Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China
-
摘要:
目的 气候因子影响树木生长发育,对树木径向生长与气候因子之间的关系进行分析,以探究长白山地区云冷杉针阔混交林森林生态系统对气候变化的响应,为该地区天然林经营管理提供科学依据。 方法 本研究于2019年在吉林省汪清县云冷杉针阔混交林中对常见针叶树臭冷杉、鱼鳞云杉和红松进行样芯的采集,用树木年轮学方法建立标准年表,进而分析比较不同树种生长与气候因子的关系。 结果 该地区树木标准年表的平均敏感度和信噪比分别为0.16 ~ 0.27、6.14 ~ 19.98,其中臭冷杉包含更多的气候信息,其平均敏感度、标准差、信噪比和样本总体代表性等统计量均高于鱼鳞云杉和红松。上年9月平均气温及上年、当年7月最低气温与臭冷杉、鱼鳞云杉和红松径向生长均呈显著正相关(P < 0.05),这表明同一区域不同树种径向生长对气候的响应具有一定的相似性。3种树种径向生长对气候变化的响应也存在差异,臭冷杉径向生长受气温和降水的共同作用,鱼鳞云杉和红松径向生长主要受气温限制。升温突变(1985年)后,臭冷杉、鱼鳞云杉和红松径向生长与气温相关性增强但与降水量相关性减弱,且升温后树木径向生长有显著上升趋势。 结论 不同树种径向生长对气候变化的响应既有共性又存在差异,目前升温可能仍在臭冷杉、鱼鳞云杉和红松径向生长的临界阈值内,促进其径向生长。 Abstract:Objective Climate factors affect tree growth and development, and the relationship between tree radial growth and climate factors was analyzed to explore the response of spruce-fir coniferous and broadleaved mixed forest ecosystem to climate change in Changbai Mountain of northeastern China, so as to provide scientific basis for natural forest management in this area. Method In this study, we used dendrochronological techniques to sample tree-ring cores of Abies nephrolepis, Picea jezoensis and Pinus koraiensis, which were the common tree species in the spruce-fir mixed stand in Wangqing County, Jilin Province of northeastern China in 2019. We developed tree-ring width chronologies of three conifers and conducted growth-climate relationship analyses to reveal the influence of climate factors on tree radial growth. Result The mean sensitivity and signal-to-noise ratio of the three tree species were 0.16−0.27 and 6.14−19.98. Among them, A. nephrolepis contained more climate information, and its average sensitivity, standard deviation, signal-to-noise ratio, and overall sample representativeness were all higher than those of P. jezoensis and P. koraiensis. The average temperature in September of the previous year and the minimum temperature in July of the previous year and the current year were significantly positively correlated with the radial growth of three tree species (P < 0.05), indicating that climate had a similar effect on the ring width growth in the same area. The responses had a certain similarity. However, the response of radial growth of the three conifers to climate change was different too. The radial growth of A. nephrolepis was affected by the combined effect of temperature and precipitation, while the radial growth of P. jezoensis and P. koraiensis was mainly restricted by temperature. After abrupt temperature rising (1985), the radial growth of the three tree species had an enhanced correlation with temperature but a weakened correlation with precipitation, and the radial growth of trees increased significantly. Conclusion The response of radial growth of different tree species to climate change has both similarities and differences, The increase in temperature may still be within the critical threshold of radial growth of A. nephrolepis, P. jezoensis and P. koraiensis, so climate warming promotes their radial growth. -
Key words:
- Changbai Mountain /
- tree ring /
- climate change /
- growth-climate relationship /
- radial growth
-
表 1 标准年表的统计特征及公共区间分析
Table 1. Statistical characteristics and common interval analysis of the standard chronology
统计特征 Statistic characteristics 臭冷杉 Abies nephrolepis 鱼鳞云杉 Picea jezoensis 红松 Pinus koraiensis 时间跨度 Time span 1900—2018 1926—2018 1898—2018 平均值 Mean value 0.93 0.96 0.95 平均敏感度 Mean sensitivity (SM) 0.27 0.16 0.22 标准差 Standard deviation (SD) 0.40 0.38 0.30 一阶自相关系数 First-order autocorrelation coefficient (AC) 0.81 0.86 0.81 公共区间 Common interval 1969—2011 1969—2011 1959—2013 信噪比 Signal-to-noise ratio (RSN) 19.98 6.14 11.21 样本间相关系数 Correlation coefficient between samples (Rbar) 0.40 0.31 0.32 样本总体代表性 Sample population representativeness (SEP) 0.95 0.86 0.92 -
[1] 2019中国气候变化海洋蓝皮书发布[J]. 中国环境监察, 2019(10): 4.China ocean blue book on climate change released 2019 [J]. China Environment Supervision, 2019(10): 4. [2] 赵秀兰. 近50年中国东北地区气候变化对农业的影响[J]. 东北农业大学学报, 2010, 41(9): 144−149. doi: 10.3969/j.issn.1005-9369.2010.09.027Zhao X L. Influence of climate change on agri-culture in Northeast China in recent 50 years[J]. Journal of Northeast Agricultural University, 2010, 41(9): 144−149. doi: 10.3969/j.issn.1005-9369.2010.09.027 [3] 邵雪梅, 吴祥定. 利用树轮资料重建长白山区过去气候变化[J]. 第四纪研究, 1997, 17(1): 76−85. doi: 10.3321/j.issn:1001-7410.1997.01.010Shao X M, Wu X D. Reconstruction of past climate change in Changbai Mountain using tree-ring data[J]. Quaternary Sciences, 1997, 17(1): 76−85. doi: 10.3321/j.issn:1001-7410.1997.01.010 [4] Duchesne L, D’Orangeville L, Oulmet R, et al. Extracting coherent tree-ring climatic signals across spatial scales from extensive forest inventory data[J/OL]. PLoS One, 2017, 12: e189444[2021−10−19]. https://doi.org/10.1371/journal.pone.0189444. [5] Fritts H C. Growth-rings of trees: their correlation with climate[J]. Science, 1966, 154: 973−979. doi: 10.1126/science.154.3752.973 [6] 吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.Wu X D. Tree rings and climate change[M]. Beijing: China Meteorological Press, 1990. [7] Smerdon J E, Kaufman D S, Asrat A, et al. Continental-scale temperature variability during the past two millennia[J/OL]. Nature Geoscience, 2013, 10.1038[2021−10−18]. https://doi.org/10.1038/NGEO1797. [8] Jiang Y, Yuan X, Zhang J, et al. Reconstruction of June–July temperatures based on a 233 year tree-ring of Picea jezoensis var. microsperma[J/OL]. Forests, 2019, 10: 416[2021−10−15]. https://doi.org/10.3390/f10050416. [9] 高露双, 王晓明, 赵秀海. 长白山阔叶红松林共存树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2013, 35(3): 24−31.Gao L S, Wang X M, Zhao X H. Growth response of two coexisting species to climate change in broadleaved Korean pine forests in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(3): 24−31. [10] 王守乐, 王晓雨, 盖学瑞, 等. 长白山落叶松与鱼鳞云杉生长−气候关系的种间差异[J]. 应用生态学报, 2019, 30(5): 1529−1535.Wang S L, Wang X Y, Gai X R, et al. Interspecific difference of relationship between radial growth and climate factor for Larix olgensis and Picea jezoensis var. komarovii in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1529−1535. [11] 于健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应[J]. 应用生态学报, 2021, 32(1): 46−56. doi: 10.13287/j.1001-9332.202101.004Yu J, Chen J J, Meng S W, et al. Response of radial growth of Pinus sylvestriformis and Picea jezoensis to climate warming in the ecotone of Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 46−56. doi: 10.13287/j.1001-9332.202101.004 [12] 陈亚南, 杨华, 马士友, 等. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 2015, 37(12): 48−58.Chen Y N, Yang H, Ma S Y, et al. Spatial structure diversity of semi-natural and plantation stands of Larix gmelinii in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12): 48−58. [13] 李波. 气候敏感的云冷杉林进界模型的研究[D]. 北京: 北京林业大学, 2018.Li B. Modelling tree recruitment in relation to climate in spruce-fir forests[D]. Beijing: Beijing Forestry University, 2018. [14] 贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6): 1916−1922. doi: 10.13287/j.1001-9332.202006.004He D N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1916−1922. doi: 10.13287/j.1001-9332.202006.004 [15] Holmes R L. Computer-assisted 1uality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43: 51−67. [16] Bunn A G. A dendrochronology program library in R (dplR)[J]. Dendrochronologia, 2008, 26: 115−124. doi: 10.1016/j.dendro.2008.01.002 [17] Wigley T, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23: 201−213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 [18] Kendall M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25: 86−91. [19] Fritts H C. Tree rings and climate [M]. Pittsburgh: Academic Press, 1972. [20] Biondi F, Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies[J]. Computers & Geosciences, 2004, 30: 303−311. [21] Fkiri S, Guibal F, Fady B, et al. Tree-rings to climate relationships in nineteen provenances of four black pines sub-species (Pinus nigra Arn.) growing in a common garden from northwest Tunisia[J]. Dendrochronologia, 2018, 50: 44−51. [22] 高露双, 王晓明, 赵秀海. 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应[J]. 植物生态学报, 2011, 35(1): 27−34. doi: 10.3724/SP.J.1258.2011.00027Gao L S, Wang X M, Zhao X H. Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 27−34. doi: 10.3724/SP.J.1258.2011.00027 [23] 杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10): 1−14.Yang J W, Zhang Q L, Song W Q, et al. Response difference of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 1−14. [24] Andreu L, Gutierreze E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests[J/OL]. Global Change Biology, 2007: 1003002105[2021−12−18]. https://doi.org/10.1111/j.1365-2486.2007.01322.x. [25] 佘春燕. 喀纳斯自然保护区主要树种蒸腾耗水特性研究[D]. 合肥: 安徽农业大学, 2016.She C Y. Research on transpiration water consumption of main tree species in the Kanas National Nature Reserve[D]. Hefei: Anhui Agricultural University, 2016. [26] Peterson D W, Peterson D L. Effects of climate on radial growth of subalpine conifers in the North Cascade Mountains[J]. Canadian Journal of Forest Research, 1994, 24(9): 1921−1932. doi: 10.1139/x94-247 [27] 曹受金, 曹福祥, 项文化. 利用树木年轮研究湖南炎陵气温变化情况−1840年以来5—7月份气温变化情况重建[J]. 中南林业科技大学学报, 2012, 32(4): 10−14. doi: 10.3969/j.issn.1673-923X.2012.04.003Cao S J, Cao F X, Xiang W H. Tree-ring-based reconstruction of temperature variations from May to July since 1840 in Yanling County of Hunan Province, China[J]. Journal of Central South University of Forestry & Technology, 2012, 32(4): 10−14. doi: 10.3969/j.issn.1673-923X.2012.04.003 [28] Lyu S, Wang X C, Zhang Y D, et al. Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China[J/OL]. Dendrochronologia, 2017: S1720392102[2021−12−17]. https://doi.org/10.1016/j.dendro.2017.08.002. [29] 韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520. [30] 张萌, 石松林, 石春明, 等. 川西高原4种典型针叶树径向生长对气候因子的响应[J]. 生态学杂志, 2021, 40(7): 1947−1957. doi: 10.13292/j.1000-4890.202107.015Zhang M, Shi S L, Shi C M, et al. Radial growth responses of four typical coniferous species to climatic factors in the western Sichuan Plateau, China[J]. Chinese Journal of Ecology, 2021, 40(7): 1947−1957. doi: 10.13292/j.1000-4890.202107.015 [31] 侯鑫源, 史江峰, 李玲玲, 等. 湖北神农架巴山冷杉径向生长对气候的响应[J]. 应用生态学报, 2015, 26(3): 689−696.Hou X Y, Shi J F, Li L L, et al. Growth response of Abies fargesii to climate in Shennongjia Mount of Hubei Province, Southeastern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 689−696. [32] 于健, 刘琪璟, 周光, 等. 小兴安岭红松和鱼鳞云杉径向生长对气候变化的响应[J]. 应用生态学报, 2017, 28(11): 3451−3460.Yu J, Liu Q J, Zhou G, et al. Response of radial growth of Pinus koraiensis and Picea jezoensis to climate change in Xiaoxing’anling Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3451−3460. [33] Yu D P, Gu H Y, Wang J D, et al. Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain[J]. Journal of Forestry Research, 2005, 16: 187−192. doi: 10.1007/BF02856812 [34] Zhu L J, Cooper D J, Yang J W, et al. Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China[J]. Dendrochronologia, 2018, 50: 52−63. doi: 10.1016/j.dendro.2018.05.002 [35] Jacoby G C, D’Arrigo R D. Tree ring width and density evidence of climatic and potential forest change in Alaska[J]. Global Biogeochemical Cycles, 1995, 9: 227−234. doi: 10.1029/95GB00321 -