Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing
-
摘要:目的 研究不同间伐强度对北京西山试验林场侧柏林冠层可燃物特征及其潜在火行为的影响,为冠层可燃物调控和预防高能量连续型树冠火的发生提供参考。方法 以北京西山试验林场侧柏为研究对象,设置3种间伐强度(低15%、中35%、高50%,均为株数强度)的处理,并设置对照样地,每种处理设置3块重复样地。基于标准枝法所调查冠层可燃物参数(枝条数量、长度、基径),对冠层可燃物载量建立线性回归模型,进一步计算冠层容积密度。通过单因素方差分析探讨不同间伐强度对冠层可燃物特征(冠层可燃物载量、冠层容积密度)的影响。利用Behave Plus 5.0软件,分别根据样地可燃物含水率和气象条件设置中度湿度条件和10 m高空风速(0 ~ 18 m/s),探讨不同间伐强度对树冠潜在火行为指标(树冠火蔓延速率、火线强度、火焰长度、单位面积发热量等)的影响,并依据树冠火转化模型研究抚育间伐对连续型树冠火发生的影响。结果 (1)林分冠层可燃物特征在不同间伐强度下存在差异,中度间伐强度下与未间伐样地差异最显著,冠层可燃物载量、冠层容积密度随着间伐强度的增加而减少,冠层可燃物载量由3.280 kg/m2减少到0.540 kg/m2,冠层容积密度由0.478 kg/m3减少到0.056 kg/m3。(2)不同间伐强度下林分冠层可燃物载量、冠层容积密度垂直分布特征为随树高的增加而先增加后减少。(3)树冠潜在火行为指标在中度间伐强度下与未间伐样地差异显著,其中火线强度、火焰长度以及单位面积发热量随间伐强度的增大而减小,树冠火蔓延速率在抚育间伐后小于未间伐样地,但不随间伐强度的变化而变化,临界树冠火蔓延速率随间伐强度的增大而增大。在未间伐、低度间伐强度下样地将发生连续型树冠火,中度、高度间伐强度样地不发生;随着间伐强度增大,发生连续型树冠火时所需10 m高空风速由6 m/s逐渐增大到8 m/s,火线强度由6 930 kW/m减少到5 829 kW/m,火焰长度由9.7 m减少到8.6 m,单位面积发热量由47 817 kJ/m2减少到40 667 kJ/m2,树冠火蔓延速率由8.7 m/s增加到8.9 m/s。结论 抚育间伐影响冠层可燃物特征、树冠潜在火行为指标。中度间伐强度对冠层可燃物特征和树冠潜在火行为指标影响显著,通过减少冠层容积密度,可以有效降低树冠潜在火行为,避免连续型树冠火的发生。综合考虑经济效益和生态效益,在对侧柏林进行冠层可燃物调控时建议采取中度间伐处理。Abstract:Objective This paper aims to explore the effects of different thinning intensities on canopy fuel characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Experimental Forest Farm in Beijing, so as to provide reference for the regulation of canopy fuel and the prevention of high-energy active crown fire.Method Taking Platycladus orientalis in Xishan Experimental Forest Farm in Beijing as the research object, three thinning intensities (low, 15%; moderate, 35%; high, 50%) and the control were set up, and three repeated sample plots were set for each thinning intensity. Based on the canopy fuel parameters (branch number, length, base diameter) obtained by the standard branch method, a linear regression model was established for canopy fuel load, and the canopy bulk density was further calculated. The effects of different thinning intensities on canopy fuel characteristics (canopy fuel load and canopy bulk density) were discussed by single factor analysis of variance (ANOVA). Using BehavePlus 5.0 software, according to the fuel moisture content and meteorological conditions of the sample plots, the humidity condition and 10 m high altitude wind speed (0 − 18 m/s) were set to explore the effects of different thinning intensities on the potential crown fire behavior indexes (crown fire spread rate, fire line intensity, flame length, calorific value per unit area, etc.). According to the crown fire transformation model, the effect of thinning on the occurrence of active crown fire was further studied.Result (1) The characteristics of canopy fuel in different thinning intensities were different and the difference was the most significant between moderate thinning and control. Canopy fuel load and canopy bulk density decreased with the increase of thinning intensity, the former decreased from 3.280 to 0.540 kg/m2 and the latter decreased from 0.478 to 0.056 kg/m3. (2) After thinning with different intensities, the canopy fuel load and canopy bulk density distribution increased at first and then decreased with the increase of tree height. (3) The index of potential crown fire behavior under moderate thinning intensity was significantly different from control, in which the fire line intensity, flame length and calorific value per unit area decreased with the increase of thinning intensity. The canopy fire spread rate after thinning was lower than that of control, but did not change with the change of thinning intensity, and the critical crown fire spread rate increased with the increase of thinning intensity. Active crown fire will occur in the sample plot without thinning and low thinning intensity, and will not occur in the sample plot with moderate and high thinning intensity. With the increase of thinning intensity, the required 10 m high-altitude wind speed for active crown fire gradually increased from 6 to 8 m/s, the fire line intensity decreased from 6 930 to 5 829 kW/m, the flame length decreased from 9.7 to 8.6 m, the calorific value per unit area decreased from 47 817 to 40 667 kJ/m2, and the crown fire spread rate increased from 8.7 to 8.9 m/s.Conclusion Thinning affects canopy fuel characteristics and potential crown fire behavior indicators. Moderate thinning intensity has significant influence on canopy fuel characteristics and potential crown fire behavior indexes. By reducing canopy bulk density, the potential crown fire behavior can be effectively reduced and the occurrence of active canopy fire can be reduced. For Platycladus orientalis, moderate thinning is recommended in the regulation of canopy fuel considering both economic and ecological benefits.
-
-
表 1 侧柏林样地概况
Table 1 Information of Platycladus orientalis sample plots
处理
Treatment林分密度/(株·hm−2)
Stand density/
(tree·ha−1)平均胸径
Mean DBH/
cm平均树高
Mean tree
height/m林龄/a
Stand age/
year海拔
Altitude/
m坡度
Slope degree/
(°)坡向
Slope
aspect坡位
Slope
position未间伐
Control (CK)1 863 13.80 10.10 53 439 25 北
North下坡
Down slope低度间伐
Low intensity thinning (LT)1 565 14.37 11.81 53 268 20 北
North下坡
Down slope中度间伐
Moderate intensity thinning (MT)1 195 13.71 10.70 53 247 21 北
North下坡
Down slope高度间伐
High intensity thinning (HT)600 17.85 11.49 53 177 20 北
North下坡
Down slope表 2 冠层各类型可燃物载量回归模型
Table 2 Regression model of different types of canopy load
枝条类型 Branch type 估计参数 Estimation parameter R2 α0 α1 α2 α3 α4 α5 活枝 Live branch −0.578 −0.567 0.950 −0.837 2.511 0.168 0.839 死枝 Dead branch −4.608 0.938 0.473 0.872 1.347 −0.932 0.932 表 3 不同间伐强度侧柏林冠层可燃物特征
Table 3 Canopy fuel characteristics of Platycladus orientalis under different thinning intensities
处理 Treatment CFL/(kg·m−2) CBD/(kg·m−3) CK 3.280 ± 0.010a 0.478 ± 0.001a LT 3.030 ± 0.011b 0.380 ± 0.001b MT 0.650 ± 0.106c 0.060 ± 0.010c HT 0.543 ± 0.011c 0.050 ± 0.004c 注:不同小写字母分别表示不同间伐强度间差异显著(P < 0.05)。CBD,冠层容积密度;CFL,冠层可燃物载量。Notes: different lowercase letters indicate significant differences between treatments within each date (P < 0.05). CBD, canopy bulk density; CFL, canopy fuel load. -
[1] 赵凤君, 王明玉, 舒立福. 森林火灾中的树冠火研究[J]. 世界林业研究, 2010, 23(1): 39−43. Zhao F J, Wang M Y, Shu L F. A review of crown fire research[J]. World Forestry Research, 2010, 23(1): 39−43.
[2] 胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2005. Hu H Q. Forest fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005.
[3] Mitsopoulos I D, Dimitrakopoulos A P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests[J]. Annals of Forest Science, 2007, 64(3): 287−299. doi: 10.1051/forest:2007006
[4] Kucuk O, Goltas M, Demirel T, et al. Predicting canopy characteristics in Pinus brutia Ten., Pinus nigra Arnold and Pinus pinaster Ait. forests from stand variables in northwestern Turkey[J]. Environmental Engineering and Management Journal, 2021, 20(2): 309−318. doi: 10.30638/eemj.2021.031
[5] Battaglia M, Smith F W, Shepperd W D. Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA[J]. International Journal of Wildland Fire, 2009, 18(2): 176−190. doi: 10.1071/WF07163
[6] Liu Y, Liu H, Zhou Y, et al. Spread vector induced cellular automata model for realtime crown fire behavior simulation[J]. Environmental Modelling & Software, 2018, 108: 14−39.
[7] Hollingsworth L T, Kurth L L, Parresol B R, et al. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States[J]. Forest Ecology and Management, 2012, 273: 43−49. doi: 10.1016/j.foreco.2011.05.020
[8] Arellano-Pérez S, Castedo-Dorado F, Álvarez-González J G, et al. Mid-term effects of a thin-only treatment on fuel complex, potential fire behaviour and severity and post-fire soil erosion protection in fast-growing pine plantations[J]. Forest Ecology and Management, 2020, 460: 117895. doi: 10.1016/j.foreco.2020.117895
[9] Cruz M G, Alexander M E, Wakimoto R H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America[J]. International Journal of Wildland Fire, 2010, 19(1): 39−50.
[10] Fernández-Alonso J M, Alberdi I, Álvarez-González J G, et al. Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification[J]. European Journal of Forest Research, 2013, 132(2): 363−377. doi: 10.1007/s10342-012-0680-z
[11] Andreu A G, Blake J I, Zarnoch S J. Estimating canopy fuel characteristics for predicting crown fire potential in common forest types of the Atlantic Coastal Plain, USA[J]. International Journal of Wildland Fire, 2018, 27(11): 742−755. doi: 10.1071/WF18025
[12] Jiménez E, Vega-Nieva D, Rey E, et al. Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait. forest in northern central Spain after thinning and mastication[J]. European Journal of Forest Research, 2016, 135(4): 675−686. doi: 10.1007/s10342-016-0963-x
[13] Hevia A, Crabiffosse A, Álvarez-González J G, et al. Assessing the effect of pruning and thinning on crown fire hazard in young Atlantic maritime pine forests[J]. Journal of Environmental Management, 2018, 205: 9−17.
[14] Molina J R, Rodriguez F, Herrera M A. Potential crown fire behavior in Pinus pinea stands following different fuel treatments[J]. Forest Systems, 2011, 20(2): 266−277.
[15] Paulo M F. Empirical support for the use of prescribed burning as a fuel treatment[J]. Current Forestry Reports, 2015, 1(2): 118−127. doi: 10.1007/s40725-015-0010-z
[16] Omi P N. Theory and practice of wildland fuels management[J]. Current Forestry Reports, 2015, 1(2): 100−117. doi: 10.1007/s40725-015-0013-9
[17] Cruz M G, Fernandes P M. Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait. ) stands[J]. International Journal of Wildland Fire, 2008, 17(2): 194−204. doi: 10.1071/WF07009
[18] Reinhardt E D, Holsinger L, Keane R. Effects of biomass removal treatments on stand-level fire characteristics in major forest types of the northern rocky mountains[J]. Western Journal of Applied Forestry, 2010, 25(1): 34−41. doi: 10.1093/wjaf/25.1.34
[19] Ottmar R D, Prichard S J. Fuel treatment effectiveness in forests of the upper Atlantic Coastal Plain: an evaluation at two spatial scales[J]. Forest Ecology and Management, 2012, 273: 17−28. doi: 10.1016/j.foreco.2011.09.040
[20] Duguy B, Alloza J A, Röder A, et al. Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain)[J]. International Journal of Wildland Fire, 2007, 16(5): 619−632. doi: 10.1071/WF06101
[21] Gómez-Vázquez I, Fernandes P M, Arias-Rodil M, et al. Using density management diagrams to assess crown fire potential in Pinus pinaster Ait. stands[J]. Annals of Forest Science, 2014, 71(4): 473−484. doi: 10.1007/s13595-013-0350-4
[22] 陶长森, 牛树奎, 陈羚, 等. 妙峰山林场主要针叶林冠层特征及潜在火行为[J]. 北京林业大学学报, 2018, 40(9): 55−62. Tao C S, Niu S K, Chen L, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing mountain area[J]. Journal of Beijing Forestry University, 2018, 40(9): 55−62.
[23] Varner J M, Keyes C R. Fuels treatments and fire models errors and corrections[J]. Fire Management Today, 2009, 3(69): 47−50.
[24] Andrews P L. Current status and future needs of the BehavePlus Fire Modeling System[J]. International Journal of Wildland Fire, 2014, 23(1): 21−33. doi: 10.1071/WF12167
[25] Brose P, Wade D. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques[J]. Forest Ecology and Management, 2002, 163(1): 71−84.
[26] 王凯. 北京西山林场不同可燃物类型空间分布及潜在火行为研究 [D]. 北京: 北京林业大学, 2016. Wang K. The spatial distribution of different fuel types and their potential fire behavior research on Beijing Xishan Forest Farm[D]. Beijing: Beijing Forestry University, 2016.
[27] 李连强, 牛树奎, 陈锋, 等. 北京妙峰山林场地表潜在火行为及燃烧性分析[J]. 北京林业大学学报, 2019, 41(3): 58−67. Li L Q, Niu S K, Chen F, et al. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58−67.
[28] 韩梅, 温鹏, 许惠敏, 等. 北京市十三陵林场油松林地表火行为模拟[J]. 北京林业大学学报, 2018, 40(10): 95−101. Han M, Wen P, Xu H M, et al. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95−101.
[29] 贺明利, 董丰俊, 韩彦斌. 西山国有林场森林火灾分析及预防措施[J]. 森林防火, 2006(1): 21−23. doi: 10.3969/j.issn.1002-2511.2006.01.008 He M L, Dong F J, Han Y B. Forest fire analysis and prevention measures of Xishan State-Owned Forest Farm[J]. Forest Fire Prevention, 2006(1): 21−23. doi: 10.3969/j.issn.1002-2511.2006.01.008
[30] 申晋. 西山林场森林资源信息管理系统的研建 [D]. 北京: 北京林业大学, 2008. Shen J. Establishment of forest resources information management system for Beijing Xishan Trial Forest Farm [D]. Beijing: Beijing Forestry University, 2008.
[31] 姜林林. 抚育对北京侧柏林耗水及林分生长的影响 [D]. 北京: 北京林业大学, 2012. Jiang L L. Effect of tending on whole tree water consumption and stand growth of Beijing Platycladus orientalis plantation [D]. Beijing: Beijing Forestry University, 2012.
[32] 刘冠宏. 北京地区典型林分地表火及向树冠火蔓延机制研究 [D]. 北京: 北京林业大学, 2019. Liu G H. Study on the mechanism of surface fire and spead of canopy fire of typical tree species in Beijing area [D]. Beijing: Beijing Forestry University, 2019.
[33] 田晓瑞, 舒立福, 阎海平, 等. 北京地区森林燃烧性研究[J]. 森林防火, 2004(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011 Tian X R, Shu LF, Yan H P, et al. Study on forest flammability in Beijing[J]. Forest Fire Prevention, 2004(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011
[34] 姜志林, 叶镜中, 周本琳. 杉木林的抚育间伐[M]. 北京: 中国林业出版社, 1982. Jiang Z L, Ye J Z, Zhou B L. Thinning of Chinese fir forest [M]. Beijing: China Forestry Publishing House, 1982.
[35] 牛树奎. 北京山区主要森林类型火行为与可燃物空间连续性研究 [D]. 北京: 北京林业大学, 2012. Niu S K. Fire behavior and fuel spatial continuity of major forest types in the mountainous area, Beijing [D]. Beijing: Beijing Forestry University, 2012.
[36] 牛树奎, 王叁, 贺庆棠, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物垂直连续性与树冠火发生[J]. 北京林业大学学报, 2012, 34(3): 1−7. Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
[37] Chandler C. Fire in forestry [M]. New York: John Wiley & Sons Inc. , 1983.
[38] van Wagner C E. Prediction of crown fire behavior in two stands of jack pine[J]. Canadian Journal of Forest Research, 1993, 3(3): 442−449.
[39] Rothermel R C. Predicting behavior and size of crown fires in the Northern Rocky Mountains[M]. Ogden: Intermountain Forest and Range Experiment Station of USDA Forest Service, 1991: 1-46.
[40] van Wagner C E. Conditions for the start and spread of crown fire[J]. Canadian Journal of Forest Research, 1977, 7(1): 23−34. doi: 10.1139/x77-004
[41] 金琳, 刘晓东, 张永福. 森林可燃物调控技术方法研究进展[J]. 林业科学, 2012, 48(2): 155−161. doi: 10.11707/j.1001-7488.20120224 Jin L, Liu X D, Zhang Y F. A review on the forest fuel treatment and reduction[J]. Scientia Silvae Sinicae, 2012, 48(2): 155−161. doi: 10.11707/j.1001-7488.20120224
[42] Cruz M G, Alexander M E, Wakimoto R H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands[J]. Canadian Journal of Forest Research, 2005, 35(7): 1626−1639. doi: 10.1139/x05-085
[43] Soler M M, Bonet J A, de Aragón J M, et al. Crown bulk density and fuel moisture dynamics in Pinus pinaster stands are neither modified by thinning nor captured by the forest fire weather iondex[J]. Annals of Forest Science, 2017, 74(3): 51−62. doi: 10.1007/s13595-017-0650-1
[44] Stephens S L, Moghaddas J J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest[J]. Forest Ecology and Management, 2005, 215(1−3): 21−36. doi: 10.1016/j.foreco.2005.03.070
[45] Warner T A, Skowronski N S, Puma I L. The influence of prescribed burning and wildfire on lidar-estimated forest structure of the New Jersey Pinelands National Reserve[J]. International Journal of Wildland Fire, 2020, 29(12): 1100−1108. doi: 10.1071/WF20037
[46] Keyes C R, Varner J M. Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels[J]. Fire Manage, 2006, 66(3): 46−50.
[47] Fulé P Z, Crouse J E, Roccaforte J P, et al. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?[J]. Forest Ecology and Management, 2012, 269: 68−81. doi: 10.1016/j.foreco.2011.12.025
-
期刊类型引用(6)
1. 刘树超,邵全琴,杨帆,郭兴健,王东亮,黄海波,汪阳春,刘纪远,樊江文,李愈哲. 黄河源区放牧家畜数量及空间分布无人机遥感调查. 地球信息科学学报. 2021(07): 1286-1295 . 百度学术
2. 郑硕,薛兴盛,白杨,吴艳兰. 徐淮地区冬季AOD时空特征及气象因子研究. 环境科学与技术. 2020(01): 78-85 . 百度学术
3. 柴曼,周滨,徐威杰,陈晨,刘文权. 基于多尺度分割GF-1影像地表覆盖信息提取研究. 内蒙古煤炭经济. 2020(06): 1-4 . 百度学术
4. 贾亮亮,汪小钦,苏华,王峰. 台湾岛高分一号卫星WFV数据气溶胶反演与验证. 环境科学学报. 2018(03): 1117-1127 . 百度学术
5. 李裕冬,罗艳,赵海涛,王程亮,杜杰. 基于MaxEnt模型的九寨沟国家级自然保护区川金丝猴适宜生境研究. 四川动物. 2018(05): 585-591 . 百度学术
6. 贾亮亮,汪小钦,王峰. 基于波段运算和纹理特征的高分一号多光谱数据云检测. 遥感信息. 2018(05): 62-68 . 百度学术
其他类型引用(6)