高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山云冷杉针阔混交林3种常见树种径向生长对气候变化的响应

贡晓清 谢榕 杨华

贡晓清, 谢榕, 杨华. 长白山云冷杉针阔混交林3种常见树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2023, 45(4): 1-10. doi: 10.12171/j.1000-1522.20210479
引用本文: 贡晓清, 谢榕, 杨华. 长白山云冷杉针阔混交林3种常见树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2023, 45(4): 1-10. doi: 10.12171/j.1000-1522.20210479
Gong Xiaoqing, Xie Rong, Yang Hua. Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 1-10. doi: 10.12171/j.1000-1522.20210479
Citation: Gong Xiaoqing, Xie Rong, Yang Hua. Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 1-10. doi: 10.12171/j.1000-1522.20210479

长白山云冷杉针阔混交林3种常见树种径向生长对气候变化的响应

doi: 10.12171/j.1000-1522.20210479
基金项目: 国家重点研发计划课题(2017YFC0504101)
详细信息
    作者简介:

    贡晓清。主要研究方向:森林资源监测与评价。Email:550581327@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    杨华,教授。主要研究方向:森林资源监测与评价。Email:huayang8747@163.com 地址:同上

  • 中图分类号: S758.5

Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China

  • 摘要:   目的  气候因子影响树木生长发育,对树木径向生长与气候因子之间的关系进行分析,以探究长白山地区云冷杉针阔混交林森林生态系统对气候变化的响应,为该地区天然林经营管理提供科学依据。  方法  本研究于2019年在吉林省汪清县云冷杉针阔混交林中对常见针叶树臭冷杉、鱼鳞云杉和红松进行样芯的采集,用树木年轮学方法建立标准年表,进而分析比较不同树种生长与气候因子的关系。  结果  该地区树木标准年表的平均敏感度和信噪比分别为0.16 ~ 0.27、6.14 ~ 19.98,其中臭冷杉包含更多的气候信息,其平均敏感度、标准差、信噪比和样本总体代表性等统计量均高于鱼鳞云杉和红松。上年9月平均气温及上年、当年7月最低气温与臭冷杉、鱼鳞云杉和红松径向生长均呈显著正相关(P < 0.05),这表明同一区域不同树种径向生长对气候的响应具有一定的相似性。3种树种径向生长对气候变化的响应也存在差异,臭冷杉径向生长受气温和降水的共同作用,鱼鳞云杉和红松径向生长主要受气温限制。升温突变(1985年)后,臭冷杉、鱼鳞云杉和红松径向生长与气温相关性增强但与降水量相关性减弱,且升温后树木径向生长有显著上升趋势。  结论  不同树种径向生长对气候变化的响应既有共性又存在差异,目前升温可能仍在臭冷杉、鱼鳞云杉和红松径向生长的临界阈值内,促进其径向生长。

     

  • 图  3  3种常见树种的标准年表和样本量

    Figure  3.  Standard chronology and sample size of three common tree species

    图  1  研究区1958—2018年气象数据

    T.平均气温;Tmin.最低气温;Tmax.最高气温;SPEI.标准化降水蒸散指数。T, mean temperature; Tmin, minimum temperature; Tmax, maximum temperature; SPEI, standardized precipitation evapotranspiration index.

    Figure  1.  Meteorological data of research area from 1958 to 2018

    图  2  1958—2018年年均气温 Mann-Kendall检验结果

    UFk.正常的统计值时间序列 ;UBk.逆序的统计值时间序列。UFk, normal statistical time sequence; UBk, inverted statistical time sequence.

    Figure  2.  Mann-Kendall test results of average annual temperature from 1958 to 2018

    图  4  标准年表与月最低气温、平均气温和最高气温的相关系数

    p.上年;c.当年。下同。p, previous year; c, current year. The same below.

    Figure  4.  Correlation coefficients of the standard chronology with monthly minimum temperature, mean temperature and maximum temperature

    图  5  标准年表与月降水量、SPEI的相关系数

    Figure  5.  Correlation coefficients of standard chronology with monthly precipitation and SPEI

    图  6  升温突变前后3种常见树种标准年表与气候因子的相关分析

    *表示的显著相关(P < 0.05)。* means significant correlation (P < 0.05).

    Figure  6.  Correlation analysis between the standard chronology of three common tree species and climate factors before and after the abrupt warming change

    图  7  3种常见树种与气候因子的滑动相关分析

    Figure  7.  Moving correlation analysis of three common tree species and climate factors

    表  1  标准年表的统计特征及公共区间分析

    Table  1.   Statistical characteristics and common interval analysis of the standard chronology

    统计特征 Statistic characteristics臭冷杉 Abies nephrolepis鱼鳞云杉 Picea jezoensis红松 Pinus koraiensis
    时间跨度 Time span 1900—2018 1926—2018 1898—2018
    平均值 Mean value 0.93 0.96 0.95
    平均敏感度 Mean sensitivity (SM) 0.27 0.16 0.22
    标准差 Standard deviation (SD) 0.40 0.38 0.30
    一阶自相关系数 First-order autocorrelation coefficient (AC) 0.81 0.86 0.81
    公共区间 Common interval 1969—2011 1969—2011 1959—2013
    信噪比 Signal-to-noise ratio (RSN) 19.98 6.14 11.21
    样本间相关系数 Correlation coefficient between samples (Rbar) 0.40 0.31 0.32
    样本总体代表性 Sample population representativeness (SEP) 0.95 0.86 0.92
    下载: 导出CSV
  • [1] 2019中国气候变化海洋蓝皮书发布[J]. 中国环境监察, 2019(10): 4.

    China ocean blue book on climate change released 2019 [J]. China Environment Supervision, 2019(10): 4.
    [2] 赵秀兰. 近50年中国东北地区气候变化对农业的影响[J]. 东北农业大学学报, 2010, 41(9): 144−149. doi: 10.3969/j.issn.1005-9369.2010.09.027

    Zhao X L. Influence of climate change on agri-culture in Northeast China in recent 50 years[J]. Journal of Northeast Agricultural University, 2010, 41(9): 144−149. doi: 10.3969/j.issn.1005-9369.2010.09.027
    [3] 邵雪梅, 吴祥定. 利用树轮资料重建长白山区过去气候变化[J]. 第四纪研究, 1997, 17(1): 76−85. doi: 10.3321/j.issn:1001-7410.1997.01.010

    Shao X M, Wu X D. Reconstruction of past climate change in Changbai Mountain using tree-ring data[J]. Quaternary Sciences, 1997, 17(1): 76−85. doi: 10.3321/j.issn:1001-7410.1997.01.010
    [4] Duchesne L, D’Orangeville L, Oulmet R, et al. Extracting coherent tree-ring climatic signals across spatial scales from extensive forest inventory data[J/OL]. PLoS One, 2017, 12: e189444[2021−10−19]. https://doi.org/10.1371/journal.pone.0189444.
    [5] Fritts H C. Growth-rings of trees: their correlation with climate[J]. Science, 1966, 154: 973−979. doi: 10.1126/science.154.3752.973
    [6] 吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.

    Wu X D. Tree rings and climate change[M]. Beijing: China Meteorological Press, 1990.
    [7] Smerdon J E, Kaufman D S, Asrat A, et al. Continental-scale temperature variability during the past two millennia[J/OL]. Nature Geoscience, 2013, 10.1038[2021−10−18]. https://doi.org/10.1038/NGEO1797.
    [8] Jiang Y, Yuan X, Zhang J, et al. Reconstruction of June–July temperatures based on a 233 year tree-ring of Picea jezoensis var. microsperma[J/OL]. Forests, 2019, 10: 416[2021−10−15]. https://doi.org/10.3390/f10050416.
    [9] 高露双, 王晓明, 赵秀海. 长白山阔叶红松林共存树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2013, 35(3): 24−31.

    Gao L S, Wang X M, Zhao X H. Growth response of two coexisting species to climate change in broadleaved Korean pine forests in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(3): 24−31.
    [10] 王守乐, 王晓雨, 盖学瑞, 等. 长白山落叶松与鱼鳞云杉生长−气候关系的种间差异[J]. 应用生态学报, 2019, 30(5): 1529−1535.

    Wang S L, Wang X Y, Gai X R, et al. Interspecific difference of relationship between radial growth and climate factor for Larix olgensis and Picea jezoensis var. komarovii in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1529−1535.
    [11] 于健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应[J]. 应用生态学报, 2021, 32(1): 46−56. doi: 10.13287/j.1001-9332.202101.004

    Yu J, Chen J J, Meng S W, et al. Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 46−56. doi: 10.13287/j.1001-9332.202101.004
    [12] 陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12): 48−58.

    Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelinii in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58.
    [13] 李波. 气候敏感的云冷杉林进界模型的研究[D]. 北京: 北京林业大学, 2018.

    Li B. Modelling tree recruitment in relation to climate in spruce-fir forests[D]. Beijing: Beijing Forestry University, 2018.
    [14] 贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6): 1916−1922. doi: 10.13287/j.1001-9332.202006.004

    He D N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1916−1922. doi: 10.13287/j.1001-9332.202006.004
    [15] Holmes R L. Computer-assisted 1uality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43: 51−67.
    [16] Bunn A G. A dendrochronology program library in R (dplR)[J]. Dendrochronologia, 2008, 26: 115−124. doi: 10.1016/j.dendro.2008.01.002
    [17] Wigley T, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23: 201−213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
    [18] Kendall M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25: 86−91.
    [19] Fritts H C. Tree rings and climate [M]. Pittsburgh: Academic Press, 1972.
    [20] Biondi F, Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies[J]. Computers & Geosciences, 2004, 30: 303−311.
    [21] Fkiri S, Guibal F, Fady B, et al. Tree-rings to climate relationships in nineteen provenances of four black pines sub-species (Pinus nigra Arn.) growing in a common garden from northwest Tunisia[J]. Dendrochronologia, 2018, 50: 44−51.
    [22] 高露双, 王晓明, 赵秀海. 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应[J]. 植物生态学报, 2011, 35(1): 27−34. doi: 10.3724/SP.J.1258.2011.00027

    Gao L S, Wang X M, Zhao X H. Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 27−34. doi: 10.3724/SP.J.1258.2011.00027
    [23] 杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10): 1−14.

    Yang J W, Zhang Q L, Song W Q, et al. Response difference of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 1−14.
    [24] Andreu L, Gutierreze E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests[J/OL]. Global Change Biology, 2007: 1003002105[2021−12−18]. https://doi.org/10.1111/j.1365-2486.2007.01322.x.
    [25] 佘春燕. 喀纳斯自然保护区主要树种蒸腾耗水特性研究[D]. 合肥: 安徽农业大学, 2016.

    She C Y. Research on transpiration water consumption of main tree species in the Kanas National Nature Reserve[D]. Hefei: Anhui Agricultural University, 2016.
    [26] Peterson D W, Peterson D L. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains[J]. Canadian Journal of Forest Research, 1994, 24(9): 1921−1932. doi: 10.1139/x94-247
    [27] 曹受金, 曹福祥, 项文化. 利用树木年轮研究湖南炎陵气温变化情况−1840年以来5—7月份气温变化情况重建[J]. 中南林业科技大学学报, 2012, 32(4): 10−14. doi: 10.3969/j.issn.1673-923X.2012.04.003

    Cao S J, Cao F X, Xiang W H. Tree-ring-based reconstruction of temperature variations from May to July since 1840 in Yanling County of Hunan Province, China[J]. Journal of Central South University of Forestry & Technology, 2012, 32(4): 10−14. doi: 10.3969/j.issn.1673-923X.2012.04.003
    [28] Lyu S, Wang X C, Zhang Y D, et al. Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China[J/OL]. Dendrochronologia, 2017: S1720392102[2021−12−17]. https://doi.org/10.1016/j.dendro.2017.08.002.
    [29] 韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.

    Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520.
    [30] 张萌, 石松林, 石春明, 等. 川西高原4种典型针叶树径向生长对气候因子的响应[J]. 生态学杂志, 2021, 40(7): 1947−1957. doi: 10.13292/j.1000-4890.202107.015

    Zhang M, Shi S L, Shi C M, et al. Radial growth responses of four typical coniferous species to climatic factors in the western Sichuan Plateau, China[J]. Chinese Journal of Ecology, 2021, 40(7): 1947−1957. doi: 10.13292/j.1000-4890.202107.015
    [31] 侯鑫源, 史江峰, 李玲玲, 等. 湖北神农架巴山冷杉径向生长对气候的响应[J]. 应用生态学报, 2015, 26(3): 689−696.

    Hou X Y, Shi J F, Li L L, et al. Growth response of Abies fargesii to climate in Shennongjia Mount of Hubei Province, Southeastern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 689−696.
    [32] 于健, 刘琪璟, 周光, 等. 小兴安岭红松和鱼鳞云杉径向生长对气候变化的响应[J]. 应用生态学报, 2017, 28(11): 3451−3460.

    Yu J, Liu Q J, Zhou G, et al. Response of radial growth of Pinus koraiensis and Picea jezoensis to climate change in Xiaoxing’anling Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3451−3460.
    [33] Yu D P, Gu H Y, Wang J D, et al. Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain[J]. Journal of Forestry Research, 2005, 16: 187−192. doi: 10.1007/BF02856812
    [34] Zhu L J, Cooper D J, Yang J W, et al. Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China[J]. Dendrochronologia, 2018, 50: 52−63. doi: 10.1016/j.dendro.2018.05.002
    [35] Jacoby G C, D’Arrigo R D. Tree ring width and density evidence of climatic and potential forest change in Alaska[J]. Global Biogeochemical Cycles, 1995, 9: 227−234. doi: 10.1029/95GB00321
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  99
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2021-12-09
  • 录用日期:  2023-03-07
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回