高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小兴安岭不同径级白桦枝叶性状变异及权衡

解书文 金光泽 刘志理

解书文, 金光泽, 刘志理. 小兴安岭不同径级白桦枝叶性状变异及权衡[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210463
引用本文: 解书文, 金光泽, 刘志理. 小兴安岭不同径级白桦枝叶性状变异及权衡[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210463
Xie Shuwen, Jin Guangze, Liu Zhili. Variations and trade-offs of twig-leaf traits for Betula platyphylla with different diameter classes in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210463
Citation: Xie Shuwen, Jin Guangze, Liu Zhili. Variations and trade-offs of twig-leaf traits for Betula platyphylla with different diameter classes in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210463

小兴安岭不同径级白桦枝叶性状变异及权衡

doi: 10.12171/j.1000-1522.20210463
基金项目: 国家重点研发青年科学家项目(2022YFD2201100),国家自然科学基金项目(31971636),中央高校基本科研业务费专项(2572022DS13)
详细信息
    作者简介:

    解书文。主要研究方向:森林生态。Email:793693504@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    刘志理,教授。主要研究方向:森林生态。Email:liuzl2093@126.com 地址:同上

Variations and trade-offs of twig-leaf traits for Betula platyphylla with different diameter classes in Xiaoxing’an Mountains of northeastern China

  • 摘要:   目的  植物可以通过调整自身性状变化从而更有效地利用资源。探究不同径级植物枝叶性状间的变异及其相关关系,对理解植物功能性状种内变异及对资源的获取策略具有重要意义。  方法  以黑龙江凉水国家级自然保护区阔叶红松林中的白桦为研究对象,选取3个径级(小树、中等树、大树)的样树,测定其枝横截面积、单叶面积、总叶面积、总叶干质量、枝干质量和出叶强度。采用单因素方差分析检验枝叶性状在不同径级间是否存在显著差异;以标准化主轴估计检验径级对白桦枝叶性状间的相关关系是否存在影响。  结果  随着径级的增加,枝横截面积呈上升趋势,单叶面积和总叶面积呈下降趋势,而总叶干质量、枝干质量、出叶强度不存在显著差异。不同径级白桦的枝横截面积与单叶面积、总叶面积和总叶干质量呈显著正相关,与出叶强度呈显著负相关,其中,小树和大树枝横截面积与总叶面积和总叶干质量呈接近1的等速生长关系,而中等树呈接近1.5的异速生长关系;单叶面积与出叶强度显著负相关,呈异速生长关系。径级对白桦枝叶性状相关关系的斜率或截距存在显著影响。  结论  在同一群落内,不同径级的白桦枝叶性状存在差异是其自身的一种资源获取策略,且枝叶性状为了获得有效的资源而协同变化。

     

  • 图  1  不同径级白桦枝叶性状的差异

    不同字母表示差异显著(P < 0.05)。Different letters indicate significant difference at P < 0.05 level.

    Figure  1.  Differences in twig-leaf traits of Betula platyphylla in varied diameter classes

    图  2  白桦枝叶性状间相关关系

    ***表示枝叶性状间显著相关(P < 0.001)。椭圆越窄,表示相关性越强。*** indicates significant correlation between twig-leaf traits (P < 0.001). The narrower the ellipse is, the stronger the correlation is.

    Figure  2.  Correlation between twig-leaf traits of Betula platyphylla

    图  3  不同径级白桦枝叶性状相关关系的差异性

    P < 0.05表示不同径级间斜率存在显著差异,P > 0.05表示不同径级间存在共同斜率(即不存在显著差异)。P < 0.05 means that slopes between different diameter classes exist significant difference. P > 0.05 means common slope between different diameter classes (not exist significant difference).

    Figure  3.  Differences in correlations between twig-leaf traits of Betula platyphylla in varied diameter classes

    表  1  样树胸径信息

    Table  1.   Information of diameter at breast height (DBH) for sample trees

    胸径
    DBH
    小树
    Small tree
    中等树
    Middle tree
    大树
    Large tree
    平均值 Mean/cm5.0518.8340.99
    标准差 SD/cm0.311.372.18
    变异系数
    Coefficient of variation/%
    6.007.005.00
    下载: 导出CSV

    表  2  白桦枝叶性状与胸径、光照之间的广义线性模型

    Table  2.   Generalized linear models among twig-leaf traits, DBH and light intensity for Betula platyphylla

    性状 Trait参数 Parameter胸径 DBH光照强度 Light intensity截距 Intercept
    枝横截面积
    Twig cross-sectional area (TCA)
    回归系数 Regression coefficient 0.02 0.12 3.78
    0.17 0.09 < 0.001
    单叶面积
    Individual leaf area (ILA)
    回归系数 Regression coefficient −0.05 0.24 9.40
    < 0.01 < 0.01 < 0.001
    总叶面积
    Total leaf area (TLA)
    回归系数 Regression coefficient −0.68 1.03 70.95
    < 0.01 0.30 < 0.001
    总叶干质量
    Total leaf dry mass (TLDM)
    回归系数 Regression coefficient −0.01 0.01 0.75
    0.02 0.22 < 0.001
    枝干质量
    Twig dry mass (TDM)
    回归系数 Regression coefficient 0.00 0.01 0.25
    0.04 0.21 < 0.001
    出叶强度
    Volume-based leafing intensity (LIV)
    回归系数 Regression coefficient −0.00 −0.00 0.15
    0.19 0.39 < 0.001
    下载: 导出CSV
  • [1] 张晶, 赵成章, 雷蕾,等. 薰衣草枝叶性状关系的个体大小依赖[J]. 生态学杂志, 2018, 37(8): 2277−2284. doi: 10.13292/j.1000-4890.201808.039

    Zhang J, Zhao C Z, Lei L, et al. Individual size dependence of the relationship of twig and leaf traits of Lavandula angustifolia[J]. Chinese Journal of Ecology, 2018, 37(8): 2277−2284. doi: 10.13292/j.1000-4890.201808.039
    [2] 尹凤娟, 王明琦, 金光泽,等. 红松不同生活史阶段的枝叶权衡[J]. 林业科学, 2021, 57(4): 54−62.

    Yin F J, Wang M Q, Jin G Z, et al. Trade-off between twig and leaf of Pinus koraiensis at different life history stages[J]. Scientia Silvae Sinicae, 2021, 57(4): 54−62.
    [3] 杨士梭, 温仲明, 苗连朋,等. 黄土丘陵区植物功能性状对微地形变化的响应[J]. 应用生态学报, 2014, 25(12): 3413−3419. doi: 10.13287/j.1001-9332.2014.0192

    Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3413−3419. doi: 10.13287/j.1001-9332.2014.0192
    [4] Diaz S, Cabido M, Zak M, et al. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina[J]. Journal of Vegetation Science, 1999, 10(5): 651−660. doi: 10.2307/3237080
    [5] Osada N. Crown development in a pioneer tree, Rhus trichocarpa, in relation to the structure and growth of individual branches[J]. New Phytologist, 2006, 172(4): 667−678. doi: 10.1111/j.1469-8137.2006.01857.x
    [6] Kawai K, Okada N. Coordination of leaf and stem traits in 25 species of Fagaceae from three biomes of East Asia[J]. Botany, 2019, 97(7): 391−403. doi: 10.1139/cjb-2019-0010
    [7] White P S. Corner’s rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees[J]. Bulletin of the Torrey Botanical Club, 1983a, 110(2): 203−212.
    [8] White P S. Evidence that temperate east North American evergreen woody plants follow Corner’s rules[J]. New Phytologist, 1983b, 95(1): 139−145.
    [9] Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812
    [10] Yan E R, Wang X H, Chang S X, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6): 609−617. doi: 10.1093/treephys/tpt042
    [11] Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiology, 2006, 26(6): 689−701. doi: 10.1093/treephys/26.6.689
    [12] Wright I J, Falster D S, Pickup M, et al. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics[J]. Physiologia Plantarum, 2006, 127(3): 445−456. doi: 10.1111/j.1399-3054.2006.00699.x
    [13] Hao G Y, Hoffmann W A, Scholz F G, et al. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems[J]. Oecologia, 2008, 155(3): 405−415. doi: 10.1007/s00442-007-0918-5
    [14] Meinzer F C, Woodruff D R, Domec J C, et al. Coordination of leaf and stem water transport properties in tropical forest trees[J]. Oecologia, 2008, 156(1): 31−41. doi: 10.1007/s00442-008-0974-5
    [15] 杨继鸿, 李亚楠, 卜海燕,等. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863−876. doi: 10.17521/cjpe.2019.0174

    Yang J H, Li Y N, Bu H Y, et al. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 863−876. doi: 10.17521/cjpe.2019.0174
    [16] 魏圆慧, 梁文召, 韩路,等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13): 5368−5376.

    Wei Y H, Liang W Z, Han L, et al. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J]. Acta Ecologgica Sinica, 2021, 41(13): 5368−5376.
    [17] Martin A R, Thomas S C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees[J]. Tree Physiology, 2013, 33(12): 1338−1353. doi: 10.1093/treephys/tpt085
    [18] Marshall J D, Monserud R A. Foliage height influences specific leaf area of three conifer species[J]. Canadian Journal of Forest Research, 2003, 33(1): 164−170. doi: 10.1139/x02-158
    [19] Carlucci M B, Debastiani V J, Valério D P, et al. Between- and within-species trait variability and the assembly of sapling communities in forest patches[J]. Journal of Vegetation Science, 2015, 26(1): 21−31. doi: 10.1111/jvs.12223
    [20] Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 125−159. doi: 10.1146/annurev.ecolsys.33.010802.150452
    [21] 龙嘉翼, 赵宇萌, 孔祥琦,等. 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系[J]. 生态学报, 2018, 38(22): 8022−8030.

    Long J Y, Zhao Y M, Kong X Q, et al. Trade-offs between twig and leaf traits of ornamental shrubs grown in shade[J]. Acta Ecologgica Sinica, 2018, 38(22): 8022−8030.
    [22] Yang F, Xie L H, Huang Q Y, et al. Twig biomass allocation of Betula platyphylla in different habitats in Wudalianchi Volcano, northeast China[J]. Open Life Sciences, 2021, 16(1): 758−765. doi: 10.1515/biol-2021-0078
    [23] Yang D M, Niklas K J, Xiang S, et al. Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization[J]. Annals of Botany, 2010, 105(1): 71−77. doi: 10.1093/aob/mcp262
    [24] 孙蒙柯, 程林, 王满堂,等. 武夷山常绿阔叶林木本植物小枝生物量分配[J]. 生态学杂志, 2018, 37(6): 1815−1823.

    Sun M K, Cheng L, Wang M T, et al. Twig biomass allocation of woody species in evergreen broad-leaf forest, Wuyi Mountain[J]. Chinese Journal of Ecology, 2018, 37(6): 1815−1823.
    [25] Niklas K J, Enquist B J. On the vegetative biomass partitioning of seed plant leaves, stems, and roots[J]. Tree Physiology, 2002, 159(5): 482−497.
    [26] Liu Z L, Hikosaka K, Li F R, et al. Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors[J]. Functional Ecology, 2020, 34(2): 458−467. doi: 10.1111/1365-2435.13498
    [27] 于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异[J]. 植物生态学报, 2020, 44(9): 939−950. doi: 10.17521/cjpe.2020.0173

    Yu Q H, Jin G Z, Liu Z L. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis[J]. Chinese Journal of Plant Ecology, 2020, 44(9): 939−950. doi: 10.17521/cjpe.2020.0173
    [28] Valladares F, Wright J S, Lasso E, et al. Plastic phenotypic responses to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925−1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
    [29] Nouvellon Y, Laclau J P, Epron D, et al. Within-stand and periodal variations of specific leaf area in a clonal eucalyptus plantation in the Republic of Congo[J]. Forest Ecology and Management, 2010, 259(9): 1796−1807. doi: 10.1016/j.foreco.2009.05.023
    [30] Kenzo T, Inoue Y, Yoshimura M, et al. Height-related changes in leaf photosynthetic traits in diverse bornean tropical rain forest trees[J]. Oecologia, 2015, 177(1): 191−202. doi: 10.1007/s00442-014-3126-0
    [31] 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6): 844−852. doi: 10.17521/cjpe.2004.0110

    Zhang L, Luo T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chinese Journal of Plant Ecology, 2004, 28(6): 844−852. doi: 10.17521/cjpe.2004.0110
    [32] Parkhurst D F, Loucks O L. Optimal leaf size in relation to environment[J]. Journal of Ecology, 1972, 60(2): 505−537. doi: 10.2307/2258359
    [33] Givnish T J, Vermeij G J. Sizes and shapes of liane leaves[J]. The American Naturalist, 1976, 110(975): 743−778. doi: 10.1086/283101
    [34] 卢艺苗, 王满堂, 陈晓萍,等. 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响[J]. 应用生态学报, 2019, 30(11): 3653−3661. doi: 10.13287/j.1001-9332.201911.001

    Lu Y M, Wang M T, Chen X P, et al. Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3653−3661. doi: 10.13287/j.1001-9332.201911.001
    [35] Alméras T, Costes E, Salles J C. Identification of biomechanical actors involved in stem shape variability between pricot tree varieties[J]. Annals of Botany, 2004, 93(4): 455−468. doi: 10.1093/aob/mch054
    [36] Harvey P, Pagel M. The comparative method in evolutionary biology[M]. Oxford: Oxford University Press, 1991.
    [37] Warton D I, Weber N C. Common slope tests for bivariate errors-in-variables models[J]. Biometrical Journal, 2002, 44(2): 161−174. doi: 10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N
    [38] Sultan S E. Plant developmental responses to the environment: eco-devo insights[J]. Current Opinion in Plant Biology, 2010, 13(1): 96−101. doi: 10.1016/j.pbi.2009.09.021
    [39] Westoby M, Wright I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4): 621−628. doi: 10.1007/s00442-003-1231-6
    [40] 严昌荣, 韩兴国, 陈灵芝. 北京山区落叶阔叶林优势种叶片特点及其生理生态特性[J]. 生态学报, 2000, 20(1): 54−61.

    Yan C R, Han X G, Chen L Z. The relationship between the ecophysiological feature and leaf characteristics of some woody plants in Beijing Mountain zone[J]. Acta Ecologgica Sinica, 2000, 20(1): 54−61.
    [41] Givnish T J. Ecological aspects of plant morphology: leaf form in relation to environment[J]. Acta Biotheoretica, 1978, 27(6): 83−142.
    [42] Scoffoni C, Rawls M, Mckown A, et al. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture[J]. Plant Physiology, 2011, 156(2): 832−843. doi: 10.1104/pp.111.173856
    [43] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [44] Rozendaal D M A, Hurtado V H, Poorter L. Plasticity in leaf traits of 38 tropical tree species in response to light: relationships with light demand and adult stature[J]. Functional Ecology, 2006, 20(2): 207−216. doi: 10.1111/j.1365-2435.2006.01105.x
    [45] 史元春, 赵成章, 宋清华,等. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362−370. doi: 10.17521/cjpe.2015.0035

    Shi Y C, Zhao C Z, Song Q H, et al. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Plant Ecology, 2015, 39(4): 362−370. doi: 10.17521/cjpe.2015.0035
    [46] 李永华, 卢琦, 吴波,等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 88−98. doi: 10.3724/SP.J.1258.2012.00088

    Li Y H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 88−98. doi: 10.3724/SP.J.1258.2012.00088
    [47] Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe model theory(Ⅰ): basic analysis[J]. Japanese Journal of Ecology, 1964, 14(3): 97−105.
    [48] Niklas K J. Plant biomechanics: an engineering approach to plant form and function[M]. Chicago: University of Chicago Press, 1992.
    [49] Brouat C, Gibernau M, Amsellem L, et al. Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[J]. The New Phytologist, 1998, 139(3): 459−470. doi: 10.1046/j.1469-8137.1998.00209.x
    [50] Sun S C, Jin D M, Shi P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97−107. doi: 10.1093/aob/mcj004
    [51] Falster D S, Westoby M. Plant height and evolutionary games[J]. Trends in Ecology and Evolution, 2003, 18(7): 337−343. doi: 10.1016/S0169-5347(03)00061-2
    [52] 高景, 王金牛, 徐波,等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775−787. doi: 10.17521/cjpe.2015.0288

    Gao J, Wang J N, Xu B, et al. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 775−787. doi: 10.17521/cjpe.2015.0288
    [53] Kleiman D, Aarssen L W. The leaf size/number trade-off in trees[J]. Journal of Ecology, 2007, 95(2): 376−382. doi: 10.1111/j.1365-2745.2006.01205.x
    [54] Poorter L, Rozendaal D M A, Bongers F, et al. Functional recovery of secondary tropical forests[J]. Proceedings of the National Academy of Sciences, 2021, 118(49): 1−12.
    [55] Niklas K J, Speck T. Evolutionary trends in safety factors against wind-induced stem failure[J]. American Journal of Botany, 2001, 88(7): 1266−1278. doi: 10.2307/3558338
    [56] Huang W, Reddy G V P, Li Y, et al. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass-evidence from bamboo plants[J]. Symmetry, 2020, 12(8): 1345.
    [57] Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534−543. doi: 10.1046/j.1365-2745.2002.00689.x
    [58] Li T, Deng J M, Wang G X, et al. Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats[J]. Polish Journal of Ecology, 2009, 57(4): 659−667.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  51
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-01-14
  • 网络出版日期:  2023-04-08

目录

    /

    返回文章
    返回