概率为0.040 1,燃烧概率高和很高的区域分别占研究区的5.3%和2.3%。火烧以地表火和间歇性树冠火为主,平均火强度及蔓延速度分别为2 043.6 kW/m2和2.5 m/min。火行为指数高和很高的区域分别占17.3%和6.2%。针阔混交林的燃烧概率和潜在火行为指数最高,阔叶林的燃烧概率及潜在火行为指数最低,但其暴露性指数最高。火灾风险综合评估结果表明,风险高和很高的区域分别占19.7%和6.5%,针阔混交林的火灾风险指数高于其他植被类型。  结论  研究区内大部分区域的燃烧概率较低,但潜在火行为指数较高。城镇和水源附近森林的火灾风险等级高,是林火管理的重点区域。部分针叶林和针阔混交林存在发生稳进树冠火的可能,可以通过可燃物处理措施来减少可燃物梯及地表易燃可燃物,降低火灾风险。

     

  • 图  1  研究区位置及森林分布

    Figure  1.  Location and forest distribution of the study area

    图  2  Burn-P3模型输入的可燃物类型和DEM数据

    Figure  2.  Inputs of fuel types and DEM for Burn-P3 model

    图  3  区域燃烧概率及火行为

    Figure  3.  Burn probability and fire behavior in study area

    图  4  区域暴露性

    Figure  4.  Exposure in study area

    图  5  森林火灾风险图

    Figure  5.  Map of forest fire risk

    表  1  燃烧概率及火行为赋值

    Table  1.   Assignments for burn probability and fire behavior

    燃烧概率 Burn probability火强度 Fire intensity蔓延速度 Spread speed火类型 Fire type赋值 Score
    很低 Very low 很低 Very low 很低 Very low 地表火 Surface fire 1
    低 Low 低 Low 低 Low 3
    中 Moderate 中 Moderate 中 Moderate 间歇性树冠火 Intermittent crown fire 5
    高 High 高 High 高 High 7
    很高 Very high 很高 Very high 很高 Very high 稳进树冠火 Continuous crown fire 9
    下载: 导出CSV

    表  2  森林火险评估指标的权重

    Table  2.   Weight of the indexes for forest fire risk assessment

    B层指数
    Indexes in B layer
    B层权重
    Weight of indexes
    in B layer
    C层指标
    Indexes in C layer
    C层相对B层权重
    Weight of indexes in
    C layer to B layer
    C层相对目标层权重
    Weight of indexes in
    C layer to target layer
    火发生可能
    Burn probability
    0.5 燃烧概率
    Burn probability
    1.00 0.5
    火行为
    Fire behavior
    0.4 火强度
    Fire intensity
    0.36 0.15
    蔓延速度
    Rate of spread
    0.18 0.07
    火类型
    Fire type
    0.46 0.18
    暴露性
    Exposure
    0.1 距城镇距离
    Distance to city
    0.63 0.06
    距水体距离
    Distance to water
    0.37 0.04
    下载: 导出CSV

    表  3  各植被类型的火灾风险值

    Table  3.   Fire risk indexes of every forest type

    林型 Forest type燃烧概率
    Burn probability
    火行为
    Fire behavior
    暴露性
    Exposure
    火险风险指数
    Fire risk index
    针阔混交林 Coniferous and broad-leaved mixed forest 0.369 0 0.320 3 0.405 4 0.354 5
    常绿针叶林 Evergreen coniferous forest 0.114 2 0.006 1 0.432 5 0.103 0
    阔叶林 Deciduous broad-leaved forest 0.040 2 0.000 1 0.440 5 0.064 5
    下载: 导出CSV
  • [1] Chuvieco E, Aguado I, Yebra M, et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies[J]. Ecological Modelling, 2010, 221(1): 46−58. doi: 10.1016/j.ecolmodel.2008.11.017
    [2] Johnston L M, Wang X, Erni S, et al. Wildland fire risk research in Canada[J]. Environmental Reviews, 2020, 28(2): 1−23.
    [3] 郑忠, 高阳华, 杨庆媛, 等. 西南山地区域森林火险综合预报模型研究: 以重庆市为例[J]. 自然灾害学报, 2020, 29(1): 152−161.

    Zheng Z, Gao Y H, Yang Q Y, et al. Research on the construction of composite risk prediction model for forest fire in the mountainous area of southwestern China: taking Chongqing city as an example[J]. Journal of Natural Disasters, 2020, 29(1): 152−161.
    [4] United Nations Office for Disaster Risk Reduction. Words into action guidelines: national disaster risk assessment hazard specific risk assessment[R]. New York: United Nations Office for Disaster Risk Reduction, 2017.
    [5] Calkin D E, Cohen J D, Finney M A, et al. How risk management can prevent future wildfire disasters in the wildland-urban interface[J]. Proceedings of the National Academy of Sciences, 2014, 111(2): 746−751. doi: 10.1073/pnas.1315088111
    [6] CHUVIECO E, AGUADO I, JURDAO S, et al. Integrating geospatial information into fire risk assessment[J]. International Journal of Wildland Fire, 2014, 23(5): 606−619. doi: 10.1071/WF12052
    [7] 田晓瑞, 代玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估[J]. 应用生态学报, 2016, 27(3): 769−776.

    Tian X R, Dai X, Wang M Y, et al. Forest fire risk assessment for China under different climate scenarios[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 769−776.
    [8] Woo H, Chung W, Graham J M, et al. Forest fire risk assessment using point process modelling of fire occurrence and Monte Carlo fire simulation[J]. International Journal of Wildland Fire, 2017, 26(9): 789−805. doi: 10.1071/WF17021
    [9] Molaudzi O D, Adelabu S A. Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas[J]. South African Journal of Geomatics, 2019, 7(3): 222−242. doi: 10.4314/sajg.v7i3.2
    [10] 颜峻, 左哲. 自然灾害风险评估指标体系及方法研究[J]. 中国安全科学学报, 2010, 20(11): 61−65. doi: 10.3969/j.issn.1003-3033.2010.11.011

    Yan J, Zuo Z. Research on natural disaster risk assessment index system and method[J]. China Safety Science Journal, 2010, 20(11): 61−65. doi: 10.3969/j.issn.1003-3033.2010.11.011
    [11] You W, Lin L, Wu L, et al. Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability[J]. Ecological Indicators, 2017, 77: 176−184. doi: 10.1016/j.ecolind.2017.01.042
    [12] Thompson M P, Calkin D E, Finney M A, et al. A risk-based approach to wildland fire budgetary planning[J]. Forest Science, 2013, 59(1): 63−77. doi: 10.5849/forsci.09-124
    [13] Alcasena F J, Salis M, Ager A A, et al. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area[J]. Environmental management, 2015, 55(5): 1200−1216. doi: 10.1007/s00267-015-0448-6
    [14] Xi D D Z, Taylor S W, Woolford D G, et al. Statistical Models of Key Components of Wildfire Risk[J]. Annual Review of Statistics and Its Application, 2017, 6(1): 1−26.
    [15] Kanga S, Sharma L K, Pandey P C, et al. Forest fire modeling to evaluate potential hazard to tourism sites using geospatial approach[J]. Journal of Geomatics, 2013, 7(1): 93−99.
    [16] Ajin R S, Ciobotaru A, Vinod P G, et al. Forest and wildland fire risk assessment using geospatial techniques: A case study of Nemmara forest division, Kerala, India[J]. Journal of Wetlands Biodiversity, 2015, 5: 29−37.
    [17] Thompson M P, Freeborn P, Rieck J D, et al. Quantifying the influence of previously burned areas on suppression effectiveness and avoided exposure: a case study of the Las Conchas Fire[J]. International Journal of Wildland Fire, 2016, 25(2): 167−181. doi: 10.1071/WF14216
    [18] Ager A A, Preisler H K, Arca B, et al. Wildfire risk estimation in the Mediterranean area[J]. Environmetrics, 2014, 25(6): 384−396. doi: 10.1002/env.2269
    [19] Mitsopoulos I, Trapatsas P, Xanthopoulos G. SYPYDA: A software tool for fire management in Mediterranean pine forests of Greece[J]. Computers and Electronics in Agriculture, 2016, 121: 195−199. doi: 10.1016/j.compag.2015.12.011
    [20] Noonan-Wright E K, Opperman T S, Finney M A, et al. Developing the US wildland fire decision support system[J]. Journal of Combustion, 2011, 2011: 1−14.
    [21] Massada A B, Radeloff V C, Stewart S I, et al. Wildfire risk in the wildland–urban interface: a simulation study in northwestern Wisconsin[J]. Forest Ecology and Management, 2009, 258(9): 1990−1999. doi: 10.1016/j.foreco.2009.07.051
    [22] Beverly J L, Mcloughlin N. Burn probability simulation and subsequent wildland fire activity in Alberta, Canada – implications for risk assessment and strategic planning: reply to Parisien et al. [J/OL]. Forest Ecology and Management, 2020, 460: 117819[2021−05−19]. https://doi.org/10.1016/j.foreco.2019.117819.
    [23] Carmel Y, Paz S, Jahashan F, et al. Assessing fire risk using Monte Carlo simulations of fire spread[J]. Forest Ecology and Management, 2009, 257(1): 370−377. doi: 10.1016/j.foreco.2008.09.039
    [24] Oban H O, Erdin C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey[J]. Applied Ecology and Environmental Research, 2020, 18(1): 1567−1583. doi: 10.15666/aeer/1801_15671583
    [25] Mhawej M, Faour G, Abdallah C, et al. Towards an establishment of a wildfire risk system in a Mediterranean country[J]. Ecological Informatics, 2016, 32: 167−184. doi: 10.1016/j.ecoinf.2016.02.003
    [26] Parisien M A, Dawe D A, Miller C, et al. Applications of simulation-based burn probability modelling: a review[J]. International journal of wildland fire, 2020, 28(12): 913−926.
    [27] 宗学政, 田晓瑞, 田恒, 等. 计划火烧对区域森林燃烧性的影响[J]. 林业科学研究, 2020, 33(3): 19−27.

    Zong X Z, Tian X R, Tian H, et al. Influences of prescribed burning on regional forest burning probability[J]. Forest Research, 2020, 33(3): 19−27.
    [28] 苗庆林, 田晓瑞. 多气候情景下大兴安岭森林燃烧性评估[J]. 林业科学, 2020, 33(3): 19−27.

    Miao Q L, Tian X R. Assessment of burn probability assessment in Daxing’anling under multi-climatic scenarios[J]. Scientia Silvae Sinicae, 2020, 33(3): 19−27.
    [29] 陈宏伟, 胡远满, 常禹, 等. 呼中林区不同森林采伐方式对林火的长期影响模拟[J]. 北京林业大学学报, 2011, 33(5): 13−19.

    Chen H W, Hu Y M, Chang Y, ET al. Simulating long-term effects of different harvesting modes on forest fire in Huzhong Forest Region, northeastern China[J]. Journal of Beijing Forestry University, 2011, 33(5): 13−19.
    [30] Liu Z, Yang J, He H S. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape[J]. Journal of Environmental Management, 2013, 115: 42−52.
    [31] Reimer J, Thompson D K, Povak N. Measuring initial attack suppression effectiveness through burn probability[J]. Fire, 2019, 2(4): 60. doi: 10.3390/fire2040060
    [32] 刘兴朋, 张继权, 范久波. 基于历史资料的中国北方草原火灾风险评价[J]. 自然灾害学报, 2007, 1: 61−65. doi: 10.3969/j.issn.1004-4574.2007.04.010

    Liu X P, Zhang J Q, Fan J B. Historical data-based risk assessment of fire in grassland of northen China[J]. Journal of Natural Disasters, 2007, 1: 61−65. doi: 10.3969/j.issn.1004-4574.2007.04.010
    [33] 周雪, 张颖. 中国森林火灾风险统计分析[J]. 统计与信息论坛, 2014, 29(1): 34−39. doi: 10.3969/j.issn.1007-3116.2014.01.006

    Zhou X, Zhang Y. Statistical analysis of forest fire risk in China[J]. Statistics & Information Forum, 2014, 29(1): 34−39. doi: 10.3969/j.issn.1007-3116.2014.01.006
    [34] 田晓瑞, 舒立福, 赵凤君, 等. 中国主要生态地理区的林火动态特征分析[J]. 林业科学, 2015, 51(9): 71−77.

    Tian X R, Shu L F, Zhao F J, et al. Dynamic characteristics of forest fires in the main ecological geographic districts of China[J]. Scientia Silvae Sinicae, 2015, 51(9): 71−77.
    [35] 宋庆丰, 王兵, 牛香, 等. 江西大岗山低海拔常绿阔叶林物种组成与群落结构特征[J]. 生态学杂志, 2020, 39(2): 384−393.

    Song Q F, Wang B, Niu X, et al. The characteristic of species composition and community structure of low-altitude evergreen broad-leaved forest in Dagang Mountain, Jiangxi Province[J]. Chinese Journal of Ecology, 2020, 39(2): 384−393.
    [36] Wang X, Wotton B M, Cantin A S, et al. Cffdrs: an R package for the Canadian forest fire danger rating system[J]. Ecological Processes, 2017, 6(1): 5. doi: 10.1186/s13717-017-0070-z
    [37] Hirsch K G. Canadian forest fire behavior prediction (FBP) system: user’s guide [M]. Edmonton: Northern Forestry Centre, 1996.
    [38] 田晓瑞, 舒立福, 阎海平, 等. 华北地区防火树种筛选[J]. 火灾科学, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007

    Tian X R, Shu L F, Yan H P, et al. Selecting fire-resistance tree species in northern China[J]. Fire Safety Science, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007
    [39] Parisien M A, Miller C, Ager A A, et al. Use of artificial landscapes to isolate controls on burn probability[J]. Landscape Ecology, 2010, 25(1): 79−93. doi: 10.1007/s10980-009-9398-9
    [40] Wagenbrenner N S, Forthofer J, Lamb B, et al. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5229−5241. doi: 10.5194/acp-16-5229-2016
    [41] Wang X, Parisien M, Taylor S W, et al. Future burn probability in south-central British Columbia[J]. International Journal of Wildland Fire, 2016, 25(2): 200−212. doi: 10.1071/WF15091
    [42] Pan J, Wang W, Li J. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China[J]. Natural Hazards, 2016, 81(3): 1879−1899. doi: 10.1007/s11069-016-2160-0
    [43] 马振宇, 陈博伟, 庞勇, 等. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源感, 2020, 32(1): 43−50.

    Ma Z Y, Chen B W, Pang Y, et al. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land & Resources, 2020, 32(1): 43−50.
    [44] Zong X, Tian X, Wang X. An optimal firebreak design for the boreal forest of China [J]. Science of the Total Environment, 2021, 781: 146822. 请补充网址https://www.sciencedirect.com/science/article/pii/S0048969721018921
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  39
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2022-03-25
  • 修回日期:  2021-12-17
  • 网络出版日期:  2022-03-29

目录

    /

    返回文章
    返回