• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

外源酸催化对木材半纤维素热降解规律的影响

雒翠梅, 王旭洁, 母军, 漆楚生

雒翠梅, 王旭洁, 母军, 漆楚生. 外源酸催化对木材半纤维素热降解规律的影响[J]. 北京林业大学学报, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426
引用本文: 雒翠梅, 王旭洁, 母军, 漆楚生. 外源酸催化对木材半纤维素热降解规律的影响[J]. 北京林业大学学报, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426
Luo Cuimei, Wang Xujie, Mu Jun, Qi Chusheng. Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose[J]. Journal of Beijing Forestry University, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426
Citation: Luo Cuimei, Wang Xujie, Mu Jun, Qi Chusheng. Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose[J]. Journal of Beijing Forestry University, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426

外源酸催化对木材半纤维素热降解规律的影响

基金项目: 国家自然科学基金项目(31971589、31870536)
详细信息
    作者简介:

    雒翠梅,博士生。主要研究方向:木材热加工。Email:lcm1980921@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    母军,博士,教授。主要研究方向:木质生物质材料利用。Email:mujun@bjfu.edu.cn 地址:同上

    漆楚生,博士,副教授。主要研究方向:木质复合材料。Email:qichusheng@bjfu.edu.cn 地址:同上

  • 中图分类号: S781.46

Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose

  • 摘要:
      目的  高温热处理可使木材半纤维素部分降解,改善木材的尺寸稳定性。使用外源酸可降低木材半纤维素热降解温度,因此有必要明确其热降解规律。
      方法  采用碱法分离的方式提取出杨木和杉木的半纤维素,通过傅里叶红外光谱仪和热重分析法研究引入外源酸条件下(两种外源酸AlCl3和H3PO4,每种外源酸的浓度分别为0.1和0.3 mol/L)半纤维素的热降解规律。
      结果  碱法分离出的木材半纤维素,其红外谱图符合阔叶材和针叶材半纤维素的基本特征。经AlCl3和H3PO4处理后,相比未处理的半纤维素,羟基峰发生红移,且半纤维素的特征吸收峰强度显著降低。热重分析显示:两种外源酸预处理的木材半纤维素的起始降解温度(T5%)从200 ℃左右降低至95 ~ 150 ℃,且主要降解温度范围从200 ~ 300 ℃降低至100 ~ 150 ℃。在相同浓度下,AlCl3处理后半纤维素的T5%(150 ℃)大于H3PO4的(95 ℃)。当AlCl3浓度增大时,半纤维素热分解速率加快,但T5%无明显变化。随H3PO4浓度增大时,半纤维素热分解速率和T5%均减小。相比未处理的杨木半纤维素热解活化能(199.68 kJ/mol)和杉木半纤维素热解活化能(231.12 kJ/mol),AlCl3和H3PO4处理后的热解活化能显著降低。在相同浓度0.3 mol/L的条件下,AlCl3处理后杉木半纤维素的平均活化能(112.31 kJ/mol)要低于H3PO4的(125.82 kJ/mol)。
      结论  本研究采用的两种外源酸均可显著降低半纤维素的热降解温度。总体来讲,AlCl3催化效果优于H3PO4,杉木半纤维素对H3PO4较为敏感。可根据针、阔叶材半纤维素的差异性选择不同的外源酸性介质作为催化剂,加速热解反应速率,从而为外源酸在木材低温热处理的应用提供一定的理论支撑。
    Abstract:
      Objective  High-temperature heat treatment can partially degrade wood hemicellulose and improve wood dimensional stability. The use of exogenous acid can reduce the thermal degradation temperature of wood hemicellulose, so it is necessary to clarify its thermal degradation law.
      Method  In this study, hemicelluloses from poplar and Chinese fir were separated by alkali method. Thermal degradation of hemicellulose (The two exogenous acids were AlCl3 and H3PO4, and the concentration of each acid was 0.1mol/L and 0.3mol/L, respectively) under different acidic conditions were investigated by Fourier Infrared Spectrometer (FTIR) and thermogravimetric (TG) analysis.
      Result  The FTIR spectra of wood hemicelluloses isolated by alkali method were consistent with the basic characteristic of hemicellulose of softwood and hardwood. After being treated with AlCl3 and H3PO4, the hydroxyl peak showed red shift, and the characteristic absorption peak intensity of hemicellulose decreased significantly compared with the untreated hemicellulose. TG analysis showed that the initial degradation temperature (T5%) of wood hemicellulose ranged from 200 ℃ to 95–150 ℃ after being pretreated by two kinds of exogenous acids, and the main degradation temperature ranged from 200–300 ℃ to 100–150 ℃. At the same concentration, the T5% value of hemicellulose (150 ℃) after AlCl3 treatment was greater than that of H3PO4 (95 ℃). When the concentration of AlCl3 increased, the thermal decomposition rate of hemicellulose accelerated, but it had almost no effect on T5%. When the concentration of H3PO4 increased, the thermal decomposition rate of hemicellulose and T5% both decreased. Compared with untreated poplar wood hemicellulose (199.68 kJ/mol) and Chinese fir hemicellulose (231.12 kJ/mol), the pyrolysis activation energy was significantly reduced after AlCl3 and H3PO4 treatment. When the concentration was 0.3M, the average activation energy of Chinese fir hemicellulose (112.31 kJ/mol) after AlCl3 treatment was lower than that of H3PO4 (125.82 kJ/mol).
      Conclusion  The two exogenous acids used in this study can significantly reduce the degradation temperature of hemicellulose. In general, the catalytic effect of AlCl3 was better than H3PO4, and the Chinese fir hemicellulose was more sensitive to the catalytic effect of H3PO4. Therefore, different exogenous acidic media can be selected as catalysts according to the difference of softwood and hardwood of hemicellulose to accelerate the pyrolysis reaction rate, thereby providing theoretical support for the application of exogenous acid in low-temperature heat treatment of wood.
  • 图  4   不同酸性条件下杨木和杉木半纤维素的TG和DTG曲线(温度范围60 ~ 600 ℃)

    Figure  4.   TG and DTG curves of hemicellulose of poplar and Chinese fir under different acid conditions (temperature range of 60 − 600 ℃)

    图  1   木材半纤维素的分离流程简图

    Figure  1.   Schematic diagram of the separation process of wood hemicellulose

    图  2   分离的杨木半纤维素(PH)和杉木半纤维素(CH)红外光谱图

    Figure  2.   FTIR spectra of separated hemicellulose of poplar (PH) and Chinese fir (CH)

    图  3   不同酸性条件下杨木和杉木半纤维素的红外光谱图

    PH为杨木半纤维素,CH为杉木半纤维素;A-PH-0.1、A-PH-0.3分别为0.1、0.3 mol/L AlCl3处理的杨木半纤维素,A-CH-0.1、A-CH-0.3分别为0.1、0.3 mol/L AlCl3处理的杉木半纤维素;H-PH-0.1、H-PH-0.3分别为0.1、0.3 mol/L H3PO4处理的杨木半纤维素,H-CH-0.1、H-CH-0.3分别为0.1、0.3 mol/L H3PO4处理的杉木半纤维素。下同。PH is poplar hemicellulose, and CH is Chinese fir hemicellulose. A-PH-0.1 and A-PH-0.3 are poplar hemicelluloses treated with 0.1 and 0.3 mol/L AlCl3, respectively. A-CH-0.1 and A-CH-0.3 are Chinese fir hemicelluloses treated with 0.1 and 0.3 mol/L AlCl3, respectively. H-PH-0.1 and H-PH-0.3 are poplar hemicelluloses treated with 0.1 and 0.3 mol/L H3PO4, respectively. H-CH-0.1 and H-CH-0.3 are Chinese fir hemicelluloses treated with 0.1 and 0.3 mol/L H3PO4, respectively. The same below.

    Figure  3.   FTIR spectra of hemicellulose of poplar and Chinese fir under different acid conditions

    图  5   同一树种半纤维素在不同酸性条件下的TG和DTG曲线(温度范围60 ~ 240 ℃)

    Figure  5.   TG and DTG curves of hemicellulose of the same wood species under different acid conditions (temperature range of 60 − 240 ℃)

    图  6   不同条件下半纤维素在低温范围的质量损失率变化

    Figure  6.   Changes in the mass loss rate of hemicellulose in the low temperature range under different conditions

    图  7   不同升温速率下典型的半纤维素TG与DTG曲线

    Figure  7.   TG and DTG curves of hemicellulose at different heating rates

    表  1   不同外源酸处理条件下杨木和杉木半纤维素的热降解参数

    Table  1   Thermal degradation parameters of hemicellulose of poplar and Chinese fir under different exogenous acid-treatment conditions

    试样 Sample起始降解温度
    Initial degradation temperature
    (T5%)/℃
    热解速率最大所对应的温度
    Temperature corresponding to the maximum pyrolysis rate
    (Tmax)/℃
    最大降解速率的绝对值
    Absolute value of maximum degradation rate/(%·℃−1)
    主要降解温度范围
    Main degradation temperature range/℃
    残炭量
    Carbon residue/%
    PH 195.00 264.31 0.719 200 ~ 300 31.25
    CH 203.41 229.38/259.02 0.511/0.543 180 ~ 330 35.89
    A-PH-0.1 96.87 126.51 0.566 100 ~ 150 34.93
    A-CH-0.1 94.57 130.46 0.269 100 ~ 150 39.14
    A-PH-0.3 95.74 119.29 0.887 100 ~ 150 32.22
    A-CH-0.3 95.77 133.07 1.073 100 ~ 150 31.03
    H-PH-0.1 175.91 199.45 0.748 170 ~ 250 35.30
    H-CH-0.1 165.49 188.69/253.46 0.278/0.281 160 ~ 250 44.09
    H-PH-0.3 150.36 164.84 0.643 150 ~ 250 42.24
    H-CH-0.3 140.05 168.51 0.289 150 ~ 250 48.99
    注:因在CH和H-CH-0.1组中出现2个热解速率非常接近,但对应热解温度不同的热降解峰,故列出2个数值。残炭量是指在TG曲线中温度为600 ℃时半纤维素的质量分数。热解速率是对TG曲线降解快慢的描述,即为DTG图的微商热重。Notes: since there are two thermal degradation peaks with very closer pyrolysis rates, but different pyrolysis temperatures in CH and H-CH-0.1 groups, two values are listed. The carbon residue refers to the mass fraction of hemicellulose in the TG curve when the temperature is 600 ℃. The pyrolysis rate is a description of the degradation speed of the TG curve, that is, the derivative thermogravimetry in the DTG graph.
    下载: 导出CSV

    表  2   木材半纤维素在相同转化率(0.1 ~ 0.3)范围的活化能和指前因子

    Table  2   Activation energy and pre-digital factor of wood hemicelluloses in the same conversion rate range (0.1−0.3)

    样品 Sample活化能 Activation energy /(kJ·mol−1)指前因子 Pre-exponential factor/(min−1)活化能降低程度 Activation energy reduction/%
    PH 199.68 46.44
    A-PH-0.3 134.90 39.03 32.44
    H-PH-0.3 142.84 42.35 28.47
    CH 231.12 49.54
    A-CH-0.3 112.31 29.18 51.41
    H-CH-0.3 125.82 34.79 45.56
    下载: 导出CSV
  • [1]

    Rowell R M. Handbook of wood chemistry and wood composites [M]. Boca Raton: CRC Press, 2005.

    [2]

    Sjöström E. Wood chemistry fundamentals and applications [M]. New York: Academic Press, 1981.

    [3] 顾百练, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1−11.

    Gu B L, Ding T, Jiang N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1−11.

    [4]

    Yang H C, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86: 1781−1788. doi: 10.1016/j.fuel.2006.12.013

    [5] 齐文玉, 刘偲, 陈金明, 等. 氮气介质环境中热处理樟子松木材主要性能的变化[J]. 西北林学院学报, 2021, 36(5): 161−167.

    Qi W Y, Liu C, Chen J M, et al. Effect of N2 heat treatment on main properties of Pinus sylvestris var. mongolica wood[J]. Journal of Northwest Forestry University, 2021, 36(5): 161−167.

    [6]

    Salca E A, Hiziroglu S. Evaluation of hardness and surface quality of different wood species as function of heat treatment[J]. Materials & Design, 2014, 62: 416−423.

    [7]

    Xue L, Zhao Z J, Zhang Y, et al. Analysis of gas chromatography-mass spectrometry coupled with dynamic headspace sampling on volatile organic compounds of heat-treated poplar at high temperatures[J]. BioResources, 2016, 11(2): 3550−3560.

    [8] 吴再兴, 陈玉和, 黄成建, 等. 热处理对木材力学性能的影响综述[J]. 世界林业研究, 2019, 32(1): 59−64.

    Wu Z X, Chen Y H, Huang C J, et al. A review of effects of heat treatment on wood mechanical properties[J]. World Forestry Research, 2019, 32(1): 59−64.

    [9] 孔繁旭, 邹超峰, 王艳伟, 等. 热处理对木材化学组分及物理力学性能的影响[J]. 林业机械与木工设备, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002

    Kong F X, Zou C F, Wang Y W, et al. Effect of heat treatment on chemical composition and physico-mechanical properties of wood[J]. Forestry Machinery & Woodworking Equipment, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002

    [10] 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107−110.

    Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107−110.

    [11] 李贤军, 付峰, 蔡智勇, 等. 高温热处理对木材吸湿性和尺寸稳定性的影响[J]. 中南林业科技大学学报, 2010, 30(6): 92−96. doi: 10.3969/j.issn.1673-923X.2010.06.017

    Li X J, Fu F, Cai Z Y, et al. The effect of high temperature thermal treatment on moisture absorption and dimension stability of wood[J]. Journal of Central South University of Forestry & Technology, 2010, 30(6): 92−96. doi: 10.3969/j.issn.1673-923X.2010.06.017

    [12] 蔡绍祥, 王新洲, 李延军. 高温水热处理对马尾松木材尺寸稳定性和材色的影响[J]. 西南林业大学学报, 2019, 39(1): 160−165.

    Cai S X, Wang X Z, Li Y J. The size stability and color change of Pinus massoniana wood by high temperature hydrothermal treatment[J]. Journal of Southwest Forestry University, 2019, 39(1): 160−165.

    [13]

    Hosseinpourpia R, Adamopoulos S, Mai C. Effects of acid pre-treatments on the swelling and vapor sorption of thermally modified Scots pine (Pinus sylvestris L.) wood[J]. BioResources, 2018, 13(1): 331−345.

    [14]

    Himmel S, Mai C. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood[J]. Holzforschung, 2015, 69(5): 633−643. doi: 10.1515/hf-2014-0161

    [15]

    Hosseinpourpia R, Adamopoulos S, Holstein N, et al. Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid[J]. Polymer Degradation and Stability, 2017, 138: 161−168. doi: 10.1016/j.polymdegradstab.2017.03.009

    [16] 孙珂, 漆楚生, 汪莉君, 等. 杉木纤维素的热稳定性及热分解动力学参数[J]. 林产工业, 2018, 45(4): 37−42.

    Sun K, Qi C S, Wang L J, et al. Thermal stablity and decopposition kinetics parameters of Chinese fir cellulose[J]. China Forest Products Industry, 2018, 45(4): 37−42.

    [17]

    Qi C S, Hou S Y, Lu J X, et al. Thermal characteristics of birch and its cellulose and hemicelluloses isolated by alkaline solution[J]. Holzforschung, 2020, 74(12): 1099−1112. doi: 10.1515/hf-2019-0285

    [18] 李赫龙. 作物秸秆木质素和半纤维素的分离纯化及结构表征[D]. 咸阳: 西北农林科技大学, 2016.

    Li H L. Isolation and structure characterization of ligin and hemicellulose from crop straw[D]. Xianyang: Northwest Agriculture and Forestry University of Science and Technology, 2016.

    [19]

    Akerholm M, Salmen L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy[J]. Polymer, 2001(42): 963−969.

    [20] 储德淼. 基于阻燃/热处理联合改性杨木表面功能层构建与性能研究[D]. 北京: 北京林业大学, 2019.

    Chu D M. Manufacturing and characterizing of the surface functional layer on poplar using combined treatment of fir retardancy and thermal modification[D]. Beijing: Beijing Forestry University, 2019.

    [21]

    Huang X N, Kocaefe D G, Kocaefe Y, et al. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering[J]. Applied Surface Science, 2013, 264: 117−127. doi: 10.1016/j.apsusc.2012.09.137

    [22]

    Buta J G, Zadrazil F, Galletti G C. FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations[J]. Journal of Agricultural and Food Chemistry, 1989, 37(5): 1382−1384.

    [23]

    Rabemanolontsoa H, Saka S. Holocellulose determination in biomass[J]. Green Energy and Technology, 2012: 135−140.

    [24]

    Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035

    [25]

    Sugiyama J, Persson J, Chanzy H. Combined infrared and electron diffraction study of the polymorphism of native celluloses[J]. Macromolecules, 1991, 24: 2461−2466. doi: 10.1021/ma00009a050

    [26]

    Li M Y, Cheng S C, Li D, et al. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy[J]. Chinese Chemical Letters, 2015, 26(2): 221−225. doi: 10.1016/j.cclet.2014.11.024

    [27]

    Zabihi O, Ahmadi M, Yadav R, et al. Novel Phosphorous-based deep eutectic solvents for the production of recyclable macadamia nutshell-polymer biocomposites with improved mechanical and fire safety performances[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4463−4476.

    [28]

    Ma Z Q, Chen D Y, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Conversion and Management, 2015, 89: 251−259. doi: 10.1016/j.enconman.2014.09.074

    [29] 吕建雄, 江京辉, 黄荣凤, 等. 木材高温热处理技术与应用[M]. 北京: 科学出版社, 2020.

    Lü J X, Jiang J H, Huang R F, et al. Technology and application of wood high temperature heat treatment[M]. Beijing: Science Press, 2020.

    [30] 梁韬. 基于Py-GC/MS的半纤维素热裂解机理研究[D]. 杭州: 浙江大学, 2013.

    Liang T. Mechanism research of hemicellulose pyrolvsis based on Py-GC/MS[D]. Hangzhou: Zhejiang University, 2013.

    [31]

    Wang J W, Minami E, Kawamoto H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls[J]. Journal of Wood Science, 2020, 66(1): 1−10.

    [32]

    Hajj R, Hage R E, Sonnier R, et al. Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy[J]. Reactive and Functional Polymers, 2020, 153: 1−13.

    [33]

    Sonnier R, Otazaghine B, Virett A, et al. Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds[J]. European Polymer Journal, 2015, 68: 313−325. doi: 10.1016/j.eurpolymj.2015.05.005

    [34] 程士超. 热处理温度对花梨木化学组分及其结构的影响[D]. 北京: 北京林业大学, 2016.

    Cheng S C. Effect of heat treatment temperature on chemical compositions and structure of Pterocarpus macarpus Kurz wood[D]. Beijing: Beijing Forestry University, 2016.

    [35]

    Qi C S, Yadama V, Guo K Q, et al. Thermal stability evaluation of sweet sorghum fiber and degradation simulation during hot pressing of sweet sorghum-thermoplastic composite panels[J]. Industrial Crops and Products, 2015, 69: 335−343. doi: 10.1016/j.indcrop.2015.02.050

    [36]

    Wang S R, Ru B, Lin H Z, et al. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods[J]. Fuel, 2015, 150: 243−251. doi: 10.1016/j.fuel.2015.02.045

    [37]

    Wang S R, Ru B, Zhang L, et al. Structural characterization and pyrolysis behavior of cellulose and hemicellulose isolated from softwood Pinus armandii Franch[J]. Energy & Fuel, 2016, 30(7): 5721−5728.

    [38]

    Lei Z H, Wang S D, Fu H C, et al. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia oleifera shell[J]. Bioresource Technology, 2019, 282: 228−235. doi: 10.1016/j.biortech.2019.02.131

  • 期刊类型引用(5)

    1. 储昌超,张贵,孙玉荣. 基于克里金方法的湖南森林火灾趋势预测研究. 中南林业科技大学学报. 2014(06): 66-70 . 百度学术
    2. 杨广斌,刘鹏举,唐小明. 动态数据驱动的林火蔓延模型适宜性选择. 林业科学. 2011(01): 107-112 . 百度学术
    3. 李广水,宋丁全. 数据分析在森林资源调查中的应用及发展研究. 安徽农业科学. 2009(22): 10797-10800 . 百度学术
    4. 王明玉,李涛,任云卯,舒立福,赵凤君,田晓瑞. 森林火行为与特殊火行为研究进展. 世界林业研究. 2009(02): 45-49 . 百度学术
    5. 韩恩贤,韩刚,薄颖生. 森林火灾发生趋势及预测方法的探讨. 西北农林科技大学学报(自然科学版). 2008(02): 91-96+103 . 百度学术

    其他类型引用(7)

图(7)  /  表(2)
计量
  • 文章访问数:  1258
  • HTML全文浏览量:  340
  • PDF下载量:  101
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-10-25
  • 修回日期:  2022-02-28
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-03-03
  • 发布日期:  2022-04-24

目录

    /

    返回文章
    返回