高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响

杨家明 胡健 潘军晓 彭逸飞 魏春雪 汪金松 田大栓 周青平

杨家明, 胡健, 潘军晓, 彭逸飞, 魏春雪, 汪金松, 田大栓, 周青平. 氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210439
引用本文: 杨家明, 胡健, 潘军晓, 彭逸飞, 魏春雪, 汪金松, 田大栓, 周青平. 氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210439
Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jingsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in an alpine meadow[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210439
Citation: Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jingsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in an alpine meadow[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210439

氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响

doi: 10.12171/j.1000-1522.20210439
基金项目: 国家自然科学基金项目(31800404),西南民族大学研究生创新型科研项目(CX2020SZ28)。
详细信息
    作者简介:

    杨家明。主要研究方向:土壤生态学。Email:1402067306@qq.com 地址:610041 四川省成都市一环路南四段16号

    责任作者:

    周青平,教授,博士生导师。主要研究方向:草原生态学。Email:qpingzh@aliyun.com 地址:同上

Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in an alpine meadow

  • 摘要:   目的  探讨不同氮添加条件下土壤团聚体分布及其碳氮含量的响应特征,以期为氮沉降背景下高寒草甸土壤固碳机制提供数据支撑。  方法  于2014年在青藏高原高寒草甸建立长期氮素添加平台,采取完全随机区组试验设计,设置0 g/(m2·a)(N0,对照)、2 g/(m2·a)(N2)、4 g/(m2·a)(N4)、8 g/(m2·a)(N8)、16 g/(m2·a)(N16)、32 g/(m2·a)(N32)6个水平氮素添加控制实验。通过湿筛法获得大团聚体(0.25 ~ 2 mm)、微团聚体(0.053 ~ 0.25 mm)和黏粉粒(< 0.053 mm),并测定各粒级土壤团聚体有机碳和全氮含量。  结果  该高寒草甸土壤大团聚体质量百分比(79%)显著高于黏粉粒(13%)和微团聚体(8%)(P < 0.05),各粒级团聚体质量百分比在不同氮添加处理下差异不显著(P > 0.05),氮添加未显著改变土壤团聚体平均质量直径(P > 0.05),这可能由于氮添加不仅提高了根系生物量,也降低了土壤微生物活性。氮添加降低了大团聚体和微团聚体有机碳含量,而增加了黏粉粒有机碳含量(P > 0.05)。相比于对照,氮添加使得微团聚体和黏粉粒全氮含量分别降低了2%和12%(P > 0.05)。氮添加显著降低了各粒级土壤团聚体C/N(P < 0.05)。  结论  不同粒级土壤团聚体C/N比值下降,表明未来持续氮沉降可能会加速高寒草甸土壤有机碳矿化。

     

  • 图  1  氮添加对土壤团聚体影响的概念模型

    Figure  1.  Conceptual model of the effect of nitrogen addition on soil aggregates

    图  2  氮添加对土壤团聚体分布的影响

    不同大写字母表示团聚体粒级之间差异显著(P < 0.05),不同小写字母表示氮添加处理之间差异显著(P < 0.05)。下同。0.25 ~ 2.00 mm为大团聚体,0.053 ~ 0.250 mm为微团聚体, < 0.053 mm为黏粉粒。下同。Different uppercase letters indicated significant differences in aggregate sizes (P < 0.05), and different lowercase letters indicated significant differences among nitrogen addition treatments (P < 0.05). The same below. 0.25−2.00 mm is macroaggregate, 0.053−0.250 mm is microaggregate, and < 0.053 mm is silt and clay fraction. The same below.

    Figure  2.  Effects of nitrogen addition on soil aggregate distribution

    图  3  氮添加对土壤团聚体平均质量直径的影响

    Figure  3.  Effects of nitrogen addition on soil aggregate mean weight diameter

    图  4  氮添加对土壤团聚体有机碳含量的影响

    Figure  4.  Effects of nitrogen addition on organic carbon content in soil aggregates

    图  5  氮添加对土壤团聚体全氮含量的影响

    Figure  5.  Effects of nitrogen addition on total nitrogen content in soil aggregates

    图  6  氮添加对团聚体碳氮比的影响

    Figure  6.  Effects of nitrogen addition on the ratio of carbon to nitrogen content in soil aggregates

    图  7  团聚体碳氮与环境因子的相关关系

    Figure  7.  Aggregate carbon and nitrogen in relation to environmental factors

    表  1  氮添加对植物、土壤和微生物特性的影响

    Table  1.   Effects of nitrogen addition on plant, soil and microbial characteristics

    变量 Variables处理 Treament
    N0N2N4N8N16N32
    植物
    Plant
    凋落物
    Litterfall/(g·m−2)
    46.3 ± 14.0ab55.9 ± 17.1a23.0 ± 3.7ab33.3 ± 13.3ab35.7 ± 13.2ab11.5 ± 3.8b
    地下净初级生产力
    BNPP/(g·m−2)
    987.9 ± 193.9ab1308.4 ± 218.5ab697.7 ± 195.3b1 525.0 ± 364.3a945.1 ± 228.7ab1391.2 ± 254.3ab
    土壤
    Soil
    含水量
    Soil moisture content/%
    50.8 ± 2.0a48.0 ± 0.7ab47.4 ± 1.3ab45.9 ± 1.0b46.2 ± 0.8b42.1 ± 1.0c
    铵态氮
    Ammonium nitrogen/
    (mg·kg−1)
    8.6 ± 0.9bc7.6 ± 0.3c8.6 ± 0.7bc9.6 ± 0.7bc12.1 ± 0.8b16.9 ± 3.2a
    硝态氮
    Nitrate nitrogen/(mg·kg−1)
    10.4 ± 1.6d10.8 ± 0.4d12.9 ± 1.0cd19.4 ± 0.3bc20.9 ± 0.5ab26.7 ± 5.9a
    pH值
    pH value
    5.7 ± 0.1a5.4 ± 0.0b5.3 ± 0.0b4.95 ± 0.1c4.79 ± 0.1d4.30 ± 0.1e
    有机碳
    Organic carbon/(g·kg−1)
    41.3 ± 1.2a36.6 ± 1.1a41.8 ± 4.3a40.6 ± 2.1a39.1 ± 1.7a37.4 ± 1.1a
    全氮
    Total nitrogen/(g·kg−1)
    3.7 ± 0.1b3.3 ± 0.1ab4.1 ± 0.3a4.1 ± 0.2a4.0 ± 0.1a3.7 ± 0.1ab
    碳氮比
    C/N ratios
    11.3 ± 0.2a11.0 ± 0.2a10.2 ± 0.3b9.8 ± 0.2b9.8 ± 0.2b10.0 ± 0.2b
    微生物
    Microbial
    微生物量碳
    Microbial biomass
    carbon/(mg·kg−1)
    477.5 ± 7.8c574.9 ± 20.3b490.4 ± 5.6c683.3 ± 21.8a518.3 ± 25.0c205.5 ± 11.0d
    微生物量氮
    Microbial biomass
    nitrogen/(mg·kg−1)
    64.2 ± 0.6c71.0 ± 2.4b69.9 ± 2.7bc102.2 ± 1.8a65.4 ± 1.4bc19.9 ± 1.8d
    微生物量碳氮
    MBC/MBN
    7.4 ± 0.2b8.1 ± 0.3b7.1 ± 0.3b6.7 ± 0.2b7.9 ± 0.3b10.7 ± 1.2a
    注:N0、N2、N4、N8、N16和N32分别为0、2、4、8、16、32 g/(m2·a)处理。下同。同行不同小写字母表示处理间差异显著(P < 0.05)。Notes: N0, N2, N4, N8, N16, and N32 indicate the nitrogen addition levels with 0, 2, 4, 8, 16, and 32 g/(m2·year), respectively. The same below. Different lowercase letters in the same row indicate significant differences among treatments (P < 0.05).
    下载: 导出CSV
  • [1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320: 889−892. doi: 10.1126/science.1136674
    [2] Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860[J]. Nature Geoscience, 2009, 2(9): 659−662. doi: 10.1038/ngeo608
    [3] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
    [4] Janssens I A, Luyssaert S. Nitrogen's carbon bonus[J]. Nature Geoscience, 2009, 2(5): 318−319. doi: 10.1038/ngeo505
    [5] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [6] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315−322. doi: 10.1038/ngeo844
    [7] Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long‐term field experiments[J]. Ecology Letters, 2009, 12(5): 452−461. doi: 10.1111/j.1461-0248.2009.01303.x
    [8] Wang R, Filley T R, Xu Z, et al. Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia[J]. Plant and Soil, 2014, 381(1): 323−336.
    [9] 陈红, 马文明, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065

    Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stablitiy of soil aggregates and the differentiation of Fe and Al oxides in Qing-hai—Tibet alpine grassland[J]. Acta Prataculturae Sinica, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065
    [10] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2): 447−455. doi: 10.3724/SP.J.1011.2011.00447

    Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447−455. doi: 10.3724/SP.J.1011.2011.00447
    [11] 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415−421. doi: 10.3321/j.issn:0564-3945.2005.03.031

    Wang Q K, Wang S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415−421. doi: 10.3321/j.issn:0564-3945.2005.03.031
    [12] Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1): 27−35.
    [13] Bhattacharyya R, Prakash V, Kundu S, et al. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas[J]. Nutrient Cycling in Agroecosystems, 2010, 86(1): 1−16. doi: 10.1007/s10705-009-9270-y
    [14] Fonte S J, Yeboah E, Ofori P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates[J]. Soil Science Society of America Journal, 2009, 73(3): 961−966. doi: 10.2136/sssaj2008.0204
    [15] Sarkar S, Singh S R, Singh R P. The effect of organic and inorganic fertilizers on soil physical condition and the productivity of a rice–lentil cropping sequence in India[J]. The Journal of Agricultural Science, 2003, 140(4): 419−425. doi: 10.1017/S0021859603003186
    [16] Ayuke F O, Brussaard L, Vanlauwe B, et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation[J]. Applied Soil Ecology, 2011, 48(1): 53−62. doi: 10.1016/j.apsoil.2011.02.001
    [17] Huang S, Peng X, Huang Q, et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China[J]. Geoderma, 2010, 154(3-4): 364−369. doi: 10.1016/j.geoderma.2009.11.009
    [18] Bai T, Wang P, Ye C, et al. Form of nitrogen input dominates N effects on root growth and soil aggregation: a meta-analysis[J]. Soil Biology and Biochemistry, 2021, 157: 108251. doi: 10.1016/j.soilbio.2021.108251
    [19] Jastrow J D, Amonette J E, Bailey V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 2007, 80(1): 5−23.
    [20] Lu X, Hou E, Guo J, et al. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: a meta‐analysis[J]. Global Change Biology, 2021, 27(12): 2780−2792. doi: 10.1111/gcb.15604
    [21] 张欣, 任海燕, 韩国栋. 增温和施氮对内蒙古荒漠草原土壤团聚体稳定性及碳含量的影响[J]. 草原与草业, 2020, 32(2): 22−26. doi: 10.3969/j.issn.2095-5952.2020.02.010

    Zhan X, Ren H Y, Han G D. Effects of warming and nitrogen application on soil aggregate stability and carbon content in the desert grassland of Inner Mongolia[J]. Grassland and Prataculture, 2020, 32(2): 22−26. doi: 10.3969/j.issn.2095-5952.2020.02.010
    [22] Shen D, Ye C, Hu Z, et al. Increased chemical stability but decreased physical protection of soil organic carbon in response to nutrient amendment in a Tibetan alpine meadow[J]. Soil Biology and Biochemistry, 2018, 126: 11−21. doi: 10.1016/j.soilbio.2018.08.008
    [23] 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 128−8.

    Zhang Y L, Li B Y, Zheng D. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 128−8.
    [24] 杨元合, 朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系[J]. 植物生态学报, 2006, 30(1): 1−8. doi: 10.3321/j.issn:1005-264X.2006.01.001

    Yang Y H, Piao S L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau[J]. Chinese Journal of Plant Ecology, 2006, 30(1): 1−8. doi: 10.3321/j.issn:1005-264X.2006.01.001
    [25] Yang Y, Fang J, Tang Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global change biology, 2008, 14(7): 1592−1599. doi: 10.1111/j.1365-2486.2008.01591.x
    [26] Lü C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data[J/OL]. Journal of Geophysical Research: Atmospheres, 2007, 112(D22), https://doi.org/10.1029/2006JD007990.
    [27] 朱天鸿, 程淑兰, 方华军, 于贵瑞, 郑娇娇, 李英年. 青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应[J]. 生态学报, 2011, 31(10): 2687−2696.

    Zhu T H, Cheng H L, Fang H J, et al. Early responses of soil CO2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the QinghaiTibetan Plateau[J]. Acta Ecologica Sinica, 2011, 31(10): 2687−2696.
    [28] 刘晓东, 尹国丽, 武均, 陈建纲, 马隆喜, 师尚礼. 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应[J]. 草业学报, 2015, 24(10): 12−21. doi: 10.11686/cyxb2015154

    Liu X D, Yin G L, Wu J, et al. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2015, 24(10): 12−21. doi: 10.11686/cyxb2015154
    [29] Wang D, Chi Z, Yue B, et al. Effects of mowing and nitrogen addition on the ecosystem C and N pools in a temperate steppe: A case study from northern China[J]. Catena, 2020, 185: 104332. doi: 10.1016/j.catena.2019.104332
    [30] Song B, Sun J, Zhou Q, et al. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes[J]. Biogeosciences, 2017, 14(17): 3947−3956. doi: 10.5194/bg-14-3947-2017
    [31] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155−176. doi: 10.1023/A:1016125726789
    [32] 贺佩, 李悦, 江明兢, 刘颖慧, 杜薇, 张家琦, 景海超. 连续氮添加14年对温带典型草原土壤碳氮组分及物理结构的影响[J]. 生态学报, 2021, 41(5): 1808−1823.

    He P, Li Y, Jliang M J, Liu Y H, Dn w, Zhang J Q, Jling H C. Efcts of 14-year continuous nitrogen adition on soil carbon and nitrogen composition andphysical structure at different depths in a typical temperate steppe[J]. Acta Ecologica Sinica, 2021, 41(5): 1808−1823.
    [33] 曾全超, 李鑫, 董扬红, 李娅芸, 安韶山. 黄土高原不同乔木林土壤微生物量碳氮和溶解性碳氮的特征[J]. 生态学报, 2015, 35(11): 3598−3605.

    Zeng Q C, Li X, Dong Y H, Li Y Y, An S S. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(11): 3598−3605.
    [34] 史奕, 陈欣, 沈善敏. 有机胶结形成土壤团聚体的机理及理论模型[J]. 应用生态学报, 2002, 13(11): 1495−1498. doi: 10.3321/j.issn:1001-9332.2002.11.033

    Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models[J]. Applied Ecology, 2002, 13(11): 1495−1498. doi: 10.3321/j.issn:1001-9332.2002.11.033
    [35] Bai T, Wang P, Hall S J, et al. Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland[J]. Global Change Biology, 2020, 26(9): 5320−5332. doi: 10.1111/gcb.15220
    [36] Kool D M, Chung H, Tate K R, et al. Hierarchical saturation of soil carbon pools near a natural CO2 spring[J]. Global Change Biology, 2007, 13(6): 1282−1293. doi: 10.1111/j.1365-2486.2007.01362.x
    [37] Ma F, Zhang F, Quan Q, et al. Alleviation of light limitation increases plant diversity and ecosystem carbon sequestration under nitrogen enrichment in an alpine meadow[J]. Agricultural and Forest Meteorology, 2021, 298: 108269.
    [38] 张方月. 高寒草甸生态系统碳循环对降雨梯度的响应及机理研究[D]. 北京: 中国科学院大学, 2018.

    Zhang F Y. Responses of ecosystem carbon cycle to precipitation gradient in an alpine meadow[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [39] Tisdall J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141−163. doi: 10.1111/j.1365-2389.1982.tb01755.x
    [40] Wang R, Dungait J A J, Creamer C A, et al. Carbon and nitrogen dynamics in soil aggregates under long-term nitrogen and water addition in a temperate steppe[J]. Soil Science Society of America Journal, 2015, 79(2): 527−535. doi: 10.2136/sssaj2014.09.0351
    [41] Wang Y, Wang Z L, Zhang Q, et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil[J]. Science of the Total Environment, 2018, 624: 1131−1139. doi: 10.1016/j.scitotenv.2017.12.113
    [42] 李玮, 郑子成, 李廷轩, 刘敏英. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326−6336.

    Li W, Zheng Z C, Li T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326−6336.
    [43] 窦森, 李凯, 关松. 土壤团聚体中有机质研究进展[J]. 土壤学报, 2011, 48(2): 412−418. doi: 10.11766/trxb200911220527

    Dou S, Li K, Guan S. A review on organic matter in soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(2): 412−418. doi: 10.11766/trxb200911220527
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  27
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 录用日期:  2022-05-07
  • 修回日期:  2022-03-06
  • 网络出版日期:  2022-05-07

目录

    /

    返回文章
    返回