Effects of artificial promotion measures on seed germination and early growth of Larix principis-rupprechtii
-
摘要:目的 为了解决塞罕坝地区华北落叶松人工林林下更新困难的问题,实现人工林近自然经营,开展人工促进措施(以下简称促更)对林下更新效果的研究十分必要。方法 以塞罕坝地区31年生华北落叶松人工林为研究对象,采用裂区设计等试验方法,从林分密度、枯落物处理方式、种子来源以及种子处理方式这4个方面进行对比试验,探讨林下更新对不同促更措施的响应。结果 处理后的华北落叶松林下均能更新,更新频率为100%左右。同时期不同密度的幼苗地径、苗高在生长末期的差异较小(P > 0.05),而幼苗地径在2年间存在显著性差异(P < 0.05)。不同处理间生长季成活率无显著差异(P > 0.05),整体维持在43.68% ~ 87.87%范围内;而更新密度、播种发芽率在不同枯落物处理方式间差异显著(P < 0.05)。人工播种时,以沟状清理(SC)的更新密度最大,为8 633.33 株/hm2,该处理下种子发芽率最高,为1.79%。此外,更新动态因播种时间而发生改变。自然下种时,处理间的更新动态相对一致,7月底为幼苗萌发高峰期;6月中旬人工播种时,只有SC处理的种子在7月底适时大量萌发。结论 清理枯落物层和播种对于促进华北落叶松林下更新是有效的。促更措施主要是通过影响幼苗数量而非幼苗品质来影响更新效果。播种时间和种子处理方式会对幼苗的更新动态产生影响,6月中旬人工播种无处理的种子会造成当年更新动态的延迟。本试验条件下最佳促更措施:一是在枯落物沟状清理后6月中旬前进行人工播种;二是全面清理枯落物,同时在前一年度的11月初人工播种。Abstract:Objective In order to solve the problem of understory regeneration of Larix principis-rupprechtii plantation in Saihanba Area of Hebei Province, northern China and realize the near-natural management of plantation, it is necessary to study the effects of artificial promotion measures (hereinafter referred to as “promotion”) on understory regeneration.Method This study took 31 years old L. principis-rupprechtii plantation in Saihanba Area as the research object, we adopted the split plot design and other methods. The experiments of promotion were carried out from four aspects: stand density, litter treatment, seed source and seed treatment. This paper discusses the response of understory regeneration to different promotion measures.Result The results showed that the regeneration can appear among the treatments and the regeneration frequency was about 100%. The ground diameter and seedling height of seedlings with different densities at the same period had little difference at the end of growth (P > 0.05), while the ground diameter of seedlings had significant differences in two years (P < 0.05). There was no significant difference in survival rate between different treatments (P >0.05), and the overall survival rate remained in the range of 43.68%−87.87%. However, the regeneration density and germination rate of seeds were significantly different among litter treatments (P < 0.05). The regeneration density of 8 633.33 plant/ha of sulcate cleaning (SC) was the highest under artificial sowing, and seed germination rate of 1.79% was also the highest. In addition, the dynamic of regeneration changed with sowing time. When the seeds were sown naturally, the regeneration dynamics among the treatments were relatively consistent, and the peak of seedling germination was at the end of July. When the seeds were sown artificially in the middle of June, only the seeds in SC treatment germinated in large quantities at the end of July.Conclusion The artificial interference with litter layer and seeding are effective to promote the regeneration of L. principis-rupprechtii plantations. The promotion measures mainly affect the effects of regeneration by affecting the number of seedlings rather than the seedling quality. The sowing time and seed treatments affect the renewal dynamics of seedlings, and artificial sowing of untreated seeds in mid-June can cause the delay of renewal dynamics in the current years. The best way to promote the regeneration of L. principis-rupprechtii plantations is as follows: the first way is to sulcate clean the litter layer and spread the seeds manually before mid-June, the second way is comprehensively clean the litter layer and spread the seeds in early November of the previous year.
-
-
图 1 裂区设计示意图
CK. 对照;CC. 全面清理;BC. 带状清理;SC. 沟状清理。图中4类枯落物处理方式在副区中是随机排列的,林分密度由小到大分别表示为T1、T2、T3。下同。CK, control; CC, completely cleaning; BC, banding cleaning ; SC, sulcate cleaning. The order of 4 litter treatments is random in the subplot, and stand densities from small to large are expressed as T1, T2, T3, respectively. The same below.
Figure 1. Schematic diagram of slip plot design
图 3 幼苗地径、苗高在不同时期的比较
不同大写字母表示密度间的差异显著(P < 0.05),不同小写字母表示年份间的差异显著(P < 0.05)。Different capital letters indicate significant difference between varied densities (P < 0.05), and different small letters indicate significant difference between varied years (P < 0.05).
Figure 3. Comparison of seedling ground diameter and seedling height in different periods
图 4 2019和2020年不同林分密度下不同枯落物处理方式的更新密度
不同大写字母表示枯落物处理方式间的差异显著(P < 0.05),不同小写字母表示密度间的差异显著(P < 0.05)。图6同。Different capital letters indicate the difference between different litter treatment modes (P < 0.05), and different small letters indicate the difference between varied stand densities (P < 0.05). The same as figure 6.
Figure 4. Regenaration density of different litter treatment modes under varied stand densities in 2019 and 2020
表 1 固定试验样地基本林分信息
Table 1 Basic stand information of fixed experimental sample plots
样地号
Sample plot No.平均密度/(株ˑhm−2)
Average density/(treeˑha−1)平均胸径
Average DBH/cm平均树高
Average tree height/m平均冠幅
Average crown width/m郁闭度
Canopy density海拔
Altitude/m立地类型
Site type土壤类型
Soil type土层状况
Soil conditionT1 1 650 ± 78 14.76 ± 2.73 13.62 ± 1.58 2.45 ± 0.56 0.52 1 669 曼甸
Plateau灰色森林土
Grey forest soil厚土
Thick soilT2 2 250 ± 125 13.29 ± 3.16 12.64 ± 1.96 2.21 ± 0.71 0.62 T3 2 850 ± 209 12.23 ± 3.57 12.71 ± 2.15 1.90 ± 0.83 0.67 TN 1 375 ± 65 14.92 ± 2.97 12.40 ± 1.76 2.59 ± 0.69 0.49 表 2 华北落叶松良种基本参数
Table 2 Basic parameters of high quality seeds of L. principis-rupprechtii
平均粒径
Average grain diameter/mm千粒质量
Thousand-grain mass/g发芽率
Germination rate/%生活力
Seed viability/%1.56 ± 0.14 5.90 ± 0.19 88.89 ± 4.16 97.78 ± 1.57 表 3 裂区设计的样地处理详情
Table 3 Treatment details of fixed experimental sample plots in slip plot design
林分密度
Stand density枯落物处理方式
Litter treatment method枯落物清理面积
Litter clearing area/m2播种种子密度
Seeding density播种种子质量
Quality of seed propagation播散量
Seeding amount/(g·m−2)播种密度/(粒·m−2)
Seeding density/(cap·m−2)各副区质量
Mass of each
subplot/g各副区粒数
Grain number of
each subplotT1 CK 0 1.50 254.15 150.00 25 415.00 CC 100 150.00 25 415.00 BC 50 75.00 12 707.50 SC 19 28.50 4 828.85 T2 CK 0 1.50 254.15 150.00 25 415.00 CC 100 150.00 25 415.00 BC 50 75.00 12 707.50 SC 19 28.50 4 828.85 T3 CK 0 1.50 254.15 150.00 25 415.00 CC 100 150.00 25 415.00 BC 50 75.00 12 707.50 SC 19 28.50 4 828.85 表 4 4类种子处理方式
Table 4 4 kinds of seed treatment methods
处理
Treatment播种时间
Sowing time越冬保存条件
Wintering preservation condition雪藏方式
Snow storage mode播种前是否催芽
Whether to promote germination before sowingST1 2019年11月上旬
Early November, 2019塞罕坝室外环境
Outdoor environment of Saihanba Area室外天然雪藏
Natural snow stratification in the outdoor environment否 No ST2 2020年6月中旬
Mid-June, 2020塞罕坝室内环境
Indoor environment of Saihanba Area不雪藏
No snow stratification否 No ST3 2020年6月中旬
Mid-June, 2020塞罕坝室内环境
Indoor environment of Saihanba Area不雪藏
No snow stratification是 Yes ST4 2020年6月中旬
Mid-June, 2020塞罕坝室内环境
Indoor environment of Saihanba Area室内人工雪藏
Artificial snow storage in the indoor environment是 Yes 表 5 2019年和2020年华北落叶松林各级幼苗的更新频率
Table 5 Regeneration frequency of seedlings at various levels in L. principis-rupprechtii plantations in 2019 and 2020
林分
密度
Stand
density枯落物
处理方式
Litter treatment mode2019 2020 1a 更新频率
Regeneration
frequency/%2a 更新频率
Regeneration
frequency/%3a+ 更新频率
Regeneration
frequency/%整体更新频率 Overall
regeneration
frequency/%1a 更新频率
Regeneration
frequency/%2a 更新频率
Regeneration
frequency/%3a+ 更新频率 Regeneration
frequency/%整体更新频率 Overall
regeneration
frequency/%T1 CK √ 100 0 0 100 √ 100 √ 50 0 100 CC √ √ BC √ √ √ SC √ √ T2 CK √ 75 √ 25 0 75 √ 100 √ 25 0 100 CC √ BC √ √ SC √ √ T3 CK √ 100 √ 25 0 100 √ 100 25 √ 25 100 CC √ √ BC √ √ √ SC √ √ 注:1a. 1年生幼苗;2a. 2年生幼苗;3a+. 3年生及以上幼苗。存在更新的样地标注符号“√”,没有更新的样地不作任何标注。幼树更新频率均为0,故在表中省略。Notes: 1a means 1-year-old seedlings; 2a means 2-year-old seedlings; 3a+ means more than 3 years old seedlings. There is a symbol “√” for the regenerated sample plots; there is no mark for the non-regenerated sample plots, and the regeneration frequency of young trees in all sample plots is 0, it is omitted in the above table. 表 6 2019年和2020年的华北落叶松更新等级评定
Table 6 Evaluation of regeneration levels of L. principis-rupprechtii in 2019 and 2020
林分密度
Stand
density枯落物处理方式
Litter treatment mode2019 2020 更新密度/(株ˑhm−2)
Regeneration density/(treeˑha−1)更新等级
Regeneration grade更新密度/(株ˑhm−2)
Regeneration density/(treeˑha−1)更新等级
Regeneration gradeT1 CK 266.67 ± 47.14a 不良 Bad 1 933.33 ± 758.65a 不良/中等 Bad or medium CC 66.67 ± 94.28b 不良 Bad 5 700.00 ± 1 489.97a 良好 Good BC 300.00 ± 216.02b 不良 Bad 7 466.67 ± 1 901.46a 良好 Good SC 100.00 ± 141.42a 不良 Bad 7 200.00 ± 3 706.75a 中等/良好 Medium or good T2 CK 366.67 ± 449.69b 不良 Bad 1 833.33 ± 205.48a 不良/中等 Bad or medium CC 0.00 ± 0.00b 不良 Bad 4 300.00 ± 565.69a 中等/良好 Medium or good BC 100.00 ± 81.65b 不良 Bad 6 000.00 ± 648.07a 良好 Good SC 100.00 ± 141.42a 不良 Bad 11 100.00 ± 5 114.68a 良好 Good T3 CK 566.67 ± 205.48b 不良 Bad 2 733.33 ± 449.69a 中等 Medium CC 33.33 ± 47.14b 不良 Bad 5 300.00 ± 1 737.81a 中等/良好 Medium or good BC 66.67 ± 94.28a 不良 Bad 6 433.33 ± 3 492.21a 中等/良好 Medium or good SC 100.00 ± 141.42b 不良 Bad 7 600.00 ± 2 698.15a 良好 Good 表 7 2019年和2020年不同林分密度下幼苗生长季成活率比较
Table 7 Comparison of survival rate of seedlings in growing season under different standdensities in 2019 and 2020
林分密度
Stand density生长季成活率
Survival rate in growing season/%2019 2020 T1 70.28 ± 18.57Aa 73.93 ± 8.54Aa T2 77.22 ± 9.65Aa 62.11 ± 14.97Aa T3 49.65 ± 37.12Aa 62.26 ± 7.67Aa 注:大写字母表示密度间的差异,小写字母表示年份间的差异。字母不同表示差异显著,差异显著性水平0.05。Notes: capital letters indicate the difference between varied densities, and small letters indicate the difference between varied years. Different letters mean significant difference, and the difference significance level is 0.05. 表 8 2020年不同林分密度和不同处理方式下幼苗生长季成活率比较
Table 8 Comparison of survival rate of seedlings in growing season of different litter treatment modes under varied stand densities in 2020
枯落物处理方式
Litter treatment mode林分密度 Stand density T1 T2 T3 CK 68.25 ± 27.31Aa 57.30 ± 22.44Aa 72.25 ± 10.81Aa CC 65.85 ± 9.16Aa 85.22 ± 16.92Aa 60.50 ± 2.00Aa BC 87.87 ± 1.04Aa 62.22 ± 10.80Aa 65.17 ± 18.27Aa SC 73.74 ± 5.18Aa 43.68 ± 8.25Aa 51.12 ± 16.89Aa 注:大写字母表示枯落物处理方式间的差异,小写字母表示密度间的差异。字母不同表示差异显著,差异显著性水平0.05。下同。Notes: capital letters indicate the difference between varied litter treatments, and small letters indicate the difference between varied stand densities. Different letters mean significant difference, the difference significance level is 0.05. The same below. -
[1] 高润梅, 石晓东, 郭跃东, 等. 文峪河上游华北落叶松林的种子雨、种子库与幼苗更新[J]. 生态学报, 2015, 35(11): 3588−3597. Gao R M, Shi X D, Guo Y D, et al. Seed rain, soil seed bank and regeneration of Larix principis-rupprechtii stands in the upper reaches of Wenyuhe[J]. Acta Ecologica Sinica, 2015, 35(11): 3588−3597.
[2] 孙国龙, 李文博, 黄选瑞, 等. 华北落叶松人工林天然更新及与土壤因子的关系[J]. 安徽农业大学学报, 2017, 44(6): 1047−1051. doi: 10.13610/j.cnki.1672-352x.20171214.026 Sun G L, Li W B, Huang X R, et al. Natural regeneration of the Larix principis-rupprechtii plantation and its relation to the soil factors[J]. Journal of Anhui Agricultural University, 2017, 44(6): 1047−1051. doi: 10.13610/j.cnki.1672-352x.20171214.026
[3] 高润梅, 郭晋平, 郭跃东. 山西文峪河上游河岸林的土壤种子库与树种更新特征[J]. 植物科学学报, 2011, 29(5): 580−588. Gao R M, Guo J P, Guo Y D. Characteristics of soil seed bank and tree regenerations of riparian forests in the upper reach of Wenyuhe Watershed in Shanxi Province[J]. Plant Science Journal, 2011, 29(5): 580−588.
[4] 董伯骞, 黄选瑞, 徐学华, 等. 退化华北落叶松人工林林隙更新特征[J]. 中南林业科技大学学报, 2014, 34(8): 1−8. Dong B Q, Huang X R, Xu X H, et al. Recruitment characteristics of gaps in degraded Larix pricipis-rupprechtii plantation[J]. Journal of Central South University of Forestry & Technology, 2014, 34(8): 1−8.
[5] 罗梅, 郑小贤. 金沟岭林场落叶松人工林天然更新动态研究[J]. 中南林业科技大学学报, 2016, 36(9): 7−11. Luo M, Zheng X X. Dynamic study of natural regeneration of Larix olgensis plantation in Jingouling Forest Farm[J]. Journal of Central South University of Forestry & Technology, 2016, 36(9): 7−11.
[6] 王雯雯, 欧景莉, 刘晓, 等. 秦岭华北落叶松林乔木种群结构与更新[J]. 生态科学, 2011, 30(6): 618−623. doi: 10.3969/j.issn.1008-8873.2011.06.010 Wang W W, Ou J L, Liu X, et al. A survey on regeneration of trees in Larix pricipis-rupprechtii forest[J]. Ecological Science, 2011, 30(6): 618−623. doi: 10.3969/j.issn.1008-8873.2011.06.010
[7] 程中倩, 吴水荣, 刘世荣. 我国森林天然更新及人工促进天然更新的现状与展望[J]. 山西农业大学学报(自然科学版), 2018, 38(10): 71−76. doi: 10.13842/j.cnki.issn1671-8151.201807003 Cheng Z Q, Wu S R, Liu S R. Current status and future perspectives of both natural and assisted natural forest regeneration in China[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(10): 71−76. doi: 10.13842/j.cnki.issn1671-8151.201807003
[8] 连相汝, 鲁法典, 刘成杰, 等. 我国人工林天然更新研究进展[J]. 世界林业研究, 2013, 26(6): 52−58. doi: 10.13348/j.cnki.sjlyyj.2013.06.015 Lian X R, Lu F D, Liu C J, et al. Research progress of natural regeneration of forest plantation in China[J]. World Forestry Research, 2013, 26(6): 52−58. doi: 10.13348/j.cnki.sjlyyj.2013.06.015
[9] 姜祛寒. 辽西油松人工促进天然更新技术模式研究[D]. 沈阳: 沈阳农业大学, 2018. Jiang Q H. Research on the technology of artificial promotion of the natural regeneration for Pinus tabuliformis in western Liaoning[D]. Shenyang: Shenyang Agricultural University, 2018.
[10] 刘铁岩, 毕君, 王超, 等. 冀北山地油松人工林天然更新研究[J]. 中南林业科技大学学报, 2017, 37(7): 55−58, 65. doi: 10.14067/j.cnki.1673-923x.2017.07.008 Liu T Y, Bi J, Wang C, et al. Study on the natural regeneration of Pinus tabuliformis plantation in the northern mountain of Hebei Province[J]. Journal of Central South University of Forestry & Technology, 2017, 37(7): 55−58, 65. doi: 10.14067/j.cnki.1673-923x.2017.07.008
[11] 赵总, 贾宏炎, 蔡道雄, 等. 红椎天然更新及其影响因子研究[J]. 北京林业大学学报, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190 Zhao Z, Jia H Y, Cai D X, et al. Natural regeneration and its influencing factors of Castanopsis hystrix[J]. Journal of Beijing Forestry University, 2018, 40(11): 76−83. doi: 10.13332/j.1000-1522.20180190
[12] 李玉航, 袁春良, 刘淑玲, 等. 章古台固沙林更新造林中天然更新的结合与利用[J]. 防护林科技, 2008(5): 35−37. doi: 10.13601/j.issn.1005-5215.2008.05.028 Li Y H, Yuan C L, Liu S L, et al. Combination & utilization of natural regeneration of regeneration planting on fixing sand forest in Zhanggutai Region[J]. Protection Forest Science and Technology, 2008(5): 35−37. doi: 10.13601/j.issn.1005-5215.2008.05.028
[13] 唐继新, 贾宏炎, 曾冀, 等. 南亚热带米老排人工林皆伐迹地天然更新研究[J]. 中南林业科技大学学报, 2018, 38(3): 59−63. doi: 10.14067/j.cnki.1673-923x.2018.03.010 Tang J X, Jia H Y, Zeng J, et al. Natural regeneration on clearcut land of Mytilaria laosensis plantation in south subtropical area of China[J]. Journal of Central South University of Forestry & Technology, 2018, 38(3): 59−63. doi: 10.14067/j.cnki.1673-923x.2018.03.010
[14] 陈永富. 森林天然更新障碍机制研究进展[J]. 世界林业研究, 2012, 25(2): 41−45. doi: 10.13348/j.cnki.sjlyyj.2012.02.013 Chen Y F. Research progress of natural regeneration barrier of forest[J]. World Forestry Research, 2012, 25(2): 41−45. doi: 10.13348/j.cnki.sjlyyj.2012.02.013
[15] 李小双, 彭明春, 党承林. 植物自然更新研究进展[J]. 生态学杂志, 2007, 26(12): 2081−2088. doi: 10.13292/j.1000-4890.2007.0364 Li X S, Peng M C, Dang C L. Research progress on natural regeneration of plants[J]. Chinese Journal of Ecology, 2007, 26(12): 2081−2088. doi: 10.13292/j.1000-4890.2007.0364
[16] 朱教君, 刘足根, 王贺新. 辽东山区长白落叶松人工林天然更新障碍分析[J]. 应用生态学报, 2008, 19(4): 695−703. doi: 10.13287/j.1001-9332.2008.0213 Zhu J J, Liu Z G, Wang H X. Obstacles for natural regeneration of Larix olgensis plantations in montane regions of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 695−703. doi: 10.13287/j.1001-9332.2008.0213
[17] 张树梓, 李梅, 张树彬, 等. 塞罕坝华北落叶松人工林天然更新影响因子[J]. 生态学报, 2015, 35(16): 5403−5411. Zhang S Z, Li M, Zhang S B, et al. Factors affecting natural regeneration of Larix principis-rupprechtii plantations in Saihanba of Hebei, China[J]. Acta Ecologica Sinica, 2015, 35(16): 5403−5411.
[18] 张小鹏, 王得祥, 杜江涛, 等. 微生境对华山松人工林天然更新的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(1): 39−45. Zhang X P, Wang D X, Du J T, et al. Effects of microhabitat on natural regeneration of artificial Pinus armandii plantation[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(1): 39−45.
[19] 喻方圆, 周景莉. 林木种苗质量检验技术[M]. 北京: 中国林业出版社, 2008: 20−38. Yu F Y, Zhou J L. Quality inspection techniques of forest tree seedlings[M]. Beijing: China Forestry Publishing House, 2008: 20−38.
[20] 刘足根, 朱教君, 袁小兰, 等. 辽东山区长白落叶松天然更新调查[J]. 林业科学, 2007, 43(1): 42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007 Liu Z G, Zhu J J, Yuan X L, et al. Investigation and analysis of the natural regeneration of Larix olgensis in mountain regions of eastern Liaoning Province, China[J]. Scientia Silvae Sinicae, 2007, 43(1): 42−49. doi: 10.3321/j.issn:1001-7488.2007.01.007
[21] 杨秀清. 影响关帝山华北落叶松天然更新与幼苗存活的微生境变量分析[J]. 山西农业大学学报(自然科学版), 2010, 30(6): 542−547. doi: 10.13842/j.cnki.issn1671-8151.2010.06.017 Yang X Q. Analysis on micro-habitat variables affecting natural regeneration and survial of Larix principis-rupprechtii seedlings in Guandi Mountain[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2010, 30(6): 542−547. doi: 10.13842/j.cnki.issn1671-8151.2010.06.017
[22] Zerbe S. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations[J]. Forest Ecology and Management, 2002, 167(1−3): 27−42. doi: 10.1016/S0378-1127(01)00686-7
[23] 崔丽红, 孙海静, 张曼, 等. 华北落叶松和油松混交林林隙特征及更新研究[J]. 西北林学院学报, 2015, 30(1): 14−19. doi: 10.3969/j.issn.1001-7461.2015.01.03 Cui L H, Sun H J, Zhang M, et al. Forest gap characteristics and regeneration of Larix principis-rupprechtii and Pinus tabulaeformis mixed forest[J]. Journal of Northwest Forestry University, 2015, 30(1): 14−19. doi: 10.3969/j.issn.1001-7461.2015.01.03
[24] 张树梓. 塞罕坝华北落叶松人工林种群更新特征及影响因素[D]. 保定: 河北农业大学, 2014. Zhang S Z. Analysis on regeneration characteristics and factors affecting natural regeneration of Larix principis-rupprechtii plantations in Saihanba Forest Farm [D]. Baoding: Heibei Agricultural University, 2014.
[25] 郭晋平, 李海波, 刘宁, 等. 华北落叶松和白杄幼苗对光照和竞争响应的差异比较[J]. 林业科学, 2009, 45(2): 53−59. doi: 10.3321/j.issn:1001-7488.2009.02.010 Guo J P, Li H B, Liu N, et al. Comparison of responses of Larix principis-rupprechtii and Picea meyeri seedling growth to light availability and planting density under controlled environment[J]. Scientia Silvae Sinicae, 2009, 45(2): 53−59. doi: 10.3321/j.issn:1001-7488.2009.02.010
[26] Aussenac G. Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture[J]. Annals of Forest Science, 2000, 57(3): 287−301. doi: 10.1051/forest:2000119
[27] 李进, 石晓东, 高润梅, 等. 华北落叶松天然次生林更新及影响因素[J]. 森林与环境学报, 2020, 40(6): 588−596. Li J, Shi X D, Gao R M, et al. Regeneration and affecting factors of Larix principis-rupprechtii natural secondary forests[J]. Journal of Forest and Environment, 2020, 40(6): 588−596.
[28] 刘忠玲, 刘建明, 胡伟, 等. 不同密度胡桃楸次生林枯落物和土壤持水特性的研究[J]. 森林工程, 2021, 37(3): 52−59,66. doi: 10.3969/j.issn.1006-8023.2021.03.007 Liu Z L, Liu J M, Hu W, et al. Water-holding characteristics of litter and soil of Juglans mandshurica natural secondary forest with different densities[J]. Forestry Engineering, 2021, 37(3): 52−59,66. doi: 10.3969/j.issn.1006-8023.2021.03.007
[29] 梁文俊. 华北土石山区典型林分健康经营技术基础研究[D]. 北京: 北京林业大学, 2013. Liang W J. Basic research on typical forest health management technology in rocky mountain area of northern China[D]. Beijing: Beijing Forestry University, 2013.
[30] Vitale M, Savi F, Baldantoni D, et al. Modeling of early stage litter decomposition in Mediterranean mixed forests: functional aspects affected by local climate[J]. iForest-Biogeosciences and Forestry, 2014, 8(4): 517−525.
[31] 罗梅, 郑小贤. 北京十三陵林场人工侧柏林天然更新研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(12): 73−78. doi: 10.13207/j.cnki.jnwafu.2012.12.031 Luo M, Zheng X X. Natural regeneration of artifical Platycladus orientalis stands in Shisanling Forest Farm, Beijing[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(12): 73−78. doi: 10.13207/j.cnki.jnwafu.2012.12.031
[32] Cintra R. Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in Amazonian forest[J]. Journal of Tropical Ecology, 1997, 13(5): 709−725. doi: 10.1017/S0266467400010889
[33] 罗桂生, 马履一, 贾忠奎, 等. 油松人工林林隙天然更新及与环境相关性分析[J]. 北京林业大学学报, 2019, 41(9): 59−68. doi: 10.13332/j.1000-1522.20180416 Luo G S, Ma L Y, Jia Z K, et al. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59−68. doi: 10.13332/j.1000-1522.20180416
[34] 董伯骞. 华北落叶松林更新过程与枯落物蓄水功能对经营措施的响应[D]. 保定: 河北农业大学, 2011. Dong B Q. The response of regeneration process and litter water storage function of Larix principis-rupprechtii on management measures[D]. Baoding: Heibei Agricultural University, 2011.
-
期刊类型引用(4)
1. 吴昊,刘海玉,乔晓磊,卫轶君,吴杨. 生物质及镁渣复合黏结剂制备焦粉型煤. 上海电力大学学报. 2023(02): 195-202+209 . 百度学术
2. 尹伟明,蒋金婷,樊星,郭元茹,韩世岩. 木质素磺酸钠/三聚氰胺甲醛微球泡沫的制备及表征. 复合材料学报. 2018(09): 2362-2368 . 百度学术
3. 徐保明,张弘,唐强,张家晖,李俊,李志鹏,陈坤. 木质素基碳纤维制备方法的研究进展. 化工新型材料. 2018(04): 23-26 . 百度学术
4. 陈梁,辛善志,米铁,胡明华. 木质素制备活性炭的工艺及其吸附性能研究. 江汉大学学报(自然科学版). 2017(03): 219-224 . 百度学术
其他类型引用(5)