Grade evaluation of forest ecological function for Beimandian Forest Farm of Saihanba, Hebei Province of northern China
-
摘要:
目的 塞罕坝机械林场是全球最大的人工林场,2017年被联合国授予“地球卫士奖”,如何科学评价造林对塞罕坝森林生态功能恢复的贡献显得尤为重要,本研究旨在从不同角度分析塞罕坝森林生态功能现状,为未来森林经营提供理论依据。 方法 基于GB/T 26424—2010《森林资源规划设计调查技术规程》,采用森林蓄积量、森林自然度、森林群落结构、物种结构、植被总覆盖度、郁闭度、平均树高和枯枝落叶厚度8个评价因子对塞罕坝北曼甸林场各类森林进行生态功能等级评价。 结果 北曼甸林场有林地的森林生态功能指数平均为0.488,其中生态功能等级达到较好水平的林分占总林分的3.8%;生态功能等级达到中等水平的占总林分的52.7%;生态功能等级为较差的林分占42.4%;生态功能等级为差的林分占1.1%。不同森林起源的生态功能指数表现为:天然林(0.545) > 人工林(0.474)。不同森林类型的生态功能指数排序为:针阔混交林(0.710) > 阔叶混交林(0.617) > 白桦天然次生林(0.535) > 针叶混交林(0.487) > 落叶松人工林(0.478) > 云杉人工林(0.443) > 樟子松人工林(0.429)。不同龄组的森林生态功能指数排序为:过熟林(0.588) > 中龄林(0.512) > 近熟林(0.509) > 成熟林(0.504) > 幼龄林(0.434)。 结论 经过近60年的造林工程,北曼甸林场各类森林生态功能相较于沙荒地有了显著提升,但人工林生态功能仍具有较大的提升空间,结合近自然经营理念需要对人工林进行必要的近自然改造。 Abstract:Objective Saihanba Mechanical Forest Farm, Hebei Province of northern China, is the largest plantation forest farm in the world, it has been awarded the “Earth Guardian Award” by the United Nations in 2017. Thus, it is particularly important to scientifically evaluate the contribution of afforestation to the restoration of Saihanba forest ecological function. This study aimed to analyze the current situation of Saihanba forest ecological function from different aspects and provide a theoretical basis for future forest management. Method The ecological function grade of various forests in Beimandian Forest Farm in Saihanba had been evaluated based on Technical Regulations for Inventory for Forest Management Planning and Design (GB/T 26424−2010) with 8 evaluation factors of forest volume, forest naturalness, forest community structure, species structure, total vegetation coverage, canopy density, mean tree height and litter thickness. Result The forest ecological function index of Beimandian Forest Farm of Saihanba was 0.488, in which the stand with good ecological function grade accounted for 3.8%, the stand with medium ecological function grade accounted for 52.7%, the stand with bad ecological function grade accounted for 42.4% and the stand with worse ecological function accounted for 1.1%. The ecological function index of different stand origins was as follows: natural forest (0.545) > planted forest (0.474). The ecological function index of different forest types was as follows: mixed forest of needleleaf and broadleaf species (0.710) > mixed forest of broadleaf species (0.617) >Betula platyphylla natural secondary forest (0.535) > mixed forest of needleleaf species (0.487) > Larix principis-rupprechtii plantation (0.478) > Picea asperata plantation (0.443) > Pinus sylvestris var. mongolica plantation (0.429). The ecological function index of different age groups was as follows: over-mature forest (0.588) > middling forest (0.512) > near-mature forest (0.509) > mature forest (0.504) > young forest (0.434). Conclusion The forest ecological function of Beimandian Forest Farm has significantly improved after nearly 60 years of afforestation projects compared with sandy wasteland. However, the ecological function of artificial forests still has great space for improvement. The artificial forests should be subject to necessary management combined with the concept of near natural management. -
Key words:
- reserve /
- plantation /
- ecological function grade /
- ecological function index
-
图 4 不同森林类型生态功能等级评价结果
Ⅰ代表阔叶混交林,Ⅱ代表华北落叶松人工林,Ⅲ代表云杉人工林,Ⅳ代表樟子松人工林,Ⅴ代表白桦天然次生林,Ⅵ代表针阔混交林,Ⅶ代表针叶混交林。Ⅰ is mixed forest of broadleaf species,Ⅱ is Larix principis-rupprechtii plantation, Ⅲ is Picea asperata plantation, Ⅳ is Pinus sylvestris var. mongolica plantation, Ⅴ is Betula platyphylla natural secondary forest, Ⅵ is mixed forest of broadleaf and needleleaf species, Ⅶ is mixed forest of needleleaf species.
Figure 4. Evaluation results of forest ecological function level from different forest types
表 1 塞罕坝北曼甸林场有林地资源信息统计
Table 1. Statistics of forest land resources of Saihanba-Beimandian Forest Farm
功能分区
Functional partition森林类型
Forest type小班个数
Number of
subcompartment面积/hm2
Area/ha占比
Proportion/%蓄积量
Volume/m3占比
Proportion/%保护区
Reserve area小计 Subtotal 646 2 400.9 18.64 517 008 24.00 落叶松人工林
Larix principis-rupprechtii plantation429 1 583.8 12.30 403 917 18.75 云杉人工林
Picea asperata plantation18 61.7 0.48 7 606 0.35 樟子松人工林
Pinus sylvestris var. mongolica plantation110 236.0 1.83 21 410 0.99 白桦天然次生林
Betula platyphylla natural secondary forest89 519.5 4.03 84 075 3.90 多功能区
Multi-function area小计 Subtotal 2 099 10 480.5 81.36 1 637 050 76.00 阔叶混交林
Mixed forest of broadleaf species27 146.3 1.14 14 542 0.68 落叶松人工林
Larix principis-rupprechtii plantation1 307 6 475.7 50.27 1 178 033 54.69 云杉人工林
Picea asperata plantation175 572.0 4.44 27 706 1.29 樟子松人工林
Pinus sylvestris var. mongolica plantation121 550.3 4.27 14 498 0.67 白桦天然次生林
Betula platyphylla natural secondary forest385 1 979.2 15.36 280 311 13.01 针阔混交林
Mixed forest of needleleaf and broadleaf species59 584.9 4.54 99 041 4.60 针叶混交林
Mixed forest of needleleaf species25 172.2 1.34 22 919 1.06 表 2 森林生态功能评价因子及类型划分标准
Table 2. Evaluation factors of forest ecological function and classification criteria of forest
评价因子 Evaluation factor 类型划分标准 Type classification standard 权重 Weight Ⅰ Ⅱ Ⅲ 森林单位面积蓄积量/(m3·hm−2) Forest volume per unit area/(m3·ha−1) ≥ 150 50 ~ 149 < 50 0.20 森林自然度 Forest naturalness 1,2 3,4 5 0.15 森林群落结构 Forest community structure 1 2 3 0.15 树种结构 Tree species structure 6,7 3,4,5 1,2 0.15 植被总覆盖度 Total vegetation coverage/% ≥ 70 50 ~ 69 < 50 0.10 郁闭度 Canopy density/% ≥ 70 40 ~ 69 20 ~ 39 0.10 平均树高 Mean tree height/m ≥ 15.0 5.0 ~ 14.9 < 5.0 0.10 枯枝落叶厚度等级 Litter thickness grade 1 2 3 0.05 注:引自文献[22−23]。表3 ~ 8同此。Notes: cited from references [22−23]. The same as Tab. 3−8. 表 3 群落结构类型划分标准与代码
Table 3. Classification criteria and codes of community structure types
群落结构类型
Community structure type划分标准
Classification standard代码
Code完整结构
Complete structure具有乔木层、下木层、地被植物(含草本、苔藓、地衣)3个层次的林分
Stand with tree layer, lower tree layer and ground cover (including herb, moss and lichen)1 较完整结构
Relatively complete structure具有乔木层和其他1个植被层的林分
Stand with arbor layer and 1 other vegetation layer2 简单结构
Simple structure只有乔木1个植被层的林分
Stand with only one vegetation layer of arbor3 表 4 自然度划分标准与代码
Table 4. Classification criteria and codes of natural degree
自然度
Forest naturalness划分标准 Classification standard 代码 Code Ⅰ 原始或受人为影响很小而处于基本原始状态的森林类型
Basically primitive state with little human influence1 Ⅱ 有明显人为干扰的天然森林类型或处于演替后期的次生森林类型,以地带性顶极适应值较高的树种为主,顶极树种明显可见
Natural forest type with obvious human disturbance or the secondary forest type in the late succession stage are mainly the tree species with high zonal climax adaptation value, and the climax tree species are obviously visible2 Ⅲ 人为干扰很大的次生森林类型,处于次生演替的后期阶段,除先锋树种外,也可见顶极树种出现
Secondary forest type with great human disturbance is in the late stage of secondary succession. In addition to pioneer trees, climax trees can also be seen3 Ⅳ 人为干扰很大,演替逆行,处于极为残次的次生林阶段
Artificial disturbance is very serious, the succession is retrograde, and the secondary forest is in the stage of extremely defective4 Ⅴ 人为干扰强度极大且持续,地带性森林类型几乎破坏殆尽,处于难以恢复的逆行演替后期,包括各种人工森林类型
Intensity of human disturbance is great and persistent, and the zonal forest types are almost destroyed, which is in the late stage of retrograde succession and is difficult to recover, including all kinds of artificial forest types5 表 5 树种结构划分标准与代码
Table 5. Classification standard and code of tree species structure
树种结构类型
Tree species structure type划分标准 Classification standard 代码 Code 类型1 Type 1 针叶纯林(单个针叶树种蓄积量 ≥ 90%)
Pure coniferous forest (volume of single coniferous tree species ≥ 90%)1 类型2 Type 2 阔叶纯林(单个阔叶树种蓄积量 ≥ 90%)
Pure broadleaf forest (volume of single broadleaved tree species ≥ 90%)2 类型3 Type 3 针叶相对纯林(单个针叶树种蓄积量占65% ~ 90%)
Coniferous relative pure forest (the volume of single coniferous tree species accounts for 65%−90%)3 类型4 Type 4 阔叶相对纯林(单个阔叶树种蓄积量占65% ~ 90%)
Broadleaf relative pure forest (the volume of single broadleaved tree species accounts for 65%−90%)4 类型5 Type 5 针叶混交林(针叶树种总蓄积量 ≥ 65%)
Coniferous mixed forest (total volume of coniferous trees ≥ 65%)5 类型6 Type 6 针阔混交林(针叶树种或阔叶树种总蓄积量占35% ~ 65%)
Coniferous and broadleaf mixed forest (total volume of coniferous or broadleaved trees accounts for 35%−65%)6 类型7 Type 7 阔叶混交林(阔叶树种总蓄积量 ≥ 65%)
Broadleaf mixed forest (total volume of broadleaved tree species ≥ 65%)7 表 6 枯枝落叶厚度划分标准与代码
Table 6. Classification criteria and codes of litter thickness
等级
Grade枯枝落叶厚度划分标准
Classification criteria of litter thickness/cm代码
Code厚 Thick ≥ 10 1 中 Middle 5 ~ 9 2 薄 Thin < 5 3 表 7 森林生态功能等级评定标准与代码
Table 7. Classification criteria and codes of forest ecological function level
功能等级
Functional level综合得分值
Comprehensive score代码
Code好 Excellent ≤ 1.0 1 较好 Good 1.0 ~ 1.5 2 中 Medium 1.5 ~ 2.0 3 较差 Bad 2.0 ~ 2.5 4 差 Worse ≥ 2.5 5 表 8 森林生态功能等级评定标准
Table 8. Evaluation standard of forest ecological function grade
功能等级
Functional level森林生态功能指数
Forest ecological functional index好 Excellent ≥ 1.00 较好 Good 0.67 ~ 1.00 中 Medium 0.50 ~ 0.67 较差 Bad 0.40 ~ 0.50 差 Worse ≤ 0.40 表 9 不同起源森林生态功能等级分布情况
Table 9. Distribution of ecological function grades of forests from different origins
起源
Origin功能分区
Functional partition森林生态功能等级
Forest ecological
function level面积/hm2
Area/ha占比
Proportion/%生态功能指数
Ecological
functional index人工林
Plantation保护区
Reserve area中等 Medium 1 134.61 8.81 0.52 较差 Bad 745.35 5.79 0.44 差 Worse 1.48 0.01 0.38 多功能区
Multi-function area较好 Good 369.06 2.87 0.74 中等 Medium 3 181.20 24.70 0.52 较差 Bad 4 506.34 34.98 0.44 差 Worse 139.45 1.08 0.39 天然林
Natural forest保护区
Reserve area较好 Good 10.84 0.08 0.67 中等 Medium 436.34 3.39 0.54 较差 Bad 72.31 0.56 0.46 多功能区
Multi-function area较好 Good 104.21 0.81 0.73 中等 Medium 2 039.45 15.83 0.55 较差 Bad 140.76 1.09 0.47 -
[1] 刘勇. 重庆缙云山森林生态系统服务功能及其价值评价研究[D]. 北京: 北京林业大学, 2015.Liu W. Value assessment of forest ecosystem services function in Jinyun Mountain, Chongqing[D]. Beijing: Beijing Forestry University, 2015. [2] Bai Y, Xu H. Eco-service value evaluation based on eco-economic functional regionalization in a typical basin of northwest arid area, China[J]. Environmentlal Earth Sciences, 2013, 71(8): 3715−3726. [3] 袁野, 刘兆刚, 董灵波. 基于GIS的大兴安岭盘古林场森林生态功能等级评价与分析[J]. 中南林业科技大学学报, 2016, 36(12): 108−114.Yuan Y, Liu Z G, Dong L B. Evaluation and analysis of forest ecological function level in Greater Khingan Mountains Pangu Forest Farm based on GIS[J]. Journal of Central South University of Forestry & Technology, 2016, 36(12): 108−114. [4] 刘晓娜, 裴厦, 陈龙, 等. 基于InVEST模型的门头沟区生态系统土壤保持功能研究[J]. 水土保持研究, 2018, 25(6): 172−180.Liu X N, Pei S, Chen L, et al. Study on soil conservation service of ecosystem based on InVEST model in Mentougou District of Beijing[J]. Research of Soil and Water Conservation, 2018, 25(6): 172−180. [5] 刘若莎, 王冬梅, 杨海龙, 等. 青海黄土高寒区植被生态功能评价及优化措施[J]. 中国水土保持科学, 2021, 19(1): 97−105.Liu R S, Wang D M, Yang H L, et al. Vegetation ecological function evaluation and optimization measures in the loess alpine region of Qinghai[J]. Science of Soil and Water Conservation, 2021, 19(1): 97−105. [6] 孙滨峰, 赵红, 逯非, 等. 东北森林带森林生态系统固碳服务空间特征及其影响因素[J]. 生态学报, 2018, 38(14): 4975−4983.Sun B F, Zhao H, Lu F, et al. Spatial and temporal patterns of carbon sequestration in the northeastern forest regions and its impact factors analysis[J]. Acta Ecologica Sinina, 2018, 38(14): 4975−4983. [7] 崔景轩, 李秀芬, 郑海峰, 等. 典型气候背景下东北地区生态系统水源涵养功能特征研究[J]. 生态学报, 2019, 39(9): 1−13.Cui J X, Li X F, Zheng H F, et al. Spatial analysis of water conservation function in northeast China under different climatic conditions[J]. Acta Ecologica Sinica, 2019, 39(9): 1−13. [8] 张瑜. 韶关南雄市观音岽自然保护区森林生态功能评价研究[D]. 长沙: 中南林业科技大学, 2019.Zhang Y. Study on ecological function evaluation of guanyindong nature reserve in Nanxioing City Shaoguan[D]. Changsha: Central South University of Forestry and Technology, 2019. [9] 惠刚盈, 王宏翔. 关于森林生态系统服务功能评价的思考[J]. 温带林业研究, 2018, 1(3): 5−9. doi: 10.3969/j.issn.2096-4900.2018.03.002Hui G Y, Wang H X. Consideration on the evaluation of forest ecosystem service function[J]. Journal of Temperate Forestry Research, 2018, 1(3): 5−9. doi: 10.3969/j.issn.2096-4900.2018.03.002 [10] 张云玲. 塞罕坝自然保护区森林生态系统服务功能价值研究[D]. 石家庄: 河北师范大学, 2011.Zhang Y L. The study of service function evaluation of forest ecological system in Saihanba Nature Reserve[D]. Shijiazhuang: Hebei Normal University, 2011. [11] 赖兴会. 珠江源自然保护区的森林生态功能[J]. 林业调查规划, 2001(2): 54−57. doi: 10.3969/j.issn.1671-3168.2001.02.011Lai X H. Ecological function of forests of Zhujiangyuan Nature Reserve[J]. Forest Inventory and Planning, 2001(2): 54−57. doi: 10.3969/j.issn.1671-3168.2001.02.011 [12] 彭达. 森林生态功能等级划分标准的探讨[J]. 林业建设, 2005(5): 7−10.Peng D. Discussion on classification standard of forest ecological function[J]. Forestry Construction, 2005(5): 7−10. [13] de Groot R S, Wilson M A, Boumans R M J. A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics, 2002, 41(3): 393−408. doi: 10.1016/S0921-8009(02)00089-7 [14] 冯倩, 周忠发, 侯玉婷, 等. 水源涵养型国家重点生态功能区生态功能评价: 以贵州省三都水族自治县为例[J]. 环境工程, 2017, 35(12): 154−158.Feng Q, Zhou Z F, Hou Y T, et al. Evaluation on ecological function of national key ecological function areas of water conservation and ecological state: a case study of Sandu Autonomous Country in Guizhou Providence[J]. Environmental Engineering, 2017, 35(12): 154−158. [15] 王兵, 蒋有绪, 牛香. 森林生态系统服务功能评估规范: GB/T 38582—2020 [S]. 北京: 国家市场监督管理总局, 2020.Wang B, Jiang Y X, Niu X. Specifications for assessment of forest ecosystem servicesiIn China: GB/T 38582−2020 [S]. Beijing: State Administration for Market Regulation, 2020. [16] Lockaby B G, Stanturf J A, Messina M G. Effects of silvicultural activity on ecological processes in floodplain forests of the southern United States: a review of existing reports[J]. Forest Ecology and Management, 1997, 90(2−3): 93−100. doi: 10.1016/S0378-1127(96)03897-2 [17] 刘延飞. 大通县有林地、疏林地、灌木林地现状分析评价[J]. 青海农林科技, 2011(1): 15−17. doi: 10.3969/j.issn.1004-9967.2011.01.005Liu Y F. Analysis and evaluation on forest land, open forest land and shrub land in Datong County[J]. Science and Technology of Qinghai Agriculture and Forestry, 2011(1): 15−17. doi: 10.3969/j.issn.1004-9967.2011.01.005 [18] 张现武, 郑春茂, 唐学君, 等. 上海市森林生态功能综合指数评定[J]. 亚热带水土保持, 2015, 27(3): 34−37. doi: 10.3969/j.issn.1002-2651.2015.03.008Zhang X B, Zheng C M, Tang X J, et al. Assessment of comprehensive index for forest eco-function in Shanghai Municipality[J]. Subtropical Soil and Water Conservation, 2015, 27(3): 34−37. doi: 10.3969/j.issn.1002-2651.2015.03.008 [19] 尉卫平. 绍兴市越城区林地生态功能评价与结构优化研究[D]. 杭州: 浙江农林大学, 2011.Wei W P. Study on woodland and ecological function evaluation and structure optimizing in Yuecheng Region of Shaoxing City[D]. Hangzhou: Zhejiang A&F University, 2011. [20] 闫秀婧, 汪浩然. 森林生态功能时空分布评价系统设计[C]//2011年未来计算机科学与应用国际会议论文集(FCSA 2011 V1). 北京: 智能信息技术应用学会, 2011: 243−246.Yan X J, Wang H R. Intelligent information technology application association[C]//Proceedings of the 2011 International Conference on Future Computer Science and Application (FCSA 2011 V1). Beijing: Intelligent Information Technology Application Association, 2011: 243−246. [21] 温亚楠, 王栋. 塞罕坝森林生态体系功能提升规划[J]. 现代园艺, 2019, 42(17): 85. doi: 10.3969/j.issn.1006-4958.2019.17.048Wen Y N, Wang D. Design of function upgrading of Saihanba forest ecosystem[J]. Modern Horticulture, 2019, 42(17): 85. doi: 10.3969/j.issn.1006-4958.2019.17.048 [22] 中国国家标准化管理委员会. 森林资源规划设计调查技术规程: GB/T 26424—2010[S]. 北京: 中国标准出版社, 2010.Standardization Administration of China. Technical regulations for inventory for forest management planning and design: GB/T 26424−2010[S]. Beijing: Standards Press of China, 2010. [23] 中国国家标准化管理委员会. 森林资源连续清查技术规程: GB/T 38590—2020[S]. 北京: 中国标准出版社, 2020.Standardization Administration of China. Technical regulations for continuous forest invertory: GB/T 38590−2020[S]. Beijing: Standards Press of China, 2020. [24] 陈聪琳, 孙一淼, 龚利梅, 等. 不同密度路域巨桉人工林群落结构和物种多样性[J]. 森林与环境学报, 2022, 42(1): 20−28.Chen C L, Sun Y M, Gong L M, et al. Community structure and species diversity of Eucalyptus grandis plantations with different stand densities in road area[J]. Journal of Forest and Environment, 2022, 42(1): 20−28. [25] 李锐, 李际平, 张利利. 人工林经营中保持森林结构稳定性的探究[J]. 林业资源管理, 2017(5): 28−34.Li R, Li J P, Zhang L L. Exploration of structure stability optimization about plantation landscape from perspective of complex network[J]. Forest Resources Management, 2017(5): 28−34. [26] 朱万泽, 盛哲良, 舒树淼, 等. 川西亚高山天然次生林生态功能恢复综合评价[J]. 应用与环境生物学报, 2021, 27(3): 694−704.Zhu W Z, Sheng Z L, Shu S M, et al. Comprehensive evaluation of ecological function restoration of the natural secondary forests in a subalpine region of western Sichuan[J]. Chinese Journal of Applied & Environmental Biology, 2021, 27(3): 694−704. [27] 张倩, 孙小妹, 杨晶, 等. 坡向对东祁连山高寒草甸群落物种功能群及其多样性的影响[J]. 西北植物学报, 2019, 39(8): 1480−1490.Zhang Q, Sun X M, Yang J, et a. Effect of slope aspect on species functional groups and species diversity in alpine meadow of the east of Qilian Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(8): 1480−1490. [28] 李明鲁, 吴兆飞, 邱华, 等. 采伐对吉林蛟河阔叶红松林生态功能的短期影响[J]. 北京林业大学学报, 2019, 41(9): 40−49.Li M L, Wu Z F, Qiu H, et al. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 40−49. [29] 郝云庆, 李旭光, 何丙辉. 生态恢复过程中华山松林与天然林主要种群的生态位特征比较: 以巫溪县红池坝为例[J]. 应用与环境生物学报, 2004, 10(5): 591−595. doi: 10.3321/j.issn:1006-687X.2004.05.011Hao Y Q, Li X G, He B H. Niche characteristics comparison of the main tree populations in Pinus armandii forest and in natural forest during the process of ecological restoration: case study in Hongchiba Region of Wuxi, Chongqing[J]. Chinese Journal of Applied & Environmental Biology, 2004, 10(5): 591−595. doi: 10.3321/j.issn:1006-687X.2004.05.011 [30] 张期奇, 董希斌. 抚育间伐强度对落叶松次生林水文生态功能的影响[J]. 东北林业大学学报, 2020, 48(6): 142−145. doi: 10.3969/j.issn.1000-5382.2020.06.027Zhang Q Q, Dong X B. Effect of tending thinning intensity on hydroecological ande ecological function of secondary Larix forest[J]. Journal of Northeast Forestry University, 2020, 48(6): 142−145. doi: 10.3969/j.issn.1000-5382.2020.06.027 [31] 张瑜, 陈存友, 胡希军. 应用投影寻踪分类技术的森林生态功能评价[J]. 浙江农林大学学报, 2020, 37(2): 243−250. doi: 10.11833/j.issn.2095-0756.2020.02.007Zhang Y, Chen C Y, Hu X J. Evaluation of forest ecological function based on projection pursuit classification[J]. Journal of Zhejiang A&F University, 2020, 37(2): 243−250. doi: 10.11833/j.issn.2095-0756.2020.02.007 [32] 崔亚琴, 樊兰英, 刘随存, 等. 山西省森林生态系统服务功能评估[J]. 生态学报, 2019, 39(13): 4732−4740.Cui Y Q, Fan L Y, Liu S C, et al. Evaluation of forest ecosystem services value in Shanxi Province[J]. Acta Ecological Sinica, 2019, 39(13): 4732−4740. -