高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

庐山常绿阔叶林不同生长阶段林木空间结构特征及其评价

余枭 欧阳勋志 潘萍 邓文平 彭松立 臧颢 胡茸茸

余枭, 欧阳勋志, 潘萍, 邓文平, 彭松立, 臧颢, 胡茸茸. 庐山常绿阔叶林不同生长阶段林木空间结构特征及其评价[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210450
引用本文: 余枭, 欧阳勋志, 潘萍, 邓文平, 彭松立, 臧颢, 胡茸茸. 庐山常绿阔叶林不同生长阶段林木空间结构特征及其评价[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210450
Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and evaluation of evergreen broad-leaved forest in Lushan Mountain at different growth stages[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210450
Citation: Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and evaluation of evergreen broad-leaved forest in Lushan Mountain at different growth stages[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210450

庐山常绿阔叶林不同生长阶段林木空间结构特征及其评价

doi: 10.12171/j.1000-1522.20210450
基金项目: 国家自然科学基金项目(31760207、31360181),林业公益性行业科研专项(201504301)
详细信息
    作者简介:

    余枭。主要研究方向:森林资源管理与监测。Email:15770526896@163.com 地址:330045 江西省南昌市昌北经济技术开发区志敏大道1101号

    责任作者:

    潘萍,博士,讲师。主要研究方向:森林资源管理与监测和森林生态。Email:panping0306@163.com 地址:同上

Spatial structure characteristics and evaluation of evergreen broad-leaved forest in Lushan Mountain at different growth stages

  • 摘要:   目的  分析林木不同生长阶段的空间结构特征有利于认识林分更新及其稳定性,为优化林分空间结构及自然植被恢复等提供参考依据。  方法  以庐山常绿阔叶林为研究对象,将林木生长划分为幼树(1 cm ≤ DBH < 5 cm)、小树(5 cm ≤ DBH < 10 cm)、中树(10 cm ≤ DBH < 20 cm)和大树(DBH ≥ 20 cm)4个阶段,选用混交度、大小比数、密集度、角尺度4种空间结构参数构建空间结构综合指数,采用熵权法进行权重赋值。  结果  (1)幼树、小树、中树、大树的株数占林分总株数的比例分别为72.7%、16.8%、6.5%和4.0%,林分径级结构整体上呈倒“J”型。(2)幼树、小树、中树、大树的平均混交度分别为0.609、0.746、0.815和0.822,平均大小比数分别为0.545、0.268、0.132和0.089,平均密集度分别为0.852、0.895、0.871和0.842,平均角尺度分别为0.576、0.563、0.553和0.507;随着径级的增大,林木的混交、生长优势程度不断增大,密集程度先增大后减小,分布格局逐渐由聚集分布转变为随机分布。(3)小树、中树、大树的大小比数的权重均超过75.0%,优化其空间结构主要应调控其林木分化程度;幼树混交度和大小比数的权重分别为0.364和0.388,优化其空间结构则主要调控林木混交程度及分化程度。空间结构综合指数为大树(0.054) < 中树(0.082) < 小树(0.117) < 幼树(0.265)。  结论  庐山常绿阔叶林中林木随着径级的增大其空间结构逐步得到改善,大树的空间结构最好,幼树的空间结构最差;针对不同生长阶段林木空间结构特征,可以采取不同的经营措施以优化其空间结构。

     

  • 图  1  林分直径分布特征

    Figure  1.  Distribution characteristics of stand diameter

    图  2  不同生长阶段空间结构参数的频率分布

    Figure  2.  Frequency distribution of spatial structure parameters in different growth stages

    表  1  样地基本概况

    Table  1.   Basic situation of sample plots

    样地号
    Sample plot No.
    群落结构
    Community structure
    最大胸径
    Maximum DBH/cm
    平均胸径
    DBH/cm
    树高
    Tree height/m
    郁闭度
    Canopy density
    坡度
    Slope/(°)
    海拔
    Altitude/m
    1 苦槠 Castanopsis sclerophylla +
    檵木 Loropetalum chinense
    48.0 7.7 5.1 ± 3.28 0.7 17 229
    2 樟树 Cinnamomum camphora +
    檵木 Loropetalum chinense
    44.0 6.4 6.0 ± 2.31 0.7 17 319
    3 樟树 Cinnamomum camphora +
    檵木 Loropetalum chinense
    51.9 7.5 5.8 ± 3.17 0.8 19 330
    4 甜槠 Castanopsis eyrei +
    山鸡椒 Litsea cubeba
    46.2 4.2 4.2 ± 2.28 0.8 26 410
    5 石栎 Lithocarpus glaber +
    连蕊茶 Camellia cuspidata
    51.8 5.4 4.0 ± 2.46 0.7 24 435
    6 石栎 Lithocarpus glaber +
    檵木 Loropetalum chinense
    53.9 4.7 4.0 ± 2.41 0.8 23 452
    7 石栎 Lithocarpus glaber +
    檵木 Loropetalum chinense
    38.9 4.2 3.9 ± 1.77 0.8 21 420
    下载: 导出CSV

    表  2  各生长阶段林木基本信息

    Table  2.   Basic information of trees at different growth stages

    生长阶段 Growth stage径级范围 Diameter range/cm株数 Number of trees平均胸径 Average DBH/cm标准差 Standard deviation
    幼树 Sapling 1 ≤ DBH < 5 3 547 2.7 0.97
    小树 Small tree 5 ≤ DBH < 10 819 7.0 1.45
    中树 Middle tree 10 ≤ DBH < 20 319 13.3 2.77
    大树 Large tree DBH ≥ 20 196 30.4 7.70
    下载: 导出CSV

    表  3  空间结构参数计算方法

    Table  3.   Calculation method of spatial structure parameters

    参数名称
    Parameter name
    计算公式
    Computing formula
    说明
    Explanation
    混交度
    Mingling (M)
    $ M = \dfrac{1}{n}\displaystyle \sum \limits_{j = 1}^n {{v_{ij}}} $ M为第i棵对象木的混交度;n是对象木i的邻近株数;当对象木与相邻木非同种时vij = 1,否则vij = 0;M为0、0.25、0.5、0.75、1,分别代表着零度、弱度、中度、强度和极强度混交
    M is the mingling of the reference tree i. n is the number of nearest neighboring trees of the reference tree i. When the species of the nearest neighbor is not the same as the reference tree, vij = 1. Otherwise, vij = 0. M has 5 grades, 0, 0.25, 0.5, 0.75, 1. Respectively representing not mixed, weakly mixed, medium mixed,
    strongly mixed, extremely strongly mixed
    ② 混交度数值越大,代表林木混交程度越强
    ② As the mingling value of trees increases, the degree of mixed of trees is ehanced
    大小比数
    Neighborhood comparison (U)
    $ U = \dfrac{1}{n}\displaystyle \sum \limits_{j = 1}^n {{v_{ij}}} $ U为第i棵对象木的大小比数;n是对象木i的邻近株数;当对象木比相邻木大时,vij = 1,否则vij = 0;U为0、0.25、0.5、0.75、1,分别代表优势、亚优势、中庸、劣势及绝对劣势
    U is the neighborhood comparison of the reference tree i. n is the number of nearest neighboring trees of the reference tree i. When the reference tree is larger than the nearest neighbor tree, vij = 1. Otherwise, vij = 0. U has 5 grades, 0, 0.25, 0.5, 0.75, 1. Respectively representing predominant, subdominant, moderate, inferior, extremely inferior
    ②大小比数数值越小,代表林木的生长状态越优
    ②As the neighborhood comparison value of trees decreases, the growth states of trees is optimization
    密集度
    Crowding degree (C)
    $ C = \dfrac{1}{n}\displaystyle \sum \limits_{j = 1}^n {{v_{ij}}} $ C为第i棵对象木的密集度;n是对象木i的邻近株数;当对象木与相邻木的树冠投影重叠时,vij = 1,否则vij = 0;C为0、0.25、0.5、0.75、1,分别代表着非常稀疏、稀疏、中等密集、比较密集、很密集
    C is the crowding degree of the reference tree i. n is the number of nearest neighboring trees of the reference tree i. When the canopy projection of the reference tree overlaps that of the adjacent tree, vij = 1. Otherwise, vij = 0. C has 5 grades, 0, 0.25, 0.5, 0.75, 1. Respectively representing extremely sparse, sparse, moderately dense, relatively dense, extremely dense
    ②密集度数值越大,代表林木密集程度越高
    ② As the the crowding degree value of trees increases, the density of trees is higher
    角尺度
    Uniform angle index (W)
    $ W = \dfrac{1}{n}\displaystyle \sum \limits_{j = 1}^n {{v_{ij}}} $ W为第i棵对象木的角尺度;n是对象木i的邻近株数;当相邻木与对象木的α角小于标准角α0α0 = 72°)时,vij = 1,否则vij = 0。W为0、0.25、0.5、0.75、1,分别代表着很均匀、均匀、随机、不均匀、很不均匀
    W is the uniform angle index of the reference tree i. n is the number of nearest neighboring trees of the reference tree i. When the angle (α) of an adjacent tree compared to the reference tree is less
    than the standard angle α0(α0 = 72°), vij = 1. Otherwise, vij = 0. W has 5 grades, 0, 0.25, 0.5, 0.75, 1. Respectively representing absolutely uniform, uniform, random, nonuniform, clumped
    ②均匀分布的置信区间为[0,0.475)、随机分布的置信区间为[0.475,0.517]、聚集分布的置信区间为(0.517,1]
    ②The confidence interval of uniform distribution is [0, 0.475], that of random distribution is [0.475, 0.517], and that of aggregation distribution is (0.517, 1]
    下载: 导出CSV

    表  4  不同生长阶段林分空间结构综合评价

    Table  4.   Comprehensive evaluation of stand spatial structure at different growth stages

    生长阶段
    Growth stage
    混交度
    Mingling (M)
    大小比数
    Neighborhood comparison (U)
    密集度
    Crowding degree (C)
    角尺度
    Uniform angle index (W)
    综合指数
    Aggregative
    index (FSI)
    权重
    Weight
    平均值
    Mean
    权重
    Weight
    平均值
    Mean
    权重
    Weight
    平均值
    Mean
    权重
    Weight
    平均值
    Mean
    幼树 Sapling 0.364 0.609 0.388 0.545 0.103 0.852 0.145 0.576 0.265
    小树 Small tree 0.111 0.746 0.753 0.268 0.046 0.895 0.091 0.563 0.117
    中树 Middle tree 0.065 0.815 0.845 0.132 0.030 0.871 0.060 0.553 0.082
    大树 Large tree 0.037 0.822 0.889 0.089 0.038 0.842 0.036 0.507 0.054
    下载: 导出CSV
  • [1] Looney C E, D’Amato A W, Palik B J, et al. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence[J]. Forest Ecology and Management, 2018, 424: 85−94. doi: 10.1016/j.foreco.2018.04.044
    [2] Baskent E Z, Keles S. Spatial forest planning: a review[J]. Ecological Modelling, 2005, 188(2−4): 145−173.
    [3] Pommerening A, Stoyan D. Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows[J]. Canadian Journal of Forest Research, 2008, 38(5): 1110−1122. doi: 10.1139/X07-222
    [4] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [5] 惠刚盈, Gadow K V, Matthias A. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y, Gadow K V, Matthias A. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [6] 胡艳波, 惠刚盈. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 2015, 37(9): 1−8. doi: 10.13332/j.1000-1522.20150125

    Hu Y B, Hui G Y. How to describe the crowding degree of trees based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2015, 37(9): 1−8. doi: 10.13332/j.1000-1522.20150125
    [7] 惠刚盈, Gadow K V, 胡艳波. 林分空间结构参数角尺度的标准角选择[J]. 林业科学研究, 2004, 17(6): 687−692. doi: 10.3321/j.issn:1001-1498.2004.06.001

    Hui G Y, Gadow K V, Hu Y B. The optimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6): 687−692. doi: 10.3321/j.issn:1001-1498.2004.06.001
    [8] 曹小玉, 李际平, 封尧, 等. 杉木生态公益林林分空间结构分析及评价[J]. 林业科学, 2015, 51(7): 37−48.

    Cao X Y, Li J P, Feng Y, et al. Analysis and evaluation of the stand spatial structure of Cunninghamia lanceolata ecological forest[J]. Scientia Silvae Sinicae, 2015, 51(7): 37−48.
    [9] 董灵波, 刘兆刚, 马妍, 等. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1): 16−22. doi: 10.13332/j.1000-1522.2013.01.016

    Dong L B, Liu Z G, Ma Y, et al. A new composite index of stand spatial structure for natural forest[J]. Journal of Beijing Forestry University, 2013, 35(1): 16−22. doi: 10.13332/j.1000-1522.2013.01.016
    [10] Zhang T, Dong X, Guan H, et al. Effect of thinning on the spatial structure of a Larix gmelinii Rupr. Secondary forest in the greater Khingan Mountains[J]. Forests, 2018, 9(11): 720. doi: 10.3390/f9110720
    [11] 李显良, 张贵, 李建军. 熵权−云模型法在环洞庭湖区林分空间结构评价中的应用[J]. 中南林业科技大学学报, 2021, 41(4): 12−19.

    Li X L, Zhang G, Li J J. Application of entropy weight cloud model method in evaluation of stand spatial structure around Dongting lake[J]. Journal of Central South University of Forestry & Technology, 2021, 41(4): 12−19.
    [12] 陈科屹, 张会儒, 雷相东, 等. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 2017, 30(5): 718−726. doi: 10.13275/j.cnki.lykxyj.2017.05.003

    Chen K Y, Zhang H R, Lei X D, et al. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 2017, 30(5): 718−726. doi: 10.13275/j.cnki.lykxyj.2017.05.003
    [13] Zou Z H, Yi Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences, 2006, 18(5): 1020−1023. doi: 10.1016/S1001-0742(06)60032-6
    [14] Nagpal R, Mehrotra D, Bhatia P K. Usability evaluation of website using combined weighted method: Fuzzy AHP and entropy approach[J]. International Journal of System Assurance Engineering and Management, 2016, 7(4): 408−417.
    [15] Xie C S, Dong D P, Hua S P, et al. Safety evaluation of smart grid based on AHP-entropy method[J]. Systems Engineering Procedia, 2012, 4: 203−209. doi: 10.1016/j.sepro.2011.11.067
    [16] Hu G, Jin Y, Liu J, et al. Functional diversity versus species diversity: relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest[J]. Ecological Research, 2014, 29(5): 897−903. doi: 10.1007/s11284-014-1178-6
    [17] 陈晓熹, 李群, 黄久香, 等. 翁源青云山自然保护区亚热带常绿阔叶林群落结构和区系特征[J]. 林业科学研究, 2020, 33(5): 77−85.

    Chen X X, Li Q, Huang J X, et al. The community structure and floristic characteristics of subtropical evergreen broadleaved forest in Qingyunshan Nature Reserve, Guangdong[J]. Forest Research, 2020, 33(5): 77−85.
    [18] 赵洋毅, 王克勤, 陈奇伯, 等. 西南亚热带典型天然常绿阔叶林的空间结构特征[J]. 西北植物学报, 2012, 32(1): 187−192. doi: 10.3969/j.issn.1000-4025.2012.01.030

    Zhao Y Y, Wang K Q, Chen Q B, et al. Spatial structural characteristics of typical natural evergreen broad-leaved forest features of southwest subtropical area, China[J]. Journal of Northwest Forestry University, 2012, 32(1): 187−192. doi: 10.3969/j.issn.1000-4025.2012.01.030
    [19] 范忆, 楼一恺, 库伟鹏, 等. 天目山紫楠种群年龄结构与点格局分析[J]. 浙江农林大学学报, 2020, 37(6): 1027−1035. doi: 10.11833/j.issn.2095-0756.20190631

    Fan Y, Lou Y K, Ku W P, et al. Age structure and spatial point pattern of Phoebe sheareri population in Mount Tianmu[J]. Journal of Zhejiang A & F University, 2020, 37(6): 1027−1035. doi: 10.11833/j.issn.2095-0756.20190631
    [20] 王进, 艾训儒, 朱江, 等. 木林子保护区优势种翅柃种群结构与空间分布格局[J]. 西北植物学报, 2019, 39(11): 2053−2063.

    Wang J, Ai X R, Zhu J, et al. Population structure and spatial distribution pattern of dominant species Eurya alata in Mulinzi Nature Reserve, Hubei Province[J]. Journal of Northwest Forestry University, 2019, 39(11): 2053−2063.
    [21] 余鑫, 许崇华, 朱永一, 等. 北亚热带常绿阔叶林凋落物生产量及其与林分因子的关系[J]. 浙江农林大学学报, 2016, 33(6): 991−999. doi: 10.11833/j.issn.2095-0756.2016.06.010

    Yu X, Xu C H, Zhu Y Y, et al. Litterfall production and its relation to stand structural factors in a subtropical evergreen broadleaf forest[J]. Journal of Zhejiang A& F University, 2016, 33(6): 991−999. doi: 10.11833/j.issn.2095-0756.2016.06.010
    [22] 刘信中, 王琅. 江西省庐山自然保护区生物多样性考察与研究[M]. 北京: 科学出版社, 2010.

    Liu X Z, Wang L. Scientific investigation and research on biodiversity in Lushan Nature Reserve, Jiangxi Province[M]. Beijing: Science press, 2010.
    [23] 万加武, 夏海林, 周赛霞, 等. 江西庐山国家级自然保护区珍稀濒危植物优先保护定量研究[J]. 热带亚热带植物学报, 2019, 27(2): 171−180. doi: 10.11926/jtsb.3947

    Wan J W, Xia H L, Zhou S X, et al. Quantitative study on conservation priority of rare and endangered plants in Lushan National Nature Reserve, Jiangxi[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 171−180. doi: 10.11926/jtsb.3947
    [24] 柴宗政. 基于相邻木关系的森林空间结构量化评价及R语言编程实现[D]. 杨凌: 西北农林科技大学, 2016.

    Chai Z Z. Quantitative evaluation and R programming of forest spatial structure based on the relationship of neighborhood trees[D]. Yangling: Northwest Agricultural and Forestry University of Science and Technology, 2016.
    [25] 李帅, 魏虹, 倪细炉, 等. 基于层次分析法和熵权法的宁夏城市人居环境质量评价[J]. 应用生态学报, 2014, 25(9): 2700−2708.

    Li S, Wei H, Ni X L, et al. Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2700−2708.
    [26] 惠刚盈, 胡艳波, 刘瑞红. 森林观察研究中的林分空间优势度分析方法[J]. 温带林业研究, 2019, 2(1): 1−6+12. doi: 10.3969/j.issn.2096-4900.2019.01.001

    Hui G Y, Hu Y B, Liu R H. Methods of analyzing stand spatial dominance in forest observational studies[J]. Journal of Temperate Forestry Research, 2019, 2(1): 1−6+12. doi: 10.3969/j.issn.2096-4900.2019.01.001
    [27] Ciceu A, Pitar D, Badea O. Modeling the diameter distribution of mixed uneven-aged stands in the south western carpathians in Romania[J]. Forests, 2021, 12(7): 958. doi: 10.3390/f12070958
    [28] Hubbell S P. Neutral theory and the evolution of ecological equivalence[J]. Ecology, 2006, 87(6): 1387−1398. doi: 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2
    [29] 吕寻, 杨双宝, 刘文桢, 等. 小陇山锐齿栎原始群落林木径阶空间结构特征[J]. 北京林业大学学报, 2015, 37(5): 11−18.

    Lü X, Yang S B, Liu W Z, et al. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province[J]. Journal of Beijing Forestry University, 2015, 37(5): 11−18.
    [30] Wang X, Liang C, Wang W. Balance between facilitation and competition determines spatial patterns in a plant population[J]. Chinese Science Bulletin, 2014, 59(13): 1405−1415. doi: 10.1007/s11434-014-0142-8
    [31] Gray L, He F. Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta[J]. Forest Ecology and Management, 2009, 259(1): 98−106. doi: 10.1016/j.foreco.2009.09.048
    [32] 黄小波, 李帅锋, 苏建荣, 等. 云龙天池云南松自然种群分布格局分析[J]. 林业科学研究, 2018, 31(4): 47−52.

    Huang X B, Li S F, Su J R, et al. Distribution of Pinus yunnanensis natural population in Yunlong Tianchi National Nature Reserve[J]. Forest Research, 2018, 31(4): 47−52.
    [33] 李帅锋, 刘万德, 苏建荣, 等. 滇西北金沙江流域云南红豆杉群落种内与种间竞争[J]. 生态学杂志, 2013, 32(1): 33−38.

    Li S F, Liu W D, Su J R, et al. Intra-and interspecific competitions of Taxus yunnanensis population in Jinsha River Basin of northwest Yunnan Province, Southwest China[J]. Chinese Journal of Ecology, 2013, 32(1): 33−38.
    [34] 陈科屹, 张会儒, 张博, 等. 云冷杉天然次生林死木分布格局及空间关联性[J]. 应用生态学报, 2021, 32(8): 2745−2754.

    Chen K Q, Zhang H R, Zhang B, et al. Spatial distribution and associations of dead woods in natural spruce-fir secondary forests[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2745−2754.
    [35] 王芊姿, 喻阳华, 郑维. 人工林化感效应防控研究与展望[J]. 世界林业研究, 2020, 33(5): 31−36.

    Wang Q Z, Yu Y H, Zheng W. Research and prospect on allelopathy effect prevention and control of plantation[J]. World Forestry Research, 2020, 33(5): 31−36.
    [36] 李婷婷, 容丽, 王梦洁, 等. 黔中喀斯特次生林群落结构动态[J]. 广西植物, 2021, 41(5): 684−694. doi: 10.11931/guihaia.gxzw202005035

    Li T T, Rong L, Wang M J, et al. Dynamics of phytoecommunity structure of karst secondary forest in Central Guizhou[J]. Guihaia, 2021, 41(5): 684−694. doi: 10.11931/guihaia.gxzw202005035
    [37] 林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.

    Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  3
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-07-29
  • 修回日期:  2022-01-20
  • 网络出版日期:  2022-08-01

目录

    /

    返回文章
    返回