高级检索

    长白山云冷杉针阔混交林3种常见树种径向生长对气候变化的响应

    Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China

    • 摘要:
        目的  气候因子影响树木生长发育,对树木径向生长与气候因子之间的关系进行分析,以探究长白山地区云冷杉针阔混交林森林生态系统对气候变化的响应,为该地区天然林经营管理提供科学依据。
        方法  本研究于2019年在吉林省汪清县云冷杉针阔混交林中对常见针叶树臭冷杉、鱼鳞云杉和红松进行样芯的采集,用树木年轮学方法建立标准年表,进而分析比较不同树种生长与气候因子的关系。
        结果  该地区树木标准年表的平均敏感度和信噪比分别为0.16 ~ 0.27、6.14 ~ 19.98,其中臭冷杉包含更多的气候信息,其平均敏感度、标准差、信噪比和样本总体代表性等统计量均高于鱼鳞云杉和红松。上年9月平均气温及上年、当年7月最低气温与臭冷杉、鱼鳞云杉和红松径向生长均呈显著正相关(P < 0.05),这表明同一区域不同树种径向生长对气候的响应具有一定的相似性。3种树种径向生长对气候变化的响应也存在差异,臭冷杉径向生长受气温和降水的共同作用,鱼鳞云杉和红松径向生长主要受气温限制。升温突变(1985年)后,臭冷杉、鱼鳞云杉和红松径向生长与气温相关性增强但与降水量相关性减弱,且升温后树木径向生长有显著上升趋势。
        结论  不同树种径向生长对气候变化的响应既有共性又存在差异,目前升温可能仍在臭冷杉、鱼鳞云杉和红松径向生长的临界阈值内,促进其径向生长。

       

      Abstract:
        Objective  Climate factors affect tree growth and development, and the relationship between tree radial growth and climate factors was analyzed to explore the response of spruce-fir coniferous and broadleaved mixed forest ecosystem to climate change in Changbai Mountain of northeastern China, so as to provide scientific basis for natural forest management in this area.
        Method  In this study, we used dendrochronological techniques to sample tree-ring cores of Abies nephrolepis, Picea jezoensis and Pinus koraiensis, which were the common tree species in the spruce-fir mixed stand in Wangqing County, Jilin Province of northeastern China in 2019. We developed tree-ring width chronologies of three conifers and conducted growth-climate relationship analyses to reveal the influence of climate factors on tree radial growth.
        Result  The mean sensitivity and signal-to-noise ratio of the three tree species were 0.16−0.27 and 6.14−19.98. Among them, A. nephrolepis contained more climate information, and its average sensitivity, standard deviation, signal-to-noise ratio, and overall sample representativeness were all higher than those of P. jezoensis and P. koraiensis. The average temperature in September of the previous year and the minimum temperature in July of the previous year and the current year were significantly positively correlated with the radial growth of three tree species (P < 0.05), indicating that climate had a similar effect on the ring width growth in the same area. The responses had a certain similarity. However, the response of radial growth of the three conifers to climate change was different too. The radial growth of A. nephrolepis was affected by the combined effect of temperature and precipitation, while the radial growth of P. jezoensis and P. koraiensis was mainly restricted by temperature. After abrupt temperature rising (1985), the radial growth of the three tree species had an enhanced correlation with temperature but a weakened correlation with precipitation, and the radial growth of trees increased significantly.
        Conclusion  The response of radial growth of different tree species to climate change has both similarities and differences, The increase in temperature may still be within the critical threshold of radial growth of A. nephrolepis, P. jezoensis and P. koraiensis, so climate warming promotes their radial growth.

       

    /

    返回文章
    返回