高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响

高敏 任云卯 周晓东 陈思帆 高钰 王会娟 顾泽 刘晓东

高敏, 任云卯, 周晓东, 陈思帆, 高钰, 王会娟, 顾泽, 刘晓东. 抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210455
引用本文: 高敏, 任云卯, 周晓东, 陈思帆, 高钰, 王会娟, 顾泽, 刘晓东. 抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210455
Gao Min, Ren Yunmao, Zhou Xiaodong, Chen Sifan, Gao Yu, Wang Huijuan, Gu Ze, Liu Xiaodong. Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210455
Citation: Gao Min, Ren Yunmao, Zhou Xiaodong, Chen Sifan, Gao Yu, Wang Huijuan, Gu Ze, Liu Xiaodong. Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210455

抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响

doi: 10.12171/j.1000-1522.20210455
基金项目: 国家自然科学基金项目(31770696)。
详细信息
    作者简介:

    高敏。主要研究方向:森林防火。Email:Gao13616420295@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    刘晓东,教授。主要研究方向:森林防火。 Email:xd-liu@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.38

Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing

  • 摘要:   目的  研究不同间伐强度对北京西山试验林场侧柏林冠层可燃物特征及其潜在火行为的影响,为冠层可燃物调控和预防高能量连续型树冠火的发生提供参考。  方法  以北京西山试验林场侧柏为研究对象,设置3种间伐强度(低15%、中35%、高50%,均为株数强度)的处理,并设置对照样地,每种处理设置3块重复样地。基于标准枝法所调查冠层可燃物参数(枝条数量、长度、基径),对冠层可燃物载量建立线性回归模型,进一步计算冠层容积密度。通过单因素方差分析探讨不同间伐强度对冠层可燃物特征(冠层可燃物载量、冠层容积密度)的影响。利用Behave Plus 5.0软件,分别根据样地可燃物含水率和气象条件设置中度湿度条件和10 m高空风速(0 ~ 18 m/s),探讨不同间伐强度对树冠潜在火行为指标(树冠火蔓延速率、火线强度、火焰长度、单位面积发热量等)的影响,并依据树冠火转化模型研究抚育间伐对连续型树冠火发生的影响。  结果  (1)林分冠层可燃物特征在不同间伐强度下存在差异,中度间伐强度下与未间伐样地差异最显著,冠层可燃物载量、冠层容积密度随着间伐强度的增加而减少,冠层可燃物载量由3.280 kg/m2减少到0.540 kg/m2,冠层容积密度由0.478 kg/m3减少到0.056 kg/m3。(2)不同间伐强度下林分冠层可燃物载量、冠层容积密度垂直分布特征为随树高的增加而先增加后减少。(3)树冠潜在火行为指标在中度间伐强度下与未间伐样地差异显著,其中火线强度、火焰长度以及单位面积发热量随间伐强度的增大而减小,树冠火蔓延速率在抚育间伐后小于未间伐样地,但不随间伐强度的变化而变化,临界树冠火蔓延速率随间伐强度的增大而增大。在未间伐、低度间伐强度下样地将发生连续型树冠火,中度、高度间伐强度样地不发生;随着间伐强度增大,发生连续型树冠火时所需10 m高空风速由6 m/s逐渐增大到8 m/s,火线强度由6 930 kW/m减少到5 829 kW/m,火焰长度由9.7 m减少到8.6 m,单位面积发热量由47 817 kJ/m2减少到40 667 kJ/m2,树冠火蔓延速率由8.7 m/s增加到8.9 m/s。  结论  抚育间伐影响冠层可燃物特征、树冠潜在火行为指标。中度间伐强度对冠层可燃物特征和树冠潜在火行为指标影响显著,通过减少冠层容积密度,可以有效降低树冠潜在火行为,避免连续型树冠火的发生。综合考虑经济效益和生态效益,在对侧柏林进行冠层可燃物调控时建议采取中度间伐处理。

     

  • 图  1  不同间伐强度侧柏林冠层可燃物载量垂直分布

    Figure  1.  CFL vertical distribution of Platycladus orientalis stand under different thinning intensities

    图  2  不同间伐强度侧柏林冠层容积密度垂直分布

    Figure  2.  CBD vertical distribution of Platycladus orientalis stand under different thinning intensities

    图  3  不同间伐强度侧柏林树冠潜在火行为指标

    Figure  3.  Potential crown fire behavior indicators of Platycladus orientalis stands under different thinning intensities

    表  1  侧柏林样地概况

    Table  1.   Information of Platycladus orientalis sample plots

    处理
    Treatment
    林分密度/(株·hm−2
    Stand density/
    (tree·ha−1)
    平均胸径
    Mean DBH/
    cm
    平均树高
    Mean tree
    height/m
    林龄/a
    Stand age/
    year
    海拔
    Altitude/
    m
    坡度
    Slope degree/
    (°)
    坡向
    Slope
    aspect
    坡位
    Slope
    position
    未间伐
    Control (CK)
    1 863 13.80 10.10 53 439 25 北坡
    North
    下坡
    Down slope
    低度间伐
    Low intensity thinning (LT)
    1 565 14.37 11.81 53 268 20 北坡
    North
    下坡
    Down slope
    中度间伐
    Moderate intensity thinning (MT)
    1 195 13.71 10.70 53 247 21 北坡
    North
    下坡
    Down slope
    高度间伐
    High intensity thinning (HT)
    600 17.85 11.49 53 177 20 北坡
    North
    下坡
    Down slope
    下载: 导出CSV

    表  2  冠层各类型可燃物载量回归模型

    Table  2.   Regression model of different types of canopy load

    枝条类型 Branch type估计参数 Estimation parameterR2
    α0α1α2α3α4α5
    活枝 Live branch −0.578 −0.567 0.950 −0.837 2.511 0.168 0.839
    死枝 Dead branch −4.608 0.938 0.473 0.872 1.347 −0.932 0.932
    下载: 导出CSV

    表  3  不同间伐强度侧柏林冠层可燃物特征

    Table  3.   Canopy fuel characteristics of Platycladus orientalis under different thinning intensities

    处理 TreatmentCFL/(kg·m−2CBD/(kg·m−3
    CK 3.280 ± 0.010a 0.478 ± 0.001a
    LT 3.030 ± 0.011b 0.380 ± 0.0002b
    MT 0.650 ± 0.106c 0.060 ± 0.010c
    HT 0.540 ± 0.011c 0.050 ± 0.004c
    注:不同小写字母分别表示不同间伐强度间差异显著(P < 0.05)。CBD
    , 冠层容积密度; CFL, 冠层可燃物载量。Notes: different lowercase letters indicate significant differences between treatments within each date (P < 0.05). CBD, canopy bulk density; CFL, canopy fuel load.
    下载: 导出CSV
  • [1] 赵凤君, 王明玉, 舒立福. 森林火灾中的树冠火研究[J]. 世界林业研究, 2010, 23(1): 39−43.

    Zhao F J, Wang M Y, Shu L F. A review of crown fire research[J]. World Forestry Research, 2010, 23(1): 39−43.
    [2] 胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2005.

    Hu H Q. Forest fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005.
    [3] Mitsopoulos I D, Dimitrakopoulos A P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill. ) forests[J]. Annals of Forest Science, 2007, 64(3): 287−299. doi: 10.1051/forest:2007006
    [4] Kucuk O, Goltas M, Demirel T, et al. Predicting canopy characteristics in Pinus brutia Ten., Pinus nigra Arnold and Pinus pinaster Ait. forests from stand variables in northwestern Turkey[J]. Environmental Engineering and Management Journal, 2021, 20(2): 309−318. doi: 10.30638/eemj.2021.031
    [5] Battaglia M, Smith F W, Shepperd W D. Predicting mortality of ponderosa pine regeneration after prescribed fire in the Black Hills, South Dakota, USA[J]. International Journal of Wildland Fire, 2009, 18(2): 176−190. doi: 10.1071/WF07163
    [6] Liu Y, Liu H, Zhou Y, et al. Spread vector induced cellular automata model for realtime crown fire behavior simulation[J]. Environmental Modelling & Software, 2018, 108: 14−39.
    [7] Hollingsworth L T, Kurth L L, Parresol B R, et al. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States[J]. Forest Ecology and Management, 2012, 273: 43−49. doi: 10.1016/j.foreco.2011.05.020
    [8] Arellano-Pérez S, Castedo-Dorado F, Álvarez-González J G, et al. Mid-term effects of a thin-only treatment on fuel complex, potential fire behaviour and severity and post-fire soil erosion protection in fast-growing pine plantations[J]. Forest Ecology and Management, 2020, 460: 117895. doi: 10.1016/j.foreco.2020.117895
    [9] Cruz M G, Alexander M E, Wakimoto R H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America[J]. International Journal of Wildland Fire, 2010, 19(1): 39−50.
    [10] Fernández-Alonso J M, Alberdi I, Álvarez-González J G, et al. Canopy fuel characteristics in relation to crown fire potential in pine stands: analysis, modelling and classification[J]. European Journal of Forest Research, 2013, 132(2): 363−377. doi: 10.1007/s10342-012-0680-z
    [11] Andreu A G, Blake J I, Zarnoch S J. Estimating canopy fuel characteristics for predicting crown fire potential in common forest types of the Atlantic Coastal Plain, USA[J]. International Journal of Wildland Fire, 2018, 27(11): 742−755. doi: 10.1071/WF18025
    [12] Jiménez E, Vega-Nieva D, Rey E, et al. Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait. forest in northern central Spain after thinning and mastication[J]. European Journal of Forest Research, 2016, 135(4): 675−686. doi: 10.1007/s10342-016-0963-x
    [13] Hevia A, Crabiffosse A, Álvarez-González J G, et al. Assessing the effect of pruning and thinning on crown fire hazard in young Atlantic maritime pine forests[J]. Journal of Environmental Management, 2018, 205: 9−17.
    [14] Molina J R, Rodriguez F, Herrera M A. Potential crown fire behavior in Pinus pinea stands following different fuel treatments[J]. Forest Systems, 2011, 20(2): 266−277.
    [15] Paulo M F. Empirical support for the use of prescribed burning as a fuel treatment[J]. Current Forestry Reports, 2015, 1(2): 118−127. doi: 10.1007/s40725-015-0010-z
    [16] Omi P N. Theory and practice of wildland fuels management[J]. Current Forestry Reports, 2015, 1(2): 100−117. doi: 10.1007/s40725-015-0013-9
    [17] Cruz M G, Fernandes P M. Development of fuel models for fire behaviour prediction in maritime pine (Pinus pinaster Ait. ) stands[J]. International Journal of Wildland Fire, 2008, 17(2): 194−204. doi: 10.1071/WF07009
    [18] Reinhardt E D, Holsinger L, Keane R. Effects of biomass removal treatments on stand-level fire characteristics in major forest types of the northern rocky mountains[J]. Western Journal of Applied Forestry, 2010, 25(1): 34−41. doi: 10.1093/wjaf/25.1.34
    [19] Ottmar R D, Prichard S J. Fuel treatment effectiveness in forests of the upper Atlantic Coastal Plain: an evaluation at two spatial scales[J]. Forest Ecology and Management, 2012, 273: 17−28. doi: 10.1016/j.foreco.2011.09.040
    [20] Duguy B, Alloza J A, Röder A, et al. Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain)[J]. International Journal of Wildland Fire, 2007, 16(5): 619−632. doi: 10.1071/WF06101
    [21] Gómez-Vázquez I, Gómez-Vázquez I, Fernandes P M, et al. Using density management diagrams to assess crown fire potential in Pinus pinaster Ait. stands[J]. Annals of Forest Science, 2014, 71(4): 473−484. doi: 10.1007/s13595-013-0350-4
    [22] 陶长森, 牛树奎, 陈羚, 等. 妙峰山林场主要针叶林冠层特征及潜在火行为[J]. 北京林业大学学报, 2018, 40(9): 55−62.

    Tao C S, Niu S K, Chen L, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing mountain area[J]. Journal of Beijing Forestry University, 2018, 40(9): 55−62.
    [23] Varner J M, Keyes C R. Fuels treatments and fire models errors and corrections[J]. Fire Management Today, 2009, 3(69): 47−50.
    [24] Andrews P L. Current status and future needs of the BehavePlus Fire Modeling System[J]. International Journal of Wildland Fire, 2014, 23(1): 21−33. doi: 10.1071/WF12167
    [25] Brose P, Wade D. Potential fire behavior in pine flatwood forests following three different fuel reduction techniques[J]. Forest Ecology and Management, 2002, 163(1): 71−84.
    [26] 王凯. 北京西山林场不同可燃物类型空间分布及潜在火行为研究 [D]. 北京: 北京林业大学, 2016.

    Wang K. The spatial distribution of different fuel types and their potential fire behavior research on Beijing Xishan Forest Farm[D]. Beijing: Beijing Forestry University, 2016.
    [27] 李连强, 牛树奎, 陈锋, 等. 北京妙峰山林场地表潜在火行为及燃烧性分析[J]. 北京林业大学学报, 2019, 41(3): 58−67.

    Li L Q, Niu S K, Chen F, et al. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58−67.
    [28] 韩梅, 温鹏, 许惠敏, 等. 北京市十三陵林场油松林地表火行为模拟[J]. 北京林业大学学报, 2018, 40(10): 95−101.

    Han M, Wen P, Xu H M, et al. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95−101.
    [29] 贺明利, 董丰俊, 韩彦斌. 西山国有林场森林火灾分析及预防措施[J]. 森林防火, 2006(1): 21−23. doi: 10.3969/j.issn.1002-2511.2006.01.008

    He M L, Dong F J, Han Y B. Forest fire analysis and prevention measures of Xishan State-Owned Forest Farm[J]. Forest Fire Prevention, 2006(1): 21−23. doi: 10.3969/j.issn.1002-2511.2006.01.008
    [30] 申晋. 西山林场森林资源信息管理系统的研建 [D]. 北京: 北京林业大学, 2008.

    Shen J. Establishment of forest resources information management system for Beijing Xishan Trial Forest Farm [D]. Beijing: Beijing Forestry University, 2008.
    [31] 姜林林. 抚育对北京侧柏林耗水及林分生长的影响 [D]. 北京: 北京林业大学, 2012.

    Jiang L L. Effect of tending on whole tree water consumption and stand growth of Beijing Platycladus orientalis plantation [D]. Beijing: Beijing Forestry University, 2012.
    [32] 刘冠宏. 北京地区典型林分地表火及向树冠火蔓延机制研究 [D]. 北京: 北京林业大学, 2019.

    Liu G H. Study on the mechanism of surface fire and spead of canopy fire of typical tree species in Beijing area [D]. Beijing: Beijing Forestry University, 2019.
    [33] 田晓瑞, 舒立福, 阎海平, 等. 北京地区森林燃烧性研究[J]. 森林防火, 2004(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011

    Tian X R, Shu L Yan H P, et al. Study on forest flammability in Beijing[J]. Forest Fire Prevention, 2004(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011
    [34] 姜志林, 叶镜中, 周本琳. 杉木林的抚育间伐[M]. 北京: 中国林业出版社, 1982.

    Jiang Z L, Ye J Z, Zhou B L. Thinning of Chinese fir forest [M]. Beijing: China Forestry Publishing House, 1982.
    [35] 牛树奎. 北京山区主要森林类型火行为与可燃物空间连续性研究 [D]. 北京: 北京林业大学, 2012.

    Niu S K. Fire behavior and fuel spatial continuity of major forest types in the mountainous area, Beijing [D]. Beijing: Beijing Forestry University, 2012.
    [36] 牛树奎, 王叁, 贺庆棠, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物垂直连续性与树冠火发生[J]. 北京林业大学学报, 2012, 34(3): 1−7.

    Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
    [37] Chandler C. Fire in forestry [M]. New York: John Wiley & Sons Inc. , 1983.
    [38] Wagner, Van C E. Prediction of crown fire behavior in two stands of jack pine[J]. Canadian Journal of Forest Research, 1993, 3(3): 442−449.
    [39] Rothermel R C. Predicting behavior and size of crown fires in the northern rocky mountains[J]. Ogden:Intermountain Forest and Range Experiment Station of USDA Forest Service, 1991: 1−46.
    [40] van Wagner C E. Conditions for the start and spread of crown fire[J]. Canadian Journal of Forest Research, 1977, 7(1): 23−34. doi: 10.1139/x77-004
    [41] 金琳, 刘晓东, 张永福. 森林可燃物调控技术方法研究进展[J]. 林业科学, 2012, 48(2): 155−161. doi: 10.11707/j.1001-7488.20120224

    Jin L, Liu X D, Zhang Y F. A review on the forest fuel treatment and reduction[J]. Scientia Silvae Sinicae, 2012, 48(2): 155−161. doi: 10.11707/j.1001-7488.20120224
    [42] Cruz M G, Alexander M E, Wakimoto R H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands[J]. Canadian Journal of Forest Research, 2005, 35(7): 1626−1639. doi: 10.1139/x05-085
    [43] Soler M M, Bonet J A, de Aragón J M, et al. Crown bulk density and fuel moisture dynamics in Pinus pinaster stands are neither modified by thinning nor captured by the forest fire weather iondex[J]. Annals of Forest Science, 2017, 74(3): 51−62. doi: 10.1007/s13595-017-0650-1
    [44] Stephens S L, Moghaddas J J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest[J]. Forest Ecology and Management, 2005, 215(1−3): 21−36. doi: 10.1016/j.foreco.2005.03.070
    [45] Warner T A, Skowronski N S, Puma I L. The influence of prescribed burning and wildfire on lidar-estimated forest structure of the New Jersey Pinelands National Reserve[J]. International Journal of Wildland Fire, 2020, 29(12): 1100−1108. doi: 10.1071/WF20037
    [46] Keyes C R, Varner J M. Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels[J]. Fire Manage, 2006, 66(3): 46−50.
    [47] Fulé P Z, Crouse J E, Roccaforte J P, et al. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior?[J]. Forest Ecology and Management, 2012, 269: 68−81. doi: 10.1016/j.foreco.2011.12.025
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  130
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 录用日期:  2021-12-20
  • 修回日期:  2021-11-26
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回