高级检索

    氮添加对高寒草甸土壤团聚体分布及其碳氮含量的影响

    Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow

    • 摘要:
        目的  探讨不同氮添加条件下土壤团聚体分布及其碳氮含量的响应特征,以期为氮沉降背景下高寒草甸土壤固碳机制提供数据支撑。
        方法  于2014年在青藏高原高寒草甸建立长期氮素添加平台,采取完全随机区组试验设计,设置0 g/(m2·a)(N0,对照)、2 g/(m2·a)(N2)、4 g/(m2·a)(N4)、8 g/(m2·a)(N8)、16 g/(m2·a)(N16)、32 g/(m2·a)(N32)6个水平氮素添加控制试验。通过湿筛法获得大团聚体(0.25 ~ 2 mm)、微团聚体(0.053 ~ 0.25 mm)和黏粉粒(< 0.053 mm),并测定各粒级土壤团聚体有机碳和全氮含量。
        结果  该高寒草甸土壤大团聚体质量百分比(79%)显著高于黏粉粒(13%)和微团聚体(8%)(P < 0.05),各粒级团聚体质量百分比在不同氮添加处理下差异不显著(P > 0.05),氮添加未显著改变土壤团聚体平均质量直径(P > 0.05),这可能由于氮添加不仅提高了根系生物量,也降低了土壤微生物活性。氮添加降低了大团聚体和微团聚体有机碳含量,而增加了黏粉粒有机碳含量(P > 0.05)。相比于对照,氮添加使得微团聚体和黏粉粒全氮含量分别降低了2%和12%(P > 0.05)。氮添加显著降低了各粒级土壤团聚体C/N(P < 0.05)。
        结论  不同粒级土壤团聚体C/N比值下降,表明未来持续氮沉降可能会加速高寒草甸土壤有机碳矿化。

       

      Abstract:
        Objective  This study aims to investigate the response characteristics of soil aggregate distribution and carbon (C) and nitrogen (N) contents under different N addition conditions in order to provide data support for soil C sequestration mechanism in alpine meadow under the background of N deposition.
        Method  In 2014, a long-term N addition platform was established in an alpine meadow on the Qinghai-Tibet Plateau of western China. A completely randomized block design was used to simulate N deposition with six N addition levels: 0 g/(m2·year) (N0, control), 2 g/(m2·year) (N2), 4 g/(m2·year) (N4), 8 g/(m2·year) (N8), 16 g/(m2·year) (N16), 32 g/(m2·year) (N32). Macroaggregates (0.25−2 mm), microaggregates (0.053−0.25 mm), silt and clay (< 0.053 mm) were obtained by wet sieving method, and the organic C and total N contents of soil aggregates were determined.
        Result  The mass proportion of macroaggregates (79%) was significantly higher than that of silt and clay (13%) and microaggregates (8%) (P < 0.05). There was no significant difference in the distribution of soil aggregates under different N addition gradients (P > 0.05), whereas the mean mass diameter of soil aggregates did not change with N addition (P > 0.05), which could attribute to the trade off between the positive effect of N addition on root biomass and the decreased microbial activity. Moreover, N addition decreased the organic C content of macroaggregates and microaggregates, but increased the organic C content of silt and clay (P > 0.05). Compared with the control, nitrogen addition reduced the total nitrogen content of microaggregates and clay particles by 2% and 12%, respectively (P > 0.05). The C/N ratio of all aggregates significantly decreased under N addition (P < 0.05).
        Conclusion  The C/N ratios of different size of soil aggregate decreased, indicating the acceleration of SOC mineralization in alpine meadow under increased N deposition.

       

    /

    返回文章
    返回