• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

末次间冰期以来平榛物种复合体生态分化及历史分布变迁

何馨, 马文旭, 赵天田, 杨小红, 马庆华, 梁丽松, 王贵禧, 杨振

何馨, 马文旭, 赵天田, 杨小红, 马庆华, 梁丽松, 王贵禧, 杨振. 末次间冰期以来平榛物种复合体生态分化及历史分布变迁[J]. 北京林业大学学报, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
引用本文: 何馨, 马文旭, 赵天田, 杨小红, 马庆华, 梁丽松, 王贵禧, 杨振. 末次间冰期以来平榛物种复合体生态分化及历史分布变迁[J]. 北京林业大学学报, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
Citation: He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350

末次间冰期以来平榛物种复合体生态分化及历史分布变迁

基金项目: 国家自然科学基金项目(32101541)
详细信息
    作者简介:

    何馨。主要研究方向:榛属系统发育及遗传进化。Email:hexin20190120@163.com 地址:100091北京市海淀区香山路东小府1号

    责任作者:

    杨振,博士,助理研究员。主要研究方向:经济林种质资源与群体遗传进化研究。 Email:yangzhen4058@caf.ac.cn 地址:同上

  • 中图分类号: S717;S664.4

Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial

  • 摘要:
      目的  探讨末次间冰期以来平榛物种复合体(平榛、川榛、滇榛)的历史分布变迁,了解其地理分布对环境演变的响应机制,旨在为厘清3个物种的进化关系提供借鉴意义,也为资源保护和开发提供科学依据。
      方法  基于平榛物种复合体3个近缘种的分布数据及相应的筛选后的环境变量,利用MaxEnt模型及ArcGIS软件对平榛物种复合体在末次间冰期、末次盛冰期、全新世中期和现代的潜在分布区进行模拟,以探究其历史分布变迁,并划分适生区等级;将3个近缘种在不同时期的分布区域进行叠加,推测其避难所,并采用榛孢粉数据进行验证;最后,利用主成分分析法探究3个近缘种的生态位分化情况,并对主要环境影响因子进行综合评价。
      结果  从整体来看,平榛和川榛的前2位主要环境因子贡献度相差不大,且滇榛前2位主要环境因子均与水分有关,相对于温度,水分对3种树种的分布有着更重要的影响。从适生区面积来看,平榛的适生区面积在冰期呈收缩趋势,进入全新世中期后面积又有所扩张,川榛和滇榛的适生区面积却与之相反;适生区区域重叠后得到的3个近缘种的避难所与孢粉信息较吻合。
      结论  本研究较为准确地模拟了平榛物种复合体在4个时期的适生区分布变迁,探究了其生态位分化情况,并推测了其生物避难所,可为未来气候变化背景下中国境内榛资源保护和管理开发提供一定的科学依据。
    Abstract:
      Objective  This paper aims to discuss the historical distribution changes of Corylus heterophylla complex (Corylus heterophylla, Corylus kweichowensis, Corylus yunnanensis) since the last interglacial, and understand the response mechanism of its geographical distribution to environmental evolution, so as to provide reference for clarifying the evolutionary relationship of three species, and also provide scientific basis for resource protection and development.
      Method  Based on the distribution data of the three species of C. heterophylla complex and the corresponding environmental variables, MaxEnt model and ArcGIS software were used to simulate their potential distribution in the last interglacial, last glacial maximum, mid-Holocene and modern times to explore its historical distribution changes; then, the distribution areas of three related species in different periods were superimposed to speculate their ice age refuge, which was verified by hazel pollen data. Finally, the niche differentiation among the three related species was detected by principal component analysis, and the main environmental impact factors were comprehensively evaluated.
      Result  On the whole, the contribution of the first two environmental factors affecting the distribution of C. heterophylla and C. kweichowensis was similar, while the first two main environmental factors of C. yunnanensis were related to water. Compared with temperature, water had a more important impact on the distribution of the three tree species. In terms of the suitable areas, C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. The refuges of the three related species obtained after overlapping of the suitable areas were in good agreement with the palynological results.
      Conclusion  This study accurately simulates the distribution changes of C. heterophylla complex in four historical periods, explores its ecological differentiation, and speculates on its biological refuge, which provides some scientific basis for the conservation and management of the resources in China under the background of future climate change.
  • 图  1   主要环境因子响应曲线

    Figure  1.   Response curves of major environmental factors

    图  2   基于304个物种分布点12个气候变量的主成分分析(PCA)

    Figure  2.   PCA of 12 climate variables based on 304 species distribution points

    图  3   平榛物种复合体4个时期分布区预测

    底图审图号:GS(2019)1822。下同。Base drawing review No: GS(2019)1822. The same below.

    Figure  3.   Prediction of the distribution area of C. heterophylla species complex in 4 periods

    图  4   平榛物种复合体避难所预测及相近孢粉数据点

    Figure  4.   Prediction of C. heterophylla species complex shelter and similar sporopollen data points

    表  1   平榛物种复合体筛选所用气候变量

    Table  1   Filter climate variable used by C. heterophylla complex

    树种 Tree species变量代码 Variable code气候变量 Climate variable
    平榛 C. heterophylla bio2 昼夜温差月均值 Monthly mean diurnal difference of temperature
    bio3 等温性 Isothermality
    bio4 温度季节变化 Seasonal change in temperature
    bio10 最暖季度平均温度 Mean temperature of the warmest quarter
    bio15 降水量变异系数 Coefficient of variation of precipitation
    bio16 最湿季度雨量 Precipitation of the wettest quarter
    bio17 最干季度雨量 Precipitation of the driest season
    川榛 C. kweichowensis bio3 等温性 Isothermality
    bio4 温度季节变化 Seasonal change in temperature
    bio5 最热月份最高温 Max. temperature of the warmest month
    bio6 最冷月份最低温 Min. temperature of the coldest month
    bio12 年平均雨量 Annual mean precipitation
    bio15 降水量变异系数 Coefficient of variation of precipitation
    滇榛 C. yunnanensis bio4 温度季节变化 Seasonal change in temperature
    bio6 最冷月份最低温 Min. temperature of the coldest month
    bio7 年温度变化范围 Temperature annual range
    bio12 年平均雨量 Annual mean precipitation
    bio19 最冷季度雨量 Precipitation of the coldest season
    下载: 导出CSV

    表  2   模型AUC预测精度

    Table  2   Modeling prediction precision of AUC

    树种
    Tree species
    平均AUC值
    Average AUC value
    气候模型 Climate model
    末次间冰期
    Last interglacial (LIG)
    末次盛冰期
    Last glacial maximum (LGM)
    全新世中期
    Mid holocene (MH)
    现在气候
    Current climate
    平榛 C. heterophylla 训练集 Training data 0.990 0.992 0.991 0.991
    测试集 Testing data 0.983 0.988 0.987 0.988
    川榛 C. kweichowensis 训练集 Training data 0.990 0.990 0.990 0.989
    测试集 Testing data 0.989 0.991 0.989 0.989
    滇榛 C. yunnanensis 训练集 Training data 0.996 0.996 0.995 0.995
    测试集 Testing data 0.997 0.997 0.997 0.996
    下载: 导出CSV

    表  3   主要气候因子贡献度

    Table  3   Contribution of major climate factors

    树种
    Tree species
    变量代码
    Variable code
    气候变量
    Climate variable
    置换重要值
    Substitution of important value
    累计贡献率
    Cumulative contribution rate/%
    平榛 C. heterophylla bio4 温度季节变化 Seasonal change of temperature 54.2 31.1
    bio16 最湿季度雨量 Precipitation of the wettest season 31.3 30.0
    bio15 降水量变异系数 Coefficient of variation of precipitation 0.8 26.2
    川榛 C. kweichowensis bio4 温度季节变化 Seasonal change of temperature 9.0 26.7
    bio12 年平均雨量 Annual mean precipitation 9.5 26.3
    bio15 降水量变异系数 Coefficient of variation of precipitation 24.3 22.8
    滇榛 C. yunnanensis bio12 年平均雨量 Annual mean precipitation 13.1 36.9
    bio19 最冷季度雨量 Precipitation of the coldest season 24.7 23.8
    bio4 温度季节变化 Seasonal change of temperature 11.2 17.6
    下载: 导出CSV

    表  4   气候变量指标PCA特征值及方差

    Table  4   PCA eigenvalues and variances of climate variable indicators

    主成分
    Principal component
    特征值
    Eigenvalue
    RV/%RCV/%
    16.482 4454.020 3154.020 31
    22.695 3322.461 1076.481 40
    31.237 9710.316 4486.797 85
    40.765 716.380 9593.178 79
    50.470 023.916 8397.095 63
    60.178 251.485 4298.581 05
    70.131 521.095 9799.677 02
    80.019 660.163 8699.840 88
    90.009 320.077 6899.918 57
    100.005 350.044 5799.963 14
    110.003 740.031 2099.994 34
    1267919.70.005 66100.000 00
    注:RV. 方差百分比;RCV. 累计贡献度。Notes: RV, percentage of variance; RCV, cumulative contribution.
    下载: 导出CSV

    表  5   平榛物种复合体分布区内出现的孢粉点

    Table  5   Sporopollen points appearing in the distribution area of C. heterophylla species complex

    序号
    No.
    采集地
    Collecting site
    经纬度
    Coordinate
    地层时期
    Chronologic period
    文献
    Reference
    1 北京市顺义区 Shunyi District, Beijing 40°09′00″N,116°32′00″E LIG, LGM, MH [19]
    2 北京市大兴区 Daxing District, Beijing 39°43′00″N,116°19′00″E LIG, LGM, MH [19]
    3 陕西省富县 Fuxian County, Shaanxi Province 36°02′00″N,109°17′00″E LIG, LGM [20]
    4 吉林省敦化市 Dunhua City, Jilin Province 43°22′00″N,128°13′00″E MH [21]
    5 吉林省靖宇县 Jingyu County, Jilin Province 42°09′00″N,126°23′00″E MH [22]
    6 云南省鹤庆县 Heqing County, Yunnan Province 26°33′00″N,100°10′00″E LIG, LGM [23]
    7 湖南省城步苗族自治区
    Chengbu Miao Autonomous Region, Hunan Province
    26°23′00″N,110°19′00″E MH [24]
    8 贵州省荔波县 Libo County, Guizhou Province 25°24′00″N,107°52′00″E MH [25]
    9 贵州省镇宁布依族苗族自治县
    Buyi Miao Autonomous County, Zhenning, Guizhou Province
    26°02′00″N,105°50′00″E MH [26]
    10 湖北省神农架林区 Shennongjia Forest District, Hubei Province 31°29′00″N,109°59′00″E LGM, MH [27]
    11 浙江省杭州市 Hangzhou City, Zhejiang Province 30°08′00″N,120°13′00″E MH [28]
    12 甘肃省渭源县 Weiyuan County, Gansu Province 35°08′00″N,104°12′00″E LGM, MH [29]
    13 陕西省武功县 Wugong County, Shaanxi Province 34°15′00″N,108°12′00″E LIG [30]
    14 陕西省蓝田县 Lantian County, Shaanxi Province 34°09′00″N,109°19′00″E LIG [30]
    15 陕西省渭南阳郭 Yangguo, Weinan, Shaanxi Province 34°21′00″N,109°31′00″E LGM [31]
    16 四川省布拖县 Butuo County, Sichuan Province 27°42′00″N,102°49′00″E LGM, MH [32]
    17 陕西省太白县 Taibai County, Shaanxi Province 34°03′00″N,107°18′00″E LGM [33]
    下载: 导出CSV

    表  6   不同时期平榛复合体在中国的适生区预测

    Table  6   Prediction of suitable area of C. heterophylla complex in China in different periods 104 km2

    树种
    Tree species
    时间段
    Period
    总适生区
    Total suitable
    region
    低度适生区
    Lowly suitable
    region
    一般适生区
    Generally suitable
    region
    中度适生区
    Moderately suitable
    region
    高度适生区
    Highly suitable
    region
    平榛 C. heterophylla LIG 161.351 7 78.066 5 41.404 0 22.911 3 18.969 8
    LGM 150.652 8 76.902 8 28.239 6 28.701 4 16.809 0
    MH 139.855 9 68.651 0 34.099 0 18.626 7 18.479 2
    现代 Current 133.562 5 57.092 0 34.467 0 26.269 1 15.734 4
    川榛 C. kweichowensis LIG 169.376 0 91.397 2 36.447 3 31.336 3 10.195 1
    LGM 176.685 8 93.017 4 38.222 2 25.326 4 20.119 8
    MH 163.218 8 77.012 2 36.149 3 27.533 0 22.524 3
    现代 Current 170.850 7 62.338 5 50.588 5 33.689 2 24.234 4
    滇榛 C. yunnanensis LIG 54.332 2 27.162 0 16.434 9 7.256 7 3.478 5
    LGM 97.474 0 60.684 0 19.000 0 11.734 4 6.055 6
    MH 71.720 5 40.036 5 18.156 3 8.614 6 4.913 2
    现代 Current 76.942 7 46.048 6 13.107 6 13.430 6 4.355 9
    下载: 导出CSV
  • [1] 张宇和, 柳鎏, 梁维坚. 中国果树志 板栗 榛子卷[M]. 北京: 中国林业出版社, 2005.

    Zhang Y H, Liu L, Liang W J. China fruit’s monograph: Chinese chestnut and Chinese hazelnut volume[M]. Beijing: China Forestry Publishing House, 2005.

    [2] 王艳梅, 翟明普, 马天晓, 等. 榛属7种植物与虎榛微卫星测序及分析[J]. 华中农业大学学报, 2009, 28(1): 5−10. doi: 10.3321/j.issn:1000-2421.2009.01.002

    Wang Y M, Zhai M P, Ma T X, et al. Sequences and homology analysis of SSR from Corylus and Ostryopsis davidiana Decne[J]. Journal of Huazhong Agricultural University, 2009, 28(1): 5−10. doi: 10.3321/j.issn:1000-2421.2009.01.002

    [3] 张鹏飞, 张福花, 张茹, 等. 山西省榛属植物居群的SSR遗传多样性研究[J]. 植物科学学报, 2014, 32(2): 131−138.

    Zhang P F, Zhang F H, Zhang R, et al. Genetic diversity of hazel populations in Shaanxi Province based on SSR markers[J]. Plant Science Journal, 2014, 32(2): 131−138.

    [4] 赵爽, 苏淑钗, 陈志钢, 等. 基于SSR的辽宁铁岭地区平榛遗传多样性与居群遗传结构分析[J]. 果树学报, 2016, 33(1): 24−33. doi: 10.13925/j.cnki.gsxb.20150187

    Zhao S, Su S C, Chen Z G, et al. An assessment of the genetic diversity and population genetic structure concerning the Corylus heterophylla Fisch grown in the Tieling District of Liaoning Province, using SSR markers[J]. Journal of Fruit Science, 2016, 33(1): 24−33. doi: 10.13925/j.cnki.gsxb.20150187

    [5] 李沛琼. 中国植物志: 桦木科[M]. 北京: 科学出版社, 1979.

    Li P Q. Flora of China: Betulaceae[M]. Beijing: Science Press, 1979.

    [6] 梁维坚. 关于川榛分类地位的商榷及新变种[J]. 植物研究, 1988, 8(4): 115−117.

    Liang W J. On classification of Sichuan filbert and its new variety[J]. Bulletin of Botanical Research, 1988, 8(4): 115−117.

    [7] 宗建伟. 中国三个主要榛种居群遗传多样性及榛属植物种间亲缘关系研究[D]. 北京: 中国林业科学研究院, 2016.

    Zong J W. Study on population genetic diversity of three Chinese Corylus species and the phylogentic relationship of Corylus species[D]. Beijing: Chinese Academy of Forestry, 2016.

    [8] 王陆军. 大别山川榛种质资源多样性评价研究[D]. 北京: 中国林业科学研究院, 2018.

    Wang L J. Study on evaluation of germplasm diversity of Corylus kweichowensis Hu. in Dabie Mountains[D]. Beijing: Chinese Academy of Forestry, 2018.

    [9] 王泽亮, 郑永琴, 苏玲, 等. 滇榛(Corylus yunnanensis)SSR引物的筛选[J]. 四川林业科技, 2017, 38(6): 55−58.

    Wang Z L, Zheng Y Q, Su L, et al. Screening of SSR Markers in Corylus yunnanensis[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(6): 55−58.

    [10] 唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103

    Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103

    [11] 黄睿智, 于涛, 赵辉, 等. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测[J]. 北京林业大学学报, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254

    Huang R Z, Yu T, Zhao H, et al. Prediction of suitable distribution area of the endangered plantAcer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254

    [12] 徐振朋. 荒漠区裸果木种群分布与性状适应特征研究[D]. 呼和浩特: 内蒙古农业大学, 2017.

    Xu Z P. Study on the response and adaptation of Gymnocarpos przewalskii to habitat difference[D]. Hohhot: Inner Mongolia Agricultural University, 2017.

    [13] 文检. 基于GIS和有效成分的藏药品质区划研究[D]. 成都: 成都中医药大学, 2017.

    Wen J. Quality division of Tibetan medicine based on GIS and effective component[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2017.

    [14] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    [15]

    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026

    [16]

    Carnaval A C, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest[J]. Journal of Biogeography, 2010, 35(7): 1187−1201.

    [17] 张爱平, 王毅, 熊勤犁, 等. 末次间冰期以来3种云杉属植物的历史分布变迁及避难所[J]. 应用生态学报, 2018, 29(7): 2411−2421.

    Zhang A P, Wang Y, Xiong Q L, et al. Distribution changes and refugia of three spruce taxa since the last interglacial[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2411−2421.

    [18] 王婧如, 王明浩, 张晓玮, 等. 同倍体杂交物种紫果云杉的生态位分化及其未来潜在分布区预测[J]. 林业科学, 2018, 54(6): 63−72. doi: 10.11707/j.1001-7488.20180608

    Wang J R, Wang M H, Zhang X W, et al. The ecological divergence and projection of future potential distribution of homoploid hybrid species Picea purpurea[J]. Scientia Silvae Sinicae, 2018, 54(6): 63−72. doi: 10.11707/j.1001-7488.20180608

    [19] 刘有民, 王桂增. 秦岭地区第四纪冰川地质研究[C]// 中国地质科学院. 中国地质科学院天津地质矿产研究所文集(14). 北京: 地质出版社, 1987: 2−3, 5−108.

    Liu Y M, Wang G Z. Research on quaternary glacier geology in Qinling Area[C]// Chinese Academy of Geological Sciences. Collected works of Tianjin Institute of Geology and Mineral Resources of Chinese Academy of Geological Sciences (14). Beijing: Geology Press, 1987: 2−3, 5−108.

    [20] 程玉芬. 2.6万年以来黄土高原中北部的植被和气候变化[D]. 北京: 中国地质大学, 2011.

    Cheng Y F. Vegetation and climate changes in the middle and northern Loess Plateau over the past 26000 Years[D]. Beijing: China University of Geosciences, 2011.

    [21] 赵红艳, 周道玮. 吉林省敦化地区晚全新世泥炭沼泽孢粉组合特征及古植被[J]. 应用生态学报, 2006, 17(2): 197−200. doi: 10.3321/j.issn:1001-9332.2006.02.007

    Zhao H Y, Zhou D W. Pollen assemblage and palaeo-vegetation of late holocene fen in Dunhua of Jilin Province[J]. Chinese Journal of Applied Ecology, 2006, 17(2): 197−200. doi: 10.3321/j.issn:1001-9332.2006.02.007

    [22] 袁绍敏, 孙湘君. 据花粉分析推论东北长白山西麓一万年来植被与环境[J]. 植物学报, 1990, 32(7): 558−567.

    Yuan S M, Sun X J. The vegetational and environmental history at the west foot of Changbai Mountain, northeast China during the last 10000 years[J]. Acta Botanica Sinica, 1990, 32(7): 558−567.

    [23] 蒋雪中, 羊向东, 王苏民, 等. 云南鹤庆盆地末次盛冰期的孢粉记录与古季风[J]. 微体古生物学报, 2001, 18(3): 263−267. doi: 10.3969/j.issn.1000-0674.2001.03.006

    Jiang X Z, Yang X D, Wang S M, et al. The last glacier maximal pollen record in the lake sediments from ancient Heqing Lake and its significance for palaeomonsoon[J]. Acta Micropalaeontologica Sinica, 2001, 18(3): 263−267. doi: 10.3969/j.issn.1000-0674.2001.03.006

    [24] 孙世英, 张嘉尔. 湖南大坪泥炭矿孢粉组合及其形成环境[J]. 南京师大学报(自然科学版), 1984(4): 86−92.

    Sun S Y, Zhang J E. Sporo-pollen assemblage and its formation environment in Daping Peat Mine, Hunan[J]. Journal of Nanjing Normal University (Natural Science Edition), 1984(4): 86−92.

    [25] 杜荣荣, 陈敬安, 曾艳, 等. 贵州白鹇湖沉积物中孢粉记录的5.5 kaB.P. 以来的气候变化[J]. 生态学报, 2013, 33(12): 3783−3791. doi: 10.5846/stxb201206120845

    Du R R, Chen J A, Zeng Y, et al. Climate change recorded mainly by pollen from baixian lake during the last 5.5 kaB.P[J]. Acta Ecologica Sinica, 2013, 33(12): 3783−3791. doi: 10.5846/stxb201206120845

    [26] 雷国良. 用孢粉分析探讨贵州西部风景区域全新世气候环境变迁[J]. 贵州科学, 1990, 8(4): 41−51.

    Lei G L. Discussion on holocene climate and environment changes in scenic regions of western Guizhou by sporopollen analysis[J]. Guizhou Science, 1990, 8(4): 41−51.

    [27] 朱诚, 马春梅, 张文卿, 等. 神农架大九湖15.753 kaB.P.以来的孢粉记录和环境演变[J]. 第四纪研究, 2006, 26(5): 814−826. doi: 10.3321/j.issn:1001-7410.2006.05.017

    Zhu C, Ma C M, Zhang W Q, et al. Pollen record from Dajiuhu Basin of Shennongjia and environmental changes since 15.753 kaB.P[J]. Quaternary Sciences, 2006, 26(5): 814−826. doi: 10.3321/j.issn:1001-7410.2006.05.017

    [28] 顾明光, 陈忠大, 卢成忠, 等. 浙江湘湖地区全新世孢粉记录及其古气候意义[J]. 中国地质, 2006, 33(5): 1144−1148.

    Gu M G, Chen Z D, Lu C Z, et al. Holocene sporopollen records in the Xianghu Area, Zhejiang and their palaeoclimatic significance[J]. Geology in China, 2006, 33(5): 1144−1148.

    [29] 杨肖肖, 孔昭宸, 姜文英, 等. 末次盛冰期以来渭源黄土剖面的孢粉记录[J]. 地球环境学报, 2012, 3(2): 819−825. doi: 10.7515/JEE201202008

    Yang X X, Kong Z C, Jiang W Y, et al. Pollen record for the Weiyuan loess section since the last glacial maximum[J]. Journal of Earth Environment, 2012, 3(2): 819−825. doi: 10.7515/JEE201202008

    [30] 刘俊峰. 陕西关中黄土地层中第一层古土壤的孢粉组合及其意义[J]. 西北大学学报(自然科学版), 1989, 19(1): 77−80.

    Liu J F. The sporo-pollen assemblage and their signifcance of the first layer paleosol in the loess strata of Guanzhong, Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 1989, 19(1): 77−80.

    [31] 孙湘君, 宋长青, 玉琫瑜, 等. 黄土高原南缘10万年以来的植被−陕西渭南黄土剖面的花粉记录[J]. 科学通报, 1995, 40(13): 1222−1224. doi: 10.3321/j.issn:0023-074X.1995.13.020

    Sun X J, Song C Q, Yu B Y, et al. Vegetation in the south margin of the Loess Plateau since 100, 000 years: pollen records of the loess section in Weinan, Shaanxi[J]. Chinese Science Bulletin, 1995, 40(13): 1222−1224. doi: 10.3321/j.issn:0023-074X.1995.13.020

    [32] 马明志, 邵晶, 杨利平, 等. 2008—2017陕西史前考古综述[J]. 考古与文物, 2018(5): 10−40. doi: 10.3969/j.issn.1000-7830.2018.05.002

    Ma M Z, Shao J, Yang L P, et al. A summary of prehistoric archaeology in Shaanxi from 2008 to 2017[J]. Archaeology and Cultural Relics, 2018(5): 10−40. doi: 10.3969/j.issn.1000-7830.2018.05.002

    [33] 刘和林, 李承彪, 陈乐尧. 川西南布拖县西溪河火烈湖孢粉组合特征与距今2.2万年以来古气候分析[J]. 四川林业科技, 2003, 24(2): 1−5. doi: 10.3969/j.issn.1003-5508.2003.02.001

    Liu H L, Li C B, Chen L Y. Researches on combinative characteristics of spore-pollens and analysis of ancient climate in Huolie Lake since 22 thousand years ago[J]. Journal of Sichuan Forestry Science and Technology, 2003, 24(2): 1−5. doi: 10.3969/j.issn.1003-5508.2003.02.001

    [34] 杨振. 榛属系统发育基因组学与平榛物种复合体的遗传分化研究[D]. 北京: 中国林业科学研究院, 2019.

    Yang Z. Phylogenomics of the genus Corylus and genetic differentiation of C. heterophylla species complex[D]. Beijing: Chinese Academy of Forestry, 2019.

    [35] 郑浩田. 末次间冰期以来黄土堆积序列宽频带磁化率的空间特征及其古气候意义[D]. 西安: 中国科学院研究生院(地球环境研究所), 2016.

    Zheng H T. The spatial characteristics and palaeoclimatic implications of the broadband magnetic susceptibility of the loess sequence since the last interglacial[D]. Xi’an: Institute of Earth Environment, Chinese Academy of Sciences, 2016.

    [36]

    Zeng Y F, Zhang J G, Abuduhamiti B, et al. Phylogeographic patterns of the desert poplar in northwest China shaped by both geology and climatic oscillations[J]. BMC Evolutionary Biology, 2018, 18(1): 1−14. doi: 10.1186/s12862-017-1072-2

    [37] 应凌霄, 刘晔, 陈绍田, 等. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4): 453−461. doi: 10.17520/biods.2015246

    Ying L X, Liu Y, Chen S T, et al. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate, change based on the maximum-entropy(MaxEnt) model[J]. Biodiversity Science, 2016, 24(4): 453−461. doi: 10.17520/biods.2015246

    [38] 王璐, 许晓岗, 李垚. 末次盛冰期以来陀螺果潜在地理分布格局变迁预测[J]. 生态学杂志, 2018, 37(1): 278−286.

    Wang L, Xu X G, Li Y. Prediction of potential geographical distribution pattern change for Melliodendron xylocarpum Handel-Mazzetti since the last glacial maximum[J]. Chinese Journal of Ecology, 2018, 37(1): 278−286.

    [39] 管毕财, 陈微, 刘想, 等. 四照花物种分布格局模拟及冰期避难所推测[J]. 西北植物学报, 2016, 36(12): 2541−2547. doi: 10.7606/j.issn.1000-4025.2016.12.2541

    Guan B C, Chen W, Liu X, et al. Distribution pattern and glacial refugia of Cornus kousa subsp. chinensis based on MaxEnt model and GIS[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2541−2547. doi: 10.7606/j.issn.1000-4025.2016.12.2541

    [40] 邹旭, 彭冶, 王璐, 等. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5): 676−686. doi: 10.11913/PSJ.2095-0837.2018.50676

    Zou X, Peng Y, Wang L, et al. Impact of climate change on the distribution pattern of Malus baccata (L. ) Borkh. in China since the last glacial maximum[J]. Plant Science Journal, 2018, 36(5): 676−686. doi: 10.11913/PSJ.2095-0837.2018.50676

    [41] 李文庆, 徐洲锋, 史鸣明, 等. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测[J]. 生态学报, 2019, 39(9): 3224−3234.

    Li W Q, Xu Z F, Shi M M, et al. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios[J]. Acta Ecologica Sinica, 2019, 39(9): 3224−3234.

    [42] 姜大膀, 梁潇云. 末次盛冰期东亚气候的成因检测[J]. 第四纪研究, 2008, 28(3): 491−501. doi: 10.3321/j.issn:1001-7410.2008.03.014

    Jiang D B, Liang X Y. Attribution of east asian climate at the last glacial maximum[J]. Quaternary Sciences, 2008, 28(3): 491−501. doi: 10.3321/j.issn:1001-7410.2008.03.014

    [43] 刘煜. 末次冰期冰盛期和中全新世中国地区气候变化的数值研究[D]. 南京: 南京信息工程大学, 2008.

    Liu Y. Simulations of climate changes over China in LGM and mid-holocene[D]. Nanjing: Nanjing University of Information Science and Technology, 2008.

    [44] 于革, 陈星, 刘健, 等. 末次盛冰期东亚气候的模拟和诊断初探[J]. 科学通报, 1998, 45(20): 2153−2159.

    Yu G, Chen X, Liu J, et al. A preliminary study on the simulation and diagnosis of east Asian climate during the last glacial maximum[J]. Chinese Science Bulletin, 1998, 45(20): 2153−2159.

    [45] 吕燕. 中国南方亚热带山地10−40 ka BP古植被与古气候特征探讨[D]. 南京: 南京师范大学, 2014.

    Lü Y. Discussion on the characteristics of paleovegetation and paleoclimate in the subtropical mountainous region of southern China at 10−40 ka BP[D]. Nanjing: Nanjing Normal University, 2014.

    [46]

    Tzedakis P C, Lawson I T, Frogley M R, et al. Buffered tree population changes in a quaternary refugium: evolutionary implications[J]. Science, 2002, 297: 2044−2047. doi: 10.1126/science.1073083

    [47] 沈浪, 陈小勇, 李媛媛. 生物冰期避难所与冰期后的重新扩散[J]. 生态学报, 2002, 22(11): 1983−1990. doi: 10.3321/j.issn:1000-0933.2002.11.026

    Shen L, Chen X Y, Li Y Y. Glacial refugia and postglacial recolonization patterns of organisms[J]. Acta Ecologica Sinica, 2002, 22(11): 1983−1990. doi: 10.3321/j.issn:1000-0933.2002.11.026

    [48] 胡忠俊, 张镱锂, 刘林山, 等. 生物避难所及其识别方法评述[J]. 生态学杂志, 2013, 32(12): 3397−3406. doi: 10.13292/j.1000-4890.2013.0518

    Hu Z J, Zhang Y L, Liu L S, et al. Refugia and their identification methods: a review[J]. Chinese Journal of Ecology, 2013, 32(12): 3397−3406. doi: 10.13292/j.1000-4890.2013.0518

    [49]

    Stewart J R, Lister A M, Barnes I, et al. Refugia revisited: individualistic responses of species in space and time[J]. Proceedings of the Royal Society B Biological Sciences, 2009, 277: 661−671.

    [50] 赵淑君, 程捷, 尹功明, 等. 北京平原区中更新世以来的孢粉组合及其古气候意义[J]. 古地理学报, 2008, 10(6): 637−646. doi: 10.7605/gdlxb.2008.06.008

    Zhao S J, Cheng J, Yin G M, et al. Palynological assemblages and paleoclimatic significance in Beijing Plain area since the middle pleistocene[J]. Journal of Palaeogeography, 2008, 10(6): 637−646. doi: 10.7605/gdlxb.2008.06.008

    [51] 王社江, 鹿化煜. 秦岭地区更新世黄土地层中的旧石器埋藏与环境[J]. 中国科学: 地球科学, 2016, 46(7): 881−890.

    Wang S J, Lu H Y. Taphonomic and paleoenvironmental issues of the pleistocene loessic paleolithic sites in the Qinling Mountains, central China[J]. Scientia Sinica (Terrae), 2016, 46(7): 881−890.

    [52] 陈生云, 吴桂莉, 张得钧, 等. 高山植物条纹狭蕊龙胆的分子亲缘地理学研究[J]. 植物分类学报, 2008, 46(4): 573−585.

    Chen S Y, Wu G L, Zhang D J, et al. Molecular phylogeography of alpine plant Metagentiana striata (Gentianaceae)[J]. Journal of Systematics and Evolution, 2008, 46(4): 573−585.

    [53]

    Gao L M, Mller M, Zhang X, et al. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam[J]. Molecular Ecology, 2007, 16(22): 4684−4698. doi: 10.1111/j.1365-294X.2007.03537.x

    [54]

    Wang F Y, Gong X, Hu C M, et al. Phylogeography of an alpine species Primula secundiflora inferred from the chloroplast DNA sequence variation[J]. Journal of Systematics and Evolution, 2008, 46(1): 13−22.

    [55] 刘丽波. 四川螺髻山第四纪冰川与环境[D]. 大连: 辽宁师范大学, 2015.

    Liu L B. Sichuan Luoji Mountain quaternary glacier and environment[D]. Dalian: Liaoning Normal University, 2015.

    [56]

    Zhao T, Wang G, Ma Q, et al. Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae)[J]. Molecular Phylogenetics and Evolution, 2020, 142: 106658. doi: 10.1016/j.ympev.2019.106658

  • 期刊类型引用(24)

    1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
    2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
    3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
    4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
    5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
    6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
    7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
    8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
    9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
    10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
    11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
    12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
    13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
    14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
    15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
    16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
    17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
    19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
    20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
    21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
    22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
    23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
    24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术

    其他类型引用(20)

图(4)  /  表(6)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  146
  • PDF下载量:  72
  • 被引次数: 44
出版历程
  • 收稿日期:  2021-09-05
  • 修回日期:  2021-11-19
  • 录用日期:  2022-12-01
  • 网络出版日期:  2023-04-05
  • 发布日期:  2023-04-24

目录

    /

    返回文章
    返回