高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化

王龙凤 肖伟伟 王树力

王龙凤, 肖伟伟, 王树力. 天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化[J]. 北京林业大学学报, 2022, 44(7): 97-106. doi: 10.12171/j.1000-1522.20210497
引用本文: 王龙凤, 肖伟伟, 王树力. 天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化[J]. 北京林业大学学报, 2022, 44(7): 97-106. doi: 10.12171/j.1000-1522.20210497
Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. doi: 10.12171/j.1000-1522.20210497
Citation: Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. doi: 10.12171/j.1000-1522.20210497

天然次生林人工管理后土壤团聚体稳定性及碳氮分布变化

doi: 10.12171/j.1000-1522.20210497
基金项目: 林业和草原科技成果国家级推广项目(2020133121),黑龙江省省级财政林业科研专项(201522)
详细信息
    作者简介:

    王龙凤。主要研究方向:水土保持与荒漠化防治。Email:wanglongfeng0330@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    王树力,教授,博士生导师。主要研究方向:生态学、森林经营、水土保持与荒漠化防治。Email:shuliwang@163.com 地址:同上

  • 中图分类号: S718.54+2;S714.2

Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests

  • 摘要:   目的  探究次生林转变为红松人工林后土壤结构稳定性及有机碳、氮含量的变化,分析不同阔叶树种与红松混交能否缓解单一营造红松纯林所引起的地力下降,为混交树种的选择和林地土壤质量的精准提升提供依据。  方法  以东北林业大学帽儿山林场胡桃楸红松林、水曲柳红松林、黄檗红松林和红松纯林为研究对象,以胡桃楸和水曲柳为主要组成树种的次生林为对照,采用干筛与湿筛相结合的方法进行土壤团聚体分级,测定各粒径团聚体分布及碳氮含量,通过计算土壤结构稳定性参数及各粒径团聚体有机碳、氮贡献率,分析天然次生林转化成红松人工林后土壤团聚体稳定性及碳氮分布情况的变化。  结果  次生林转变为红松人工林后 > 2 mm粒径团聚体质量分数减少,其中胡桃楸红松混交林减少程度最低,为17.94%, < 0.053 mm粒径团聚体质量分数增多,红松纯林增加程度最高,为45.78%;土壤的平均质量直径和几何平均直径降低,团聚体稳定性下降;各粒径团聚体有机碳、全氮含量均出现不同程度的下降,且胡桃楸红松林下降程度最低;次生林与3种红松混交林土壤团聚体有机碳、氮贡献率多以大团聚体为主,而红松纯林在10 ~ 20 cm和20 ~ 30 cm土层土壤团聚体有机碳、氮贡献率均以微团聚体为主。  结论  次生林转变为红松人工林后土壤团聚体稳定性和碳氮含量出现了不同程度的降低,从土壤团聚体分布、稳定性和有机碳、氮含量方面分析,胡桃楸、水曲柳和黄檗均为红松人工林适宜混交树种,3树种皆可促进红松人工林林地营养质量的提升。

     

  • 图  1  次生林和红松人工林下各粒径土壤团聚体有机碳含量

    NF.天然次生林;MJ.胡桃楸红松林;MF.水曲柳红松林;MP.黄檗红松林;PP.红松纯林. 不同小写字母表示林型间同一粒径养分含量(贡献率)差异显著(P < 0.05)。下同。NF, natural secondary forest;MJ, Juglans mandshurica-Pinus koraiensis plantation;MF, Fraxinus mandshurica-Pinus koraiensis plantation;MP, Phellodendron amurense-Pinus koraiensis plantation;PP, pure Pinus koraiensis plantation. Different small letters indicate significant differences in nutrient content (contribution rate) of the same particle size between forest types (P < 0.05). The same below.

    Figure  1.  Organic carbon contents of soil aggregates with different particle sizes under secondary forests and Pinus koraiensis plantations

    图  2  次生林和红松人工林下各粒径土壤团聚体有机碳贡献率

    Figure  2.  Organic carbon contribution rates of every particle size soil aggregates under secondary forest and P. koraiensis plantations

    图  3  次生林和红松人工林下各粒径土壤团聚体全氮含量

    Figure  3.  Total nitrogen contents of soil aggregates with different particle sizes under secondary forests and P. koraiensis plantations

    图  4  次生林和红松人工林下各粒径土壤团聚体全氮贡献率

    Figure  4.  Total nitrogen contribution rates of soil aggregates with different particle sizes under secondary forests and P. koraiensis plantations

    表  1  研究区林分状况

    Table  1.   Stand status in study region

    林分类型
    Stand type
    树种
    Tree species
    树高
    Tree height /m
    胸径
    DBH /cm
    密度/(株·hm−2)
    Density /(tree·ha−1)
    土壤pH值
    Soil pH value
    次生林
    Secondary forest
    胡桃楸
    Juglans mandshurica
    19.66 17.22 960 5.99
    水曲柳
    Fraxinus mandshurica
    18.42 14.54
    胡桃楸红松林
    Juglans mandshurica- Pinus koraiensis plantation
    胡桃楸
    Juglans mandshurica
    19.85 16.67 875 5.92
    红松
    Pinus koraiensis
    14.50 14.92 625
    水曲柳红松林
    Fraxinus mandshurica-Pinus koraiensis plantation
    水曲柳
    Fraxinus mandshurica
    18.85 14.59 788 5.89
    红松
    Pinus koraiensis
    14.43 14.10 1 162
    黄檗红松林
    Phellodendron amurense-Pinus koraiensis plantation
    黄檗
    Phellodendron amurense
    15.88 13.89 615 5.83
    红松
    Pinus koraiensis
    13.95 13.57 1 185
    红松纯林
    Pure Pinus koraiensis plantation
    红松
    Pinus koraiensis
    13.88 14.36 1 400 5.64
    下载: 导出CSV

    表  2  次生林和红松人工林土壤各粒径团聚体分布

    Table  2.   Distribution of soil particle size aggregates in secondary forest and P. koraiensis plantation

    林分类型
    Stand type
    土层
    Soil layer/cm
    各粒级团聚体占比
    Proportion of aggregates of each particle size/%
    > 2 mm2 ~ 0.25 mm0.25 ~ 0.053 mm < 0.053 mm
    次生林
    Secondary forest
    0 ~ 10 40.89 ± 2.52Aa 32.51 ± 3.30Ab 13.42 ± 2.32Cc 13.18 ± 2.10Cc
    10 ~ 20 35.95 ± 1.04Aa 28.63 ± 3.77Ab 16.79 ± 1.87Cc 18.63 ± 2.47Bc
    20 ~ 30 34.38 ± 1.87Aa 27.97 ± 2.44ABb 17.24 ± 1.47Dc 20.41 ± 2.71Bc
    胡桃楸红松林
    Juglans mandshurica-Pinus koraiensis plantation
    0 ~ 10 32.96 ± 3.10Ba 33.22 ± 2.69Aa 17.65 ± 1.29BCb 16.17 ± 2.24BCb
    10 ~ 20 31.81 ± 1.76Ba 29.95 ± 1.43Aa 21.40 ± 2.24Bb 16.84 ± 0.53Bc
    20 ~ 30 26.50 ± 3.51Bb 30.12 ± 2.83Aa 20.32 ± 2.64CDc 23.06 ± 2.01ABbc
    水曲柳红松林
    Fraxinus mandshurica-Pinus koraiensis plantation
    0 ~ 10 27.57 ± 3.26Cab 33.41 ± 3.96Aa 20.71 ± 4.16ABbc 18.31 ± 3.43ABCc
    10 ~ 20 26.86 ± 2.18Cab 29.04 ± 3.56Aa 23.03 ± 1.96Bbc 21.07 ± 3.69Bc
    20 ~ 30 25.50 ± 2.47BCab 25.75 ± 1.92ABab 22.41 ± 1.42BCb 26.34 ± 1.60Aa
    黄檗红松林
    Phellodendron amurense-Pinus koraiensis plantation
    0 ~ 10 26.32 ± 2.14Cab 32.25 ± 3.47Aa 21.47 ± 2.41ABb 19.96 ± 5.71ABb
    10 ~ 20 23.09 ± 2.74Cb 32.87 ± 4.78Aa 24.25 ± 2.01Bb 19.79 ± 4.05Bb
    20 ~ 30 24.22 ± 2.85BCa 22.72 ± 4.23Ba 26.08 ± 1.43ABa 26.98 ± 3.80Aa
    红松纯林
    Pure Pinus koraiensis plantation
    0 ~ 10 27.82 ± 2.34Ca 22.77 ± 5.11Ba 26.49 ± 5.97Aa 22.92 ± 1.31Aa
    10 ~ 20 23.81 ± 1.83Cb 18.97 ± 1.93Bc 30.82 ± 3.00Aa 26.40 ± 2.18Ab
    20 ~ 30 20.85 ± 2.55Cb 23.14 ± 3.11Bab 29.20 ± 3.84Aa 26.81 ± 3.88Aab
    注:不同大写字母表示同一土层相同粒径不同林型土壤团聚体数量差异显著,不同小写字母表示同一土层同一林型不同粒径团聚体数量差异显著(P < 0.05)。Notes: different capital letters indicate that the number of aggregates with the same particle size in the same soil layer under different forest types is significantly different, and different small letters indicate that the number of aggregates with different particle size in the same soil layer under the same forest type is significantly different (P < 0.05).
    下载: 导出CSV

    表  3  次生林和红松人工林土壤团聚体稳定性指标

    Table  3.   Stability index of soil aggregates in secondary forest and P. koraiensis plantation

    林分类型
    Stand type
    土层
    Soil layer/cm
    平均质量直径
    Mean mass diameter/mm
    几何平均直径
    Geometric mean diameter/mm
    > 0.25 mm团聚体质量分数Mass fraction of > 0.25 mm aggregates/%分形维数
    Fractal dimension
    次生林
    Secondary forest
    0 ~ 10 2.84 ± 0.12Aa 1.04 ± 0.06Aa 73.40 ± 0.87Aa 2.62 ± 0.03Cb
    10 ~ 20 2.51 ± 0.04Ab 0.73 ± 0.06Ab 64.58 ± 3.05Ab 2.69 ± 0.03Ba
    20 ~ 30 2.41 ± 0.13Ab 0.66 ± 0.10Ab 62.35 ± 3.88Ab 2.71 ± 0.03Ba
    胡桃楸红松林
    Juglans mandshurica-Pinus koraiensis plantation
    0 ~ 10 2.38 ± 0.16Ba 0.75 ± 0.08Ba 66.17 ± 1.17Ba 2.66 ± 0.02BCb
    10 ~ 20 2.28 ± 0.10Bab 0.66 ± 0.05Aa 61.76 ± 2.24ABab 2.68 ± 0.01Bab
    20 ~ 30 1.97 ± 0.21Bb 0.50 ± 0.08Bb 56.62 ± 4.25ABb 2.71 ± 0.02Ba
    水曲柳红松林
    Fraxinus mandshurica-Pinus koraiensis plantation
    0 ~ 10 2.07 ± 0.18Ca 0.60 ± 0.09BCa 60.98 ± 3.73BCa 2.69 ± 0.03ABb
    10 ~ 20 1.98 ± 0.14Ca 0.51 ± 0.09Bab 55.90 ± 4.65Bab 2.71 ± 0.03Bab
    20 ~ 30 1.86 ± 0.14BCa 0.41 ± 0.05BCb 51.25 ± 2.63BCb 2.76 ± 0.01Aa
    黄檗红松林
    Phellodendron amurense-Pinus koraiensis plantation
    0 ~ 10 1.98 ± 0.15Ca 0.55 ± 0.11Ca 58.57 ± 4.82Ca 2.70 ± 0.05ABa
    10 ~ 20 1.80 ± 0.17CDa 0.49 ± 0.11Ba 55.96 ± 5.62Bab 2.70 ± 0.04Ba
    20 ~ 30 1.76 ± 0.16BCa 0.37 ± 0.06BCa 46.94 ± 4.40CDb 2.76 ± 0.03Aa
    红松纯林
    Pure Pinus koraiensis plantation
    0 ~ 10 1.97 ± 0.16Ca 0.45 ± 0.07Ca 50.59 ± 6.09Da 2.74 ± 0.01Aa
    10 ~ 20 1.70 ± 0.12Dab 0.34 ± 0.04Cb 42.79 ± 3.44Ca 2.77 ± 0.01Aa
    20 ~ 30 1.56 ± 0.14Cb 0.33 ± 0.04Cb 43.99 ± 3.44Da 2.76 ± 0.03Aa
    注:不同大写字母表示同一土层不同林型间差异显著,不同小写字母表示同一林型不同土层间差异显著(P < 0.05)。Notes: different capital letters indicate significant differences between different forest types in the same soil layer, and different small letters indicate significant differences between varied soil layers in the same forest type (P < 0.05).
    下载: 导出CSV
  • [1] 李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326−6336.

    Li W, Zheng Z C, Li T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326−6336.
    [2] 杨洪炳, 肖以华, 许涵, 等. 城乡梯度下不同林分类型土壤团聚体分布及其稳定性[J]. 林业科学研究, 2022, 35(3): 82−92.

    Yang H B, Xiao Y H, Xu H, et al. Distribution and stability of soil aggregates in different forest types under an urban-rural gradient[J]. Forest Research, 2022, 35(3): 82−92.
    [3] 田慎重, 王瑜, 李娜, 等. 耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J]. 生态学报, 2013, 33(22): 7116−7124. doi: 10.5846/stxb201207261062

    Tian S Z, Wang Y, Li N, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116−7124. doi: 10.5846/stxb201207261062
    [4] 周学雅, 陈志杰, 耿世聪, 等. 氮沉降对长白山森林土壤团聚体内碳、氮含量的影响[J]. 应用生态学报, 2019, 30(5): 1543−1552.

    Zhou X Y, Chen Z J, Geng S C, et al. Effects of nitrogen deposition on carbon and nitrogen contents in soil aggregates in temperate forests of Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1543−1552.
    [5] 黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响[J]. 应用生态学报, 2020, 31(9): 2857−2865.

    Huang Y Z, Wang S Q, Ye S M. Effects of Cunninghamia lanceolata stand types on the changes of aggregate-related organic carbon and nutrients in surface soil[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2857−2865.
    [6] 林立文, 邓羽松, 王金悦, 等. 南亚热带人工林种植对赤红壤团聚体分布及稳定性的影响[J]. 应用生态学报, 2020, 31(11): 3647−3656.

    Lin L W, Deng Y S, Wang J Y, et al. Effects of plantation on aggregate distribution and stability of lateritic red soil in south sub-tropical China[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3647−3656.
    [7] 胡琛, 贺云龙, 崔鸿侠, 等. 神农架4种典型人工林对土壤团聚体分布及稳定性的影响[J]. 中南林业科技大学学报, 2020, 40(12): 125−133.

    Hu C, He Y L, Cui H X, et al. Effects of four typical plantations on the distribution and stability of soil aggregates in Shennongjia[J]. Journal of Central South University of Forestry & Technology, 2020, 40(12): 125−133.
    [8] 徐海东, 苑海静, 熊静, 等. 杉阔异龄复层林对土壤团聚体稳定性和有机碳及养分储量的影响[J]. 林业科学研究, 2020, 33(3): 107−115.

    Xu H D, Yuan H J, Xiong J, et al. Effects of uneven-aged Cunninghamia lanceolata and evergreen broadleaved mixed plantations on soil aggregate stability and soil organic carbon and nutrients stocks[J]. Forest Research, 2020, 33(3): 107−115.
    [9] 王小红, 杨智杰, 刘小飞, 等. 天然林转换成人工林对土壤团聚体稳定性及有机碳分布的影响[J]. 水土保持学报, 2014, 28(6): 177−182.

    Wang X H, Yang Z J, Liu X F, et al. Effects of natural forest converted plantations on soil organic carbon distribution and stability of aggregates in middle-subtropics of China[J]. Journal of Soil and Water Conservation, 2014, 28(6): 177−182.
    [10] 吕来新, 宋蕾, 刘志理, 等. 红松人工林土壤酶活性与化学性质对氮添加的响应[J]. 环境科学, 2020, 41(4): 1960−1967.

    Lü L X, Song L, Liu Z L, et al. Response of soil enzyme activity and chemical properties to nitrogen addition in a Korean pine plantation[J]. Environmental Science, 2020, 41(4): 1960−1967.
    [11] 刘珽, 牟长城, 王亚辉, 等. 透光抚育强度对小兴安岭“栽针保阔”红松林凋落物水文效应的影响[J]. 应用生态学报, 2021, 32(7): 2335−2346.

    Liu T, Mu C C, Wang Y H, et al. Effects of light-felling intensity on hydrological effects of litter in Korean pine forests by ‘planting conifer and preserving broadleaved tree’ in Xiaoxing’an Mountains of China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2335−2346.
    [12] 胡嵩, 张颖, 史荣久, 等. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 2013, 24(2): 366−372.

    Hu S, Zhang Y, Shi R J, et al. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinuskoraiensis forests in Changbai Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 366−372.
    [13] 刘少冲, 段文标. 红松阔叶混交林林隙土壤养分的空间异质性[J]. 水土保持学报, 2011, 25(3): 142−146.

    Liu S C, Duan W B. Spatial heterogeneity of soil nutrition in the mixed broad-leaved Korean pine forest gap[J]. Journal of Soil and Water Conservation, 2011, 25(3): 142−146.
    [14] 孙双红, 陈立新, 李少博, 等. 阔叶红松林不同演替阶段土壤酶活性与养分特征及其相关性[J]. 北京林业大学学报, 2016, 38(2): 20−28.

    Sun S H, Chen L X, Li S B, et al. Characteristics of soil enzyme activity and nutrient content and their correlations at different succession stages of broadleaf-Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(2): 20−28.
    [15] 郭志明, 张心昱, 李丹丹, 等. 温带森林不同海拔土壤有机碳及相关胞外酶活性特征[J]. 应用生态学报, 2017, 28(9): 2888−2896.

    Guo Z M, Zhang X Y, Li D D, et al. Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2888−2896.
    [16] 刘少冲, 陈立新, 段文标, 等. 影响不同林型天然红松混交林林隙更新的土壤特征因子[J]. 生态学报, 2017, 37(12): 4072−4083.

    Liu S C, Chen L X, Duan W B, et al. Effects of soil characteristics on forest gap regeneration in different types of natural Pinus koraiensis mixed forest[J]. Acta Ecologica Sinica, 2017, 37(12): 4072−4083.
    [17] 李海瑜, 杨振景, 王树力. 水曲柳人工林与天然林间土壤磷吸附解吸特性差异[J]. 东北林业大学学报, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016

    Li H Y, Yang Z J, Wang S L. Comparison of soil phosphorus adsorption and desorption characteristics in planted and natural Fraxinus mandshurica forests[J]. Journal of Northeast Forestry University, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016
    [18] 周磊, 王树力. 树种混交对红皮云杉人工林土壤养分的影响[J]. 东北林业大学学报, 2019, 47(2): 37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009

    Zhou L, Wang S L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations[J]. Journal of Northeast Forestry University, 2019, 47(2): 37−41. doi: 10.3969/j.issn.1000-5382.2019.02.009
    [19] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627−633. doi: 10.2136/sssaj1986.03615995005000030017x
    [20] 朱家琪, 满秀玲, 王飞. 我国寒温带四种森林植被类型下土壤团聚体粒级组成及其稳定性比较研究[J]. 土壤通报, 2020, 51(3): 606−613.

    Zhu J Q, Man X L, Wang F. Composition and stability of soil aggregates in four forest vegetation types in cold temperate zone[J]. Chinese Journal of Soil Science, 2020, 51(3): 606−613.
    [21] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362−369. doi: 10.2136/sssaj1992.03615995005600020005x
    [22] 朱家琪, 满秀玲, 王飞. 寒温带4种森林类型土壤团聚体有机碳氮特征[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 71−83.

    Zhu J Q, Man X L, Wang F. Organic carbon and nitrogen characteristics of soil aggregates in four forest types in frigid temperate zone[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 71−83.
    [23] 崔芯蕊, 张嘉良, 王云琦, 等. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响[J]. 水土保持学报, 2021, 35(4): 275−281.

    Cui X R, Zhang J L, Wang Y Q, et al. Effect of different forest on the soil aggregate stability in Xiaolongshan forest region of Gansu Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 275−281.
    [24] Barthes B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133−149. doi: 10.1016/S0341-8162(01)00180-1
    [25] Chaplot V, Cooper M. Soil aggregate stability to predict organic carbon outputs from soils[J]. Geoderma, 2015, 243−244: 205−213. doi: 10.1016/j.geoderma.2014.12.013
    [26] 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15−24.

    Wang B, Zhang P J, Zhang Q L. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(3): 15−24.
    [27] 陆琪, 马红彬, 俞鸿千, 等. 轮牧方式对荒漠草原土壤团聚体及有机碳特征的影响[J]. 应用生态学报, 2019, 30(9): 3028−3038.

    Lu Q, Ma H B, Yu H Q, et al. Effects of rotational grazing methods on soil aggregates and organic carbon characteristics in desert steppe[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3028−3038.
    [28] 潘俊, 刘苑秋, 刘晓君, 等. 退化红壤植被恢复团聚体及化学计量特征[J]. 水土保持学报, 2019, 33(4): 187−195.

    Pan J, Liu Y Q, Liu X J, et al. Distribution and stoichomentry of water- stable aggregates of different vegetation restoration patterns in degradesd red soil regions[J]. Journal of Soil and Water Conservation, 2019, 33(4): 187−195.
    [29] 王玉娇. 胡桃楸与红松混交对土壤特性和细根性状的影响[D]. 哈尔滨: 东北林业大学, 2021.

    Wang Y J. Effects of Juglans mandshurica and Pinus koraiensis on soil characteristics and fine root traits[D]. Harbin: Northeast Forestry University, 2021.
    [30] 冯文瀚, 李金彪, 周聪, 等. 不同林龄鹅掌楸人工林土壤团聚体及其有机碳状况[J]. 中南林业科技大学学报, 2021, 41(2): 133−141.

    Feng W H, Li J B, Zhou C, et al. Soil aggregates and organic carbon status of Liriodendron chinense plantation at different ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(2): 133−141.
    [31] 苑亚茹, 韩晓增, 丁雪丽, 等. 不同植物根际土壤团聚体稳定性及其结合碳分布特征[J]. 土壤通报, 2012, 43(2): 320−324.

    Yuan Y R, Han X Z, Ding X L, et al. Distribution of aggregate-associated organic carbon and aggregate stability in rhizosphere of different plants[J]. Chinese Journal of Soil Science, 2012, 43(2): 320−324.
    [32] 谢贤健, 张继. 巨桉人工林下土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2012, 26(6): 175−179.

    Xie X J, Zhang J. Soil aggregates and fractal features under different styles of Eucalyptus grandis plantations[J]. Journal of Soil and Water Conservation, 2012, 26(6): 175−179.
    [33] 邹鑫, 陈春峰, 刘文杰. 西双版纳橡胶种植对土壤团聚体及理化性质的影响[J]. 土壤通报, 2020, 51(3): 597−605.

    Zou X, Chen C F, Liu W J. Effects of rubber plantation on soil aggregate stability and physico-chemical properties in Xishuangbanna[J]. Chinese Journal of Soil Science, 2020, 51(3): 597−605.
    [34] 孙铭隆. 东北黄檗群落多样性解析及其生物碱含量的氮磷调控[D]. 哈尔滨: 东北林业大学, 2017.

    Sun M L. Analysis of Phellodendron amurense community diversity and its alkaloid content regulated by nitrogen and phosphorus[D]. Harbin: Northeast Forestry University, 2017.
    [35] 吴慧, 王树力. 天然次生林转变成长白落叶松人工林后土壤养分的变化[J]. 东北林业大学学报, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010

    Wu H, Wang S L. Change of soil nutrients after converting natural secondary forest into Larix olgensis plantations[J]. Journal of Northeast Forestry University, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010
    [36] Liu Z, Chen X, Jing Y, et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. Catena, 2014, 123: 45−51. doi: 10.1016/j.catena.2014.07.005
    [37] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367−1377. doi: 10.2136/sssaj1998.03615995006200050032x
    [38] Sariyildiz T. Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey[J]. Forest Ecology and Management, 2015, 335: 71−86. doi: 10.1016/j.foreco.2014.09.030
    [39] Freschet G T, Cornwell W K, Wardle D A, et al. Linking litter decomposition of above and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101(4): 943−952. doi: 10.1111/1365-2745.12092
    [40] See C R, Mccormack M L, Hobbie S E, et al. Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness[J]. Ecology Letters, 2019, 22(6): 946−953. doi: 10.1111/ele.13248
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  12
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2021-12-22
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回