Response of forest vegetation phenology to climate change in Xiaoxing’an Mountains of northeastern China
-
摘要:目的 采用遥感提取植被物候的方法,以小兴安岭为研究区,构建森林植被物候时空变化,分析森林植被物候变化对气候变化的响应。方法 基于GIMMS NDVI 3g影像,运用一元六次多项式拟合植被生长曲线,并结合逐像元动态阈值法提取小兴安岭1982—2015年森林植被生长开始期(SOS)、生长结束期(EOS)和生长季长度(LOS)共3种物候参数;利用ArcGIS软件,将气温、降水以及日照时数数据与植被物候参数逐像元分析,得到物候参数与气象因子偏相关系数的空间分布特征。结果 (1)植被物候多年平均值空间分布特征呈现由西北向东南方向,植被SOS逐渐提前,植被EOS逐渐推迟,植被LOS逐渐延长的规律。(2)小兴安岭森林植被SOS集中在日序第112.1~128.3天,年际变化在1998年前后出现转折,1998年前呈显著提前趋势(R2 = 0.284,P = 0.028),1998年后呈不显著推迟趋势(R2 = 0.002,P = 0.86),导致整个时间段(1982—2015年)变化不显著,变化幅度为每10年提前0.12 d(R2 = 0.001,P = 0.872);森林植被EOS集中在第277.3~294.8天,年际变化呈现显著推迟趋势,变化幅度为每10年推迟2.33 d(R2 = 0.294,P < 0.01);森林植被LOS集中在149.5 ~ 167.5 d,年际变化呈现显著延长趋势,变化幅度为每10年延长2.45 d(R2 = 0.231,P < 0.01)。(3)小兴安岭森林植被SOS对当年4月温度的响应最明显,其次是当年2月温度;植被EOS对当年8月降水响应最明显,其次是当年6月温度。结论 (1)小兴安岭森林植被物候多年平均值与水热条件多年平均值呈现出比较一致的空间规律特征。(2)研究期植被EOS的变化主要受8月降水的变化驱动,8月降水的下降是导致植被EOS显著推迟的主要原因。(3)20世纪末出现的全球变暖停滞引起2月温度在1998年前后呈现由显著上升转变为不显著下降,引起植被SOS变化趋势在1998年前后发生突变,导致整个时间段植被SOS变化不显著。
-
关键词:
- 小兴安岭 /
- 植被物候 /
- GIMMS 3g NDVI /
- 变暖停滞
Abstract:Objective Using the method of extracting vegetation phenology by remote sensing,taking Xiaoxing’an Mountains of northeastern China as the study area, this paper analyzes the temporal and spatial changing characteristics of forest vegetation phenology and the response of forest vegetation phenology change to climate change.Method Based on GIMMS NDVI 3g image, the forest vegetation growth curve was fitted by univariate sixth order polynomial, and the phenological parameters of forest vegetation SOS, vegetation EOS and vegetation LOS in Xiaoxing’an Mountains from 1982 to 2015 were extracted by pixel dynamic threshold method. Using ArcGIS software, the temperature, precipitation and sunshine duration data were analyzed pixel by pixel with vegetation phenological parameters to obtain partial correlation coefficients between phenological parameters and meteorological factors.Result (1) The characters in spatial distribution of multi-year mean value of vegetation phenology showed a kind of gradual change from northwest to southeast, including the advance of vegetation SOS, the delay of vegetation EOS and the extension of vegetation LOS. (2) The SOS of forest vegetation in Xiaoxing’an Mountains was concentrated among 112.1th−128.3th day of the year, with an abrupt change around 1998. Before 1998, it showed a significant advancing trend (R2 = 0.284, P = 0.028), and after 1998, it showed a non-significant delaying trend (R2 = 0.002, P = 0.86), resulting in a non-significant change during the whole analysis period (1982−2015), with a rate of change at 0.12 d per ten years (R2 = 0.001, P = 0.872). The forest vegetation EOS was concentrated among 277.3th−294.8th day of the year, and showed a significant delaying trend during the whole analysis period, with a rate range of 2.33 d per ten years (R2 = 0.294, P < 0.01). The LOS of forest vegetation was concentrated among 149.5−167.5 days, and showed a significant extension trend during the whole analysis period, with a rate of change at 2.45 d per ten years (R2 = 0.231, P < 0.01). (3) The forest vegetation SOS was correlated with the April temperature of current year, followed by the February temperature of current year. The vegetation EOS was correlated with the precipitation in August of current year, followed by the June temperature in current year.Conclusion (1) The multi-year average value of forest vegetation phenology and the multi-year average value of hydrothermal conditions in Xiaoxing’an Mountains show relatively consistent spatial characteristics. (2) The change of vegetation EOS during the study period is mainly driven by the change of precipitation in August. The decline of precipitation in August is the main reason for the significant delay of vegetation EOS. (3) The stagnation of global warming at the end of the 20th century causes the temperature in February to change from a significant increase to a non-significant decrease around 1998, causing a sudden change in the trend of vegetation SOS around 1998, leading to a non-significant change in vegetation SOS during the whole period.-
Keywords:
- Xiaoxing’an Mountains /
- vegetation phenology /
- GIMMS 3g NDVI /
- stagnation of warming
-
-
-
[1] Peñuelas J, Sardans J, Estiarte M, et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere[J]. Global Change Biology, 2013, 19: 2303−2338. doi: 10.1111/gcb.12143
[2] 浮媛媛, 赵建军, 张洪岩, 等. 基于生态地理分区的大兴安岭植被物候时空变化[J]. 应用生态学报, 2016, 27(9): 2797−2806. Fu Y Y, Zhao J J, Zhang H Y, et al. Spatiotemporal variation of vegetation phenology in the Daxing’an Mountains stratified by eco-geographical regions[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2797−2806.
[3] White M A, Beurs K M, Didan K, et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982−2006[J]. Global Change Biology, 2009, 15(10): 2335−2359. doi: 10.1111/j.1365-2486.2009.01910.x
[4] 张学霞, 葛全胜, 郑景云. 北京地区气候变化和植被的关系: 基于遥感数据和物候资料的分析[J]. 植物生态学报, 2004, 28(4): 499−506. Zhang X X, Ge Q S, Zheng J Y. Relationships between climate change and vegetation in Beijing using remote sensed data and phenological data[J]. Acta Phhtoecologica Sinica, 2004, 28(4): 499−506.
[5] 张静茹, 同小娟, 孟平, 等. 基于植被指数、叶绿素荧光和碳通量的华北山地人工林物候对比研究[J]. 北京林业大学学报, 2020, 42(11): 17−26. Zhang J R, Tong X J, Meng P, et al. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17−26.
[6] Shen X J, Liu B H, Henderson M, et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China[J]. Agricultural and Forest Meteorology, 2018, 259: 240−249. doi: 10.1016/j.agrformet.2018.05.006
[7] Zhou D, Zhao S, Zhang L, et al. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities[J]. Remote Sensing of Environment, 2016, 176: 272−281. doi: 10.1016/j.rse.2016.02.010
[8] 陆佩玲, 于强, 贺庆棠. 植物物候对气候变化的响应[J]. 生态学报, 2006, 26(3): 923−929. Lu P L, Yu Q, He Q T. Responses of plant phenology to climatic change[J]. Acta Ecologica Sinica, 2006, 26(3): 923−929.
[9] 黄文洁. 青藏高原高寒草地植被物候及其对气候变化的响应[D]. 兰州: 兰州大学, 2019. Huang W J. Alpine grassland phenology response to climate change over Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2019.
[10] 玛地尼亚提·地里夏提, 玉素甫江·如素力, 海日古丽·纳麦提, 等. 天山新疆段植被物候特征及其气候响应[J]. 气候变化研究进展, 2019, 15(6): 624−632. Madiniyati·Dilixiati, Yusufujiang·Rusuli, Hairiguli·Namaiti, et al. The phenological characteristics and climatic response of vegetation in the Xinjiang Tianshan Mountains, China[J]. Climate Change Research, 2019, 15(6): 624−632.
[11] Lloyd D A. Phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery[J]. International Journal of Remote Sensing, 1990, 11(12): 2269−2279. doi: 10.1080/01431169008955174
[12] 卓莉, 张子彦, 雷小雨, 等. 基于蒙特卡洛生存分析探究东北森林物候的影响因素[J]. 地理学报, 2019, 74(3): 490−503. Zhuo L, Zhang Z Y, Lei X Y, et al. Monte Carlo survival analysis on the influencing factors of forest phenology in Northeast China[J]. Acta Geographica Sinica, 2019, 74(3): 490−503.
[13] 朱娅坤, 秦树高, 张宇清, 等. 毛乌素沙地植被物候动态及其对气象因子变化的响应[J]. 北京林业大学学报, 2018, 40(9): 98−106. Zhu Y K, Qin S G, Zhang Y Q, et al. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98−106.
[14] 俎佳星, 杨健. 东北地区植被物候时序变化[J]. 生态学报, 2016, 36(7): 2015−2023. Zu J X, Yang J. Temporal variation of vegetation phenology in northeastern China[J]. Acta Ecologica Sinica, 2016, 36(7): 2015−2023.
[15] 吉珍霞, 裴婷婷, 陈英, 等. 黄土高原植被物候变化及其对季节性气候变化的响应[J]. 生态学报, 2021, 41(16): 6600−6612. Ji Z X, Pei T T, Chen Y, et al. Vegetation phenology change and its response to seasonal climate changes on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(16): 6600−6612.
[16] 李净, 刘红兵, 李彩云, 等. 基于GIMMS 3g NDVI的近30年中国北部植被生长季始期变化研究[J]. 地理科学, 2017, 37(4): 620−629. Li J, Liu H B, Li C Y, et al. Changes of green-up day of vegetation growing season based on GIMMS 3g NDVI in Northern China in recent 30 years[J]. Scientia Geographica Sinica, 2017, 37(4): 620−629.
[17] 于颖, 范文义, 杨曦光. 1901—2008年小兴安岭森林NPP估算[J]. 林业科学, 2014, 50(10): 16−23. Yu Y, Fan W Y, Yang X G. Estimation of forest NPP in Xiaoxing’an Mountains in 1901−2008[J]. Scientia Silvae Sinicae, 2014, 50(10): 16−23.
[18] Tucker C J, Pinzon J E, Brown M E, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing, 2005, 26: 4485−4498.
[19] Groten S M E, Ocatre R. Monitoring the length of the growing season with NOAA[J]. International Journal of Remote Sensing, 2002, 23(14): 2797−2815. doi: 10.1080/01431160110070843
[20] Zhang X Y, Friedl M A, Schaaf C B, et al. Monitoring vegetation phenology using MODIS[J]. Remote Sensing of Environment, 2003, 84(3): 471−475. doi: 10.1016/S0034-4257(02)00135-9
[21] Chen X Q, Tan Z J, Schwartz M D, et al. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China[J]. International Journal of Biometeorology, 2002, 44(2): 97−101.
[22] Yu F F, Price K P, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern central Asia[J]. Remote Sensing of Environment, 2003, 87(1): 42−54. doi: 10.1016/S0034-4257(03)00144-5
[23] Reed B C, Brown J F, van der Zee D, et al. Measuring phenological variability from satellite imagery[J]. Journal of Vegetation Science, 1994, 5(5): 703−714. doi: 10.2307/3235884
[24] Cong N, Wang T, Nan H, et al. Changes in satellite-derived spring vegetation green-up data and its linkage to climate in china from 1982 to 2010: a multimethod analysis[J]. Global Change Biology, 2013, 19: 881−891.
[25] Fu Y H, Zhou X, Li X, et al. Decreasing control of prepcipitation on grassland spring phenology in temperate China[J]. Global Ecology and Biogeography, 2021, 30: 490−499.
[26] Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vagetation[J]. Global Change Biology, 2006, 12: 672−685.
[27] Jeong S J, Chang-Hoi H O, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the northern hemisphere for the period 1982−2008[J]. Global Change Biology, 2011, 17: 2385−2399.
[28] Cong N, Piao S L, Chen A P, et al. Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis[J]. Agricultural and Forest Meteorology, 2012, 165: 104−113.
[29] Yuan M X, Zhao L, Li W, et al. How do climatic and non-climatic factors contribute to the dynamics of vegetation autumn phenology in the Yellow River Basin, China?[J]. Ecological Indicators, 2020, 112: 106112.
[30] 殷贺, 李正国, 王仰麟, 等. 基于时间序列植被特征的内蒙古荒漠化评价[J]. 地理学报, 2011, 66(5): 653−661. doi: 10.11821/xb201105008 Yin H, Li Z G, Wang Y L, et al. Assessment of desertification using time series analysis of hyper-temporal vegetation indicator in Inner Mongolia[J]. Acta Geographica Sinica, 2011, 66(5): 653−661. doi: 10.11821/xb201105008
[31] Eklundh L, Jonsson P. TIMESAT 3.0 software manual[M]. Lund: Lund University, 2010.
[32] 孔冬冬, 张强, 黄文琳, 等. 1982—2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39−52. doi: 10.11821/dlxb201701004 Kong D D, Zhang Q, Huang W L, et al. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors[J]. Acta Geographica Sinica, 2017, 72(1): 39−52. doi: 10.11821/dlxb201701004
[33] Li Y B, Zhang Y D, Gu F G, et al. Discrepancies in vegetation phenology trends and shift patterns in different climatic zones in middle and eastern Eurasia between 1982 and 2015[J]. Ecology and Evolution, 2019, 9(15): 8664−8675. doi: 10.1002/ece3.5408
[34] Shen M G, Piao S L, Dorji T, et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges[J]. National Science Review, 2015, 2(4): 454−467. doi: 10.1093/nsr/nwv058
[35] Cong N, Shen M G, Piao S L. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau[J]. Journal of Plant Ecology, 2017, 10(5): 744−752.
[36] 谢宝妮, 秦占飞, 王洋, 等. 基于遥感的黄土高原植被物候监测及其对气候变化的响应[J]. 农业工程学报, 2015, 31(15): 153−160. doi: 10.11975/j.issn.1002-6819.2015.15.021 Xie B N, Qin Z F, Wang Y, et al. Monitoring vegetation phenology and their response to climate change on Chinese Loess Plateau based on remote sening[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 153−160. doi: 10.11975/j.issn.1002-6819.2015.15.021
[37] Beck P S A, Goetz S J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences[J/OL]. Environmental Research Letters, 2011, 6(4): 045501[2021−10−27]. https://iopscience.iop.org/article/10.1088/1748-9326/6/4/045501/pdf.
[38] Zhang G, Zhang Y, Dong J, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011[J]. Proceedings of the National Academy of Sciences, 2013, 110(11): 4309−4314. doi: 10.1073/pnas.1210423110
[39] Peñuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change[J]. Science, 2009, 324: 887−888.
[40] He Z B, Du J, Chen L F, et al. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China[J]. Agricultural and Forest Meteorology, 2018, 260−261: 31−40.
[41] Toledo M, Poorter L, Peña-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance[J]. Journal of Ecology, 2011, 99(1): 254−264.
[42] Yu H Y, Luedeling E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceeding of the National Academy of Science of the United States of America, 2010, 107(51): 22151−22156.
[43] 王彦颖. 中国东北植被时空动态变化及其对气候变化响应研究[D]. 长春: 东北师范大学, 2016. Wang Y Y. Study on temporal and spatial dynamic change of vegetation and its response to climate in Northeast China[D]. Changchun: Northeast Normal University, 2016.
[44] Keenan T F, Richardson A D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models[J]. Global Change Biology, 2015, 21(7): 2634−2641.
[45] Fu Y S H, Campioli M, Vitasse Y, et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species[C]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7355−7360.
[46] 李程, 庄大方, 何剑锋, 等. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634−1648. doi: 10.11821/dlxb202107005 Li C, Zhuang D F, He J F, et al. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia[J]. Acta Geographica Sinica, 2021, 76(7): 1634−1648. doi: 10.11821/dlxb202107005
[47] Trenberth K E, Fasullo J T, Branstator G, et al. Seasonal aspects of the recent pause in surface warming[J]. Nature Climate Change, 2014, 4(10): 1082−1085.
[48] Seneviratne S I, Donat M G, Mueller B, et al. No pause in the increase of hot temperature extremes[J]. Nature Climate Change, 2014, 4(3): 161−163. doi: 10.1038/nclimate2145
[49] Xie Y K, Huang J P, Liu Y Z. From accelerated warming to warming hiatus in China[J]. International Journal of Climatology, 2017, 37(4): 1758−1773.
[50] Du Q Q, Zhang M J, Wang S J, et al. Changes in air temperature over China in response to the recent global warming hiatus[J]. Journal of Geographical Sciences, 2019, 29(4): 496−516.
[51] Li Q X, Yang S, Xu W H, et al. China experiencing the recent warming hiatus[J]. Geophysical Research Letters, 2015, 42(3): 889−898. doi: 10.1002/2014GL062773
[52] Wang L, Liu B H, Henderson M, et al. Warming across decades and deciles: minimum and maximum daily temperatures in China, 1955–2014[J]. International Journal of Climatology, 2018, 38(5): 2325−2332. doi: 10.1002/joc.5337
[53] Liu Q, Fu Y H, Zeng Z Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China[J]. Global Change Biology, 2016, 22(2): 644−655. doi: 10.1111/gcb.13081
[54] Zhang W, Wang L C, Xiang F F, et al. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China[J]. Ecological Indicators, 2020, 110: 105892. doi: 10.1016/j.ecolind.2019.105892
[55] 季劲钧, 黄玫, 刘青. 气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究[J]. 气象学报, 2005, 63(3): 257−266. Ji J J, Huang M, Liu Q. Modeling studies of response mechanism of steppe productivity to climate change in middle latitude semiarid regions in China[J]. Acta Meteorologica Sinica, 2005, 63(3): 257−266.
[56] 华维, 范广洲, 陈权亮, 等. 改则地区气候变化对植被生理过程的影响及反馈效应的模拟研究[J]. 高原气象, 2010, 29(4): 875−883. Hua W, Fan G Z, Chen Q L, et al. Simulation of influence of climate change on vegetation physiological process and feedback effect in Gaize Region[J]. Plateau Meteorology, 2010, 29(4): 875−883.
[57] 丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57(33): 3185−3194. Ding M J, Zhang Y L, Sun X M, et al. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009[J]. Chinese Science Bulletin, 2012, 57(33): 3185−3194.
[58] 何月, 樊高峰, 张小伟, 等. 浙江省植被物候变化及其对气候变化的响应[J]. 自然资源学报, 2013, 28(2): 220−233. doi: 10.11849/zrzyxb.2013.02.004 He Y, Fan G F, Zhang X W, et al. Vegetation phenological variation and its response to climate changes in Zhejiang Province[J]. Journal of Natural Resources, 2013, 28(2): 220−233. doi: 10.11849/zrzyxb.2013.02.004
-
期刊类型引用(6)
1. 张友谊,李松柏,钟磊. 基于地形因子的震后泥石流降雨阈值分析. 科学技术与工程. 2024(32): 13708-13717 . 百度学术
2. 曹永强,张若凝,范帅邦. 辽宁省降雨型泥石流环境特征及分类预警. 华北水利水电大学学报(自然科学版). 2022(02): 60-68 . 百度学术
3. 曹永强,张若凝,李玲慧,路洁,宁月. 辽宁省泥石流与不同时间尺度下降水因子的关系研究. 灾害学. 2021(03): 51-56 . 百度学术
4. 乔建平. 降雨型滑坡泥石流灾害预警原理及系统结构. 人民长江. 2020(01): 50-55+74 . 百度学术
5. 胡凯衡,魏丽,刘双,李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报. 2019(11): 2303-2313 . 百度学术
6. 凌訸,陶蓉,白晓华. 平凉鸭儿沟泥石流形成过程及特征分析. 甘肃水利水电技术. 2017(01): 18-21 . 百度学术
其他类型引用(3)