Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于距离相关Hegyi指数的云冷杉天然林单木胸径生长模型

周泽宇, 周超凡, 胡兴国, 陈科屹, 杜满义, 张会儒, 符利勇

周泽宇, 周超凡, 胡兴国, 陈科屹, 杜满义, 张会儒, 符利勇. 基于距离相关Hegyi指数的云冷杉天然林单木胸径生长模型[J]. 北京林业大学学报, 2023, 45(10): 59-69. DOI: 10.12171/j.1000-1522.20210510
引用本文: 周泽宇, 周超凡, 胡兴国, 陈科屹, 杜满义, 张会儒, 符利勇. 基于距离相关Hegyi指数的云冷杉天然林单木胸径生长模型[J]. 北京林业大学学报, 2023, 45(10): 59-69. DOI: 10.12171/j.1000-1522.20210510
Zhou Zeyu, Zhou Chaofan, Hu Xingguo, Chen Keyi, Du Manyi, Zhang Huiru, Fu Liyong. Single tree DBH growth model of spruce-fir natural forest based on distance related Hegyi index[J]. Journal of Beijing Forestry University, 2023, 45(10): 59-69. DOI: 10.12171/j.1000-1522.20210510
Citation: Zhou Zeyu, Zhou Chaofan, Hu Xingguo, Chen Keyi, Du Manyi, Zhang Huiru, Fu Liyong. Single tree DBH growth model of spruce-fir natural forest based on distance related Hegyi index[J]. Journal of Beijing Forestry University, 2023, 45(10): 59-69. DOI: 10.12171/j.1000-1522.20210510

基于距离相关Hegyi指数的云冷杉天然林单木胸径生长模型

基金项目: 国家重点研发计划课题(2022YFD2200503)。
详细信息
    作者简介:

    周泽宇,博士。主要研究方向:森林生长收获预估模型。Email:zeyuzho@163.com 地址:102300北京市门头沟区水闸西路1号中国林业科学研究院华北林业实验中心

    责任作者:

    张会儒,研究员,博士生导师。主要研究方向:森林可持续经营。Email:huiru@ifrit.ac.cn 地址:同上。

  • 中图分类号: S791.14;S791.18;S750

Single tree DBH growth model of spruce-fir natural forest based on distance related Hegyi index

  • 摘要:
    目的 

    基于与距离有关的Hegyi种内和种间竞争指数,构建以期初胸径及Hegyi竞争指数为预测变量的云冷杉天然林单木胸径生长预测模型。

    方法 

    使用2013年金沟岭云冷杉林3块1 hm2固定样地内实测数据,以非线性Logistic模型为基础模型,逐步引入期初胸径、种内和种间竞争指数,以探究竞争和生长对于单木胸径变化的影响,并利用非线性混合效应模型进行模型精度的提升。

    结果 

    模型拟合结果显示:以期初胸径、种内Hegyi竞争指数、种间Hegyi竞争指数为预测变量,树种水平下随机效应作用在参数a0a2a3上时,模型具有最优的拟合效果,且未出现异方差现象。建模数据的调整决定系数(R2adj)、均方根误差(RMSE)、总相对误差(TRE)分别为0.512 6、0.607 1、3.651 9%,利用检验数据对模型进行独立样本检验,检验数据的R2adj为0.509 8,检验RMSE均为0.624 2,检验TRE均为3.883 1%,检验数据的残差分布未出现明显的异方差现象。

    结论 

    云冷杉天然林中影响对象木胸径生长的因素包括单木大小因子与竞争因子。期初胸径对胸径生长的影响较大,为正向作用。竞争因子中,种内竞争和种间竞争均对单木胸径的生长具有明显的调控作用,为负向抑制作用。本文所构建的基于树种水平的非线性混合效应模型能够为研究区天然云冷杉林中对象木的胸径生长预测提供一定的理论基础以及技术参考。

    Abstract:
    Objective 

    Based on the Hegyi intraspecific and interspecific competition indexes related to distance, the prediction model of DBH increment of natural spruce-fir forest was constructed based on initial DBH and Hegyi competition index.

    Method 

    In order to explore the effects of competition and growth on DBH growth of individual trees, the measured data of three permanent sample plots (each of 1 ha) of spruce-fir in Jingouling Forest Farm, Jilin Province of northeastern China in 2013 were utilized. Based on the nonlinear Logistics model, initial DBH, intraspecific and interspecific competition indexes were gradually added. The nonlinear mixed-effect model was utilized to improve the model accuracy.

    Result 

    The results of model fitting showed that the model had the best fitting effect when initial DBH, intraspecific and interspecific Hegyi competition indexes were used as predictive variables, the best fitting efficiency occurred based on the species-level of random effect worked on parameters a0, a2, a3, and without heteroscedasticity. The R2adj, root mean squared error (RMSE) and total relative error (TRE) of modeling data were 0.512 6, 0.607 1, 3.651 9%, respectively. The R2adj, RMSE and TRE of validation data were 0.509 8, 0.624 2, 3.883 1%, respectively. The residual distribution of validation data did not show obvious heteroscedasticity.

    Conclusion 

    The factors affect the diameter growth of target trees in natural spruce-fir forest, including self-growth factors and competition factors. Among the self-growth factors, initial DBH is the main factor and plays a positive role to promote DBH increment. Among the competition factors, interspecific competition and intraspecific competition have obvious inhibition effects on the growth of individual tree DBH increment. The nonlinear mixed effect model based on species-level can provide a theoretical basis and technical reference for the DBH growth of target trees in natural spruce-fir forest in the study area.

  • 图  1   种内、种间竞争指数和期初胸径、胸径变化之间关系

    Figure  1.   Relationship between intraspecific and interspecific competition index and initial DBH as well as DBH change

    图  2   树种水平下收敛模型残差图

    字母代表随机参数的组合。The letters represent the combination of random parameters.

    Figure  2.   Residual plots of converged mixed-effect models under tree species level

    图  3   最优混合效应模型检验数据残差、拟合值−实测值图

    Figure  3.   Validation data residual of the optimal mixed effect model and fitted value-measured value graph

    表  1   数据统计表

    Table  1   Data statistics

    指标 Index最大值 Max.最小值 Min.平均值 Mean标准差 SD
    建模数据
    Modeling data
    (n = 1 983)
    林分密度/(株·hm−2) Stand density/(tree·ha−1) 826 922 877 48
    期初胸径 Initial DBH (D1)/cm 56.0 5.0 16.2 8.1
    期末胸径 Final DBH (D2)/cm 56.5 5.1 17.1 8.2
    胸径增长量 DBH increment (ΔDBH)/cm 4.4 0.0 0.8 0.6
    种间Hegyi竞争指数
    Interspecific Hegyi competition index (ICinter)
    36.7 0.1 4.2 3.6
    种内Hegyi竞争指数
    Intraspecific Hegyi competition index (ICintra)
    57.5 0.0 1.6 3.6
    检验数据
    Validation data
    (n = 853)
    林分密度/(株·hm−2) Stand density/(tree·ha−1) 826 922 877 48
    D1/cm 48.3 5.0 16.5 8.3
    D2/cm 51.3 8.4 17.4 8.5
    ΔDBH/cm 4.5 0.0 0.8 0.6
    ICinter 34.0 0.1 4.2 3.8
    ICintra 59.5 0.0 1.8 4.6
    下载: 导出CSV

    表  3   竞争指数增加后模型拟合精度变化

    Table  3   Change in model fitting accuracy after increasing competition index

    变量 VariableR2adjRMSETRE/%

    D1
    0.408 50.669 24.470 2
    D1 + ICintra + ICinter
    0.416 00.665 24.414 5
    下载: 导出CSV

    表  2   备选模型形式

    Table  2   Candidate model forms

    序号 No. 模型 Model表达式 Expression
    1 Compert y=a0exp(a1exp(a2x))
    2 Mitscherlich y=a0(1a1exp(a2x))
    3 Power y=a0xa1
    4 Weibull y=a0(1exp(a1xa2))
    5 Korf y=a0exp(a1xa1)
    6 Logistic y=a01+a1exp(a2x)
    注:yx分别代表模型自变量和因变量,a0a1a2分别代表模型的待估计参数。Notes: y and x represent the independent variable and dependent variable, respectively, a0, a1, a2 represent the estimated parameters of the model, respectively.
    下载: 导出CSV

    表  4   样地水平下收敛的混合效应模型评价指标

    Table  4   Evaluation indexes of converged mixed-effect models under sample plot level

    参数
    Parameter
    AICBIC−2LoglikeLRTP
    a0 + a43 523.83 572.93 505.840.5 < 0.000 1
    a3 + a43 523.83 573.03 505.840.5 < 0.000 1
    a2 + a33 523.83 573.03 505.840.5 < 0.000 1
    a0 + a1 + a23 529.83 595.43 505.836.4 < 0.000 1
    a2 + a3 + a43 523.83 589.43 499.840.5 < 0.000 1
    下载: 导出CSV

    表  5   树种水平下收敛的混合效应模型评价指标

    Table  5   Evaluation indexes of converged mixed-effect models under tree species level

    参数
    Parameter
    AICBIC−2LoglikeLRTP
    a03 417.83 455.93 403.8110.5 < 0.000 1
    a13 429.93 468.13 415.998.4 < 0.000 1
    a33 416.93 455.13 402.9111.4 < 0.000 1
    a43 416.43 454.63 402.4111.9 < 0.000 1
    a0 + a13 368.93 418.13 350.9163.3 < 0.000 1
    a0 + a23 389.23 438.33 371.2143.1 < 0.000 1
    a0 + a33 367.13 416.23 349.1165.2 < 0.000 1
    a0 + a43 358.93 408.03 340.9173.4 < 0.000 1
    a1 + a33 377.73 426.93 359.7154.6 < 0.000 1
    a1 + a43 368.83 417.93 350.8163.5 < 0.000 1
    a2 + a43 393.23 442.33 375.2139.1 < 0.000 1
    a3 + a43 386.83 435.93 368.8145.4 < 0.000 1
    a0 + a1 + a23 348.73 414.33 324.7189.5 < 0.000 1
    a0 + a2 + a33 327.23 392.83 303.2211.0 < 0.000 1
    a1 + a2 + a43 355.13 420.63 331.1183.2 < 0.000 1
    a1 + a3 + a43 383.73 449.23 359.7154.6 < 0.000 1
    下载: 导出CSV

    表  6   单木水平下收敛的混合效应模型评价指标

    Table  6   Evaluation indexes of converged mixed-effect models under single tree level

    参数
    Parameter
    AICBIC−2LoglikeLRTP
    a13 519.83 558.13 505.845.4 < 0.000 1
    a33 518.83 556.13 503.243.6 < 0.000 1
    a03 517.83 555.13 499.440.1 < 0.000 1
    a23 512.83 551.13 502.639.1 < 0.000 1
    下载: 导出CSV

    表  7   树种水平下最优混合效应模型参数估计

    Table  7   Parameter estimation of best mixed-effect models under tree species level

    参数 Parameter估计(标准误) Estimation (SE)TT valuePP value
    a05.118 3(0.273 0)18.745 20.000 0
    a11.190 5(0.092 6)12.860 80.000 0
    a2−0.053 0(0.006 1)−8.700 40.000 0
    a30.054 2(0.017 3)3.130 90.001 8
    a40.045 5(0.014 1)3.230 70.001 3
    方差−协方差结构
    Variance-covariance structure
    [0.19140.59500.57600.59500.00230.38800.57600.38800.0018]
    误差方差 Variance of error0.374 4
    R2adj0.512 6
    RMSE0.607 1
    TRE/%3.651 9
    下载: 导出CSV
  • [1]

    Adame P, del Río M, Canellas I. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology and Management, 2008, 256: 88−98. doi: 10.1016/j.foreco.2008.04.006

    [2]

    Huang S, Titus S J, Wiens D P. Comparison of nonlinear height-diameter functions for major Alberta tree species[J]. Canadian Journal of Forest Research, 1992, 22: 1297−1304. doi: 10.1139/x92-172

    [3]

    Mehttalo L. Height-diameter models for Scots pine and birch in Finland[J]. Suomen Metstieteellinen Seura, 2005, 39: 55−66.

    [4]

    Tomppo E, Gschwantner T, Lawrence M, et al. National forest inventories: pathways for common reporting[J]. European Science Foundation, 2010, 1: 541−553.

    [5]

    Zianis D, Muukkonen P, Mäkipää R, et al. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica, 2005, 4(4): 1−63.

    [6]

    Zeng W S, Chen X Y, Yang X Y. Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China[J]. Trees, 2021(35): 93−102.

    [7]

    Kulej M, Socha J. Effect of provenance on the volume increment of grand fir (Abies grandis Lindl.) under mountain conditions of Poland[J]. Journal of Forest Science, 2008, 54: 1−8.

    [8]

    Härkönen S, Neumann M, Mues V, et al. A climate-sensitive forest model for assessing impacts of forest management in Europe[J]. Environmental Modelling and Software, 2019, 115: 128−143. doi: 10.1016/j.envsoft.2019.02.009

    [9]

    Craine J M. Reconciling plant strategy theories of Grime and Tilman[J]. Journal of Ecology, 2005, 93: 1041−1052. doi: 10.1111/j.1365-2745.2005.01043.x

    [10]

    Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS[M]. New York: Springer, 2013.

    [11] Bates D M, Pinheiro J C . Linear and nonlinear mixed-effects models[C]//Applied statistics in agriculture: proceedings of the Kansas State University Conference on Applied Statistics in Agriculture, 1998.
    [12]

    Mehtätalo L, de Miguel S, Gregoire T G. Modeling height-diameter curves for prediction[J]. Canadian Journal of Forest Research, 2015, 45: 826−837. doi: 10.1139/cjfr-2015-0054

    [13] 李春明. 基于两层次线性混合效应模型的杉木林单木直径生长量模型[J]. 林业科学, 2012, 48(3): 66−73.

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73.

    [14] 符利勇, 李永慈, 李春明, 等. 利用2种非线性混合效应模型(2水平)对杉木林直径生长量的分析[J]. 林业科学, 2012, 48(5): 36−43.

    Fu L Y, Li Y C, Li C M, et al. Analysis of the basal area for Chinese fir plantation using two kinds of nonlinear mixed effects model (two levels)[J]. Scientia Silvae Sinicae, 2012, 48(5): 36−43.

    [15] 张兴龙, 姜立春. 兴安落叶松树干去皮直径预测模型[J]. 林业科学研究, 2015, 28(1): 67−73.

    Zhang X L, Jiang L C. Inside bark diameter prediction models for Dahurian larch[J]. Forest Research, 2015, 28(1): 67−73.

    [16] 姜立春, 杜书立. 基于非线性混合模型的东北兴安落叶松树高和直径生长模拟[J]. 林业科学研究, 2012, 25(1): 11−16. doi: 10.3969/j.issn.1001-1498.2012.01.003

    Jiang L C, Du S L. Height and diameter growth modeling of Dahurian larch based on nonlinear mixed model in northeastern China[J]. Forest Research, 2012, 25(1): 11−16. doi: 10.3969/j.issn.1001-1498.2012.01.003

    [17] 陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7): 12−22.

    Chen G D, Du Y, Ding P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12−22.

    [18] 臧颢, 刘洪生, 黄锦程, 等. 竞争和气候及其交互作用对杉木人工林直径生长的影响[J]. 林业科学, 2021, 57(3): 39−50.

    Zang H, Liu H S, Huang J C, et al. Effects of competition, climate factors and their interactions on diameter growth for Chinese fir plantations[J]. Scientia Silvae Sinicae, 2021, 57(3): 39−50.

    [19] 余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木直径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5): 22−32.

    Yu L, Lei X D, Wang Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.

    [20] 刘帅, 李建军 卿东升, 等. 气候敏感的青冈栎单木直径生长模型[J]. 林业科学, 2021, 57(1): 95−104.

    Liu S, Li J J, Qing D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95−104.

    [21] 吕沅杭, 伊利启, 王儒林, 等. 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型[J]. 林业科学研究, 2021, 34(2): 81−91.

    Lü Y H, Yi L Q, Wang R L, et al. Diameter growth model using spatial structure parameters of natural Larix gmelinii stand in Daxing’anling Mountains, Northeast China[J]. Forest Research, 2021, 34(2): 81−91.

    [22] 孟宪宇. 测树学 [M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forestry measuration [M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.

    [23]

    Hegyi F. A simulation model for managing jack-pine stands simulation[J]. Forest Research Notes, 1974, 30: 74−90.

    [24] 刘方炎, 李昆, 廖声熙, 等. 濒危植物翠柏的个体生长动态及种群结构与种内竞争[J]. 林业科学, 2010, 46(10): 23−28. doi: 10.11707/j.1001-7488.20101004

    Liu F Y, Li K, Liao S X, et al. Interspecific competition, population structure and growth dynamics of endangered Calocedrus macrolepis[J]. Scientia Silvae Sinicae, 2010, 46(10): 23−28. doi: 10.11707/j.1001-7488.20101004

    [25] 董利虎, 李凤日, 贾炜玮. 林木竞争对红松人工林立木生物量影响及模型研究[J]. 北京林业大学学报, 2013, 35(6): 14−22.

    Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2013, 35(6): 14−22.

    [26] 胡雪凡, 张会儒, 段光爽, 等. 基于交角和密集度的竞争指数构建及评价[J]. 林业科学, 2021, 57(4): 182−190.

    Hu X F, Zhang H R, Duan G S, et al. Establishment and evaluation of tree competition index based on intersection and crowding[J]. Scientia Silvae Sinicae, 2021, 57(4): 182−190.

    [27] 陈科屹. 云冷杉过伐林经营诊断及目标树抚育效果研究[D]. 北京: 中国林业科学研究院, 2018.

    Chen K Y. Studies on management diagnosis and effectiveness of thinning based on crop tree management for over-logged spruce-fir forest[D]. Beijing: Chinese Academy of Forestry, 2018.

    [28] 周红敏, 惠刚盈, 赵中华, 等. 林分空间结构分析中样地边界木的处理方法[J]. 林业科学, 2009, 45(2): 1−5.

    Zhou H M, Hui G Y, Zhao Z H, et al. Treatment methods of plot boundary trees in spatial forest structure analysis[J]. Scientia Silvae Sinicae, 2009, 45(2): 1−5.

    [29] 洪伟, 吴承祯, 蓝斌. 邻体干扰指数通用模型及其应用[J]. 植物生态学报, 1997, 21(2): 149−154. doi: 10.3321/j.issn:1005-264X.1997.02.006

    Hong W, Wu C Z, Lan B. A general model for neighborhood interference index and its application[J]. Acta Phytoecologica Sinica, 1997, 21(2): 149−154. doi: 10.3321/j.issn:1005-264X.1997.02.006

    [30] 王政权, 吴巩胜, 王军邦. 利用竞争指数评价水曲柳落叶松种内种间空间竞争关系[J]. 应用生态学报, 2000, 11(5): 641−645.

    Wang Z Q, Wu G S, Wang J B. Application of competition index in assessing intraspecific and interspecific spatial relations between Manchurian ash and Dahurian larch[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 641−645.

    [31] 封磊, 洪伟, 吴承祯, 等. 杉木−拟赤杨人工混交林种内、种间竞争强度研究[J]. 热带亚热带植物学报, 2004, 12(1): 46−50.

    Feng L, Hong W, Wu C Z, et al. Intraspecific and interspecific competition intensity in mixed forest plantation of Cunninghamia lanceolata and Alniphyllum fortune[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 46−50.

    [32]

    Alexander K A, Brian C M. Competition size and age affect tree growth response to fuel reduction treatments in mixed oak forests of Ohio[J]. Forest Ecology and Management, 2013, 307(7): 74−83.

    [33] 项小燕, 吴甘霖, 段仁燕, 等. 大别山五针松种内和种间竞争强度[J]. 生态学报, 2015, 35(2): 389−395.

    Xiang X Y, Wu G L, Duan R Y, et al. Intraspecific and interspecific competition of Pinus dabeshanesis[J]. Acta Ecologica Sinica, 2015, 35(2): 389−395.

    [34]

    Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967, 13: 365−375.

    [35]

    Lappi J. A longitudinal analysis of height-diameter curves[J]. Forest Science, 1997, 43: 555−570.

    [36]

    Mehtätalo L. A longitudinal height-diameter model for Norway spruce in Finland[J]. Canadian Journal of Forest Research, 2004, 34: 131−140. doi: 10.1139/x03-207

    [37]

    Meng S X, Huang S X. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function[J]. Forest Science, 2009, 55(3): 238−248.

    [38] 汪金松, 范秀华, 范娟, 等. 林木竞争对臭冷杉生物量分配的影响[J]. 林业科学, 2012, 48(4): 14−20. doi: 10.11707/j.1001-7488.20120403

    Wang J S, Fan X H, Fan J, et al. Effects of tree competition on the biomass partitioning of Abies nephrolepis[J]. Scientia Silvae Sinicae, 2012, 48(4): 14−20. doi: 10.11707/j.1001-7488.20120403

    [39]

    Waring R H, Thies W G, Muscato D. Stem growth per unit of leaf area: a measure of tree vigor[J]. Forest Science, 1980, 26: 112−117.

    [40] 彭娓, 李凤日, 董利虎, 等. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 61(3): 19−27.

    Peng W, Li F R, Dong L H, et al. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(3): 19−27.

    [41]

    Contreras M A, Affleck D, Chung W. Evaluating tree competition indices as predictors of basal area increment in western Montana forests[J]. Forest Ecology and Management, 2011, 262: 1939−1949. doi: 10.1016/j.foreco.2011.08.031

    [42]

    Kuehne C, Weiskittel A R, Waskiewicz J. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of Northeastern United States[J]. Forest Ecology and Management, 2019, 433: 205−216. doi: 10.1016/j.foreco.2018.11.002

    [43]

    Kahriman A, Şahin A¸ Sönmez T, et al. A novel approach to selecting a competition index: the effect of competition on individual-tree diameter growth of Calabrian pine[J]. Canadian Journal of Forest Research, 2018, 48: 1217−1226. doi: 10.1139/cjfr-2018-0092

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

图(3)  /  表(7)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  242
  • PDF下载量:  153
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2023-05-24
  • 录用日期:  2023-05-25
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回