• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同间伐强度下竞争对东北阔叶红松林主要树种生长−气候关系的影响

黄伟程, 高露双, 赵冰倩

黄伟程, 高露双, 赵冰倩. 不同间伐强度下竞争对东北阔叶红松林主要树种生长−气候关系的影响[J]. 北京林业大学学报, 2023, 45(1): 30-39. DOI: 10.12171/j.1000-1522.20210515
引用本文: 黄伟程, 高露双, 赵冰倩. 不同间伐强度下竞争对东北阔叶红松林主要树种生长−气候关系的影响[J]. 北京林业大学学报, 2023, 45(1): 30-39. DOI: 10.12171/j.1000-1522.20210515
Huang Weicheng, Gao Lushuang, Zhao Bingqian. Influence of competition on the relationship between tree growth and climate of main tree species in the broadleaved Korean pine forest under different thinning intensities in northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(1): 30-39. DOI: 10.12171/j.1000-1522.20210515
Citation: Huang Weicheng, Gao Lushuang, Zhao Bingqian. Influence of competition on the relationship between tree growth and climate of main tree species in the broadleaved Korean pine forest under different thinning intensities in northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(1): 30-39. DOI: 10.12171/j.1000-1522.20210515

不同间伐强度下竞争对东北阔叶红松林主要树种生长−气候关系的影响

基金项目: 中央高校基本科研业务费专项(2019ZY22)
详细信息
    作者简介:

    黄伟程。主要研究方向:森林经理。 Email:1984175530@qq.com 地址:100083 北京市海淀区清华东路 35 号

    责任作者:

    高露双,博士,副教授。主要研究方向:树木生长过程模型。 Email:gaolushuang@bjfu.edu.cn 地址:同上

  • 中图分类号: S753.7

Influence of competition on the relationship between tree growth and climate of main tree species in the broadleaved Korean pine forest under different thinning intensities in northeastern China

  • 摘要:
      目的  探究不同间伐措施下树木的竞争环境差异是否影响树木生长变化趋势及其对气候因子的响应策略,为气候变化背景下森林经营和管理提供科学依据。
      方法  以吉林蛟河林业实验管理局阔叶红松林优势树种红松、水曲柳、色木槭和紫椴为研究对象,选取4 块面积为1 hm2的间伐处理固定样地,间伐强度分别为 0(对照 CK)、15%(轻度间伐 LT)、35%(中度间伐 MT)、50%(重度间伐 HT)。采用Hegyi竞争指数量化竞争并进行竞争压力组划分,比较分析不同间伐强度和竞争作用下各树种生长差异,构建不同竞争压力组树木与气候因子的关系,探讨间伐强度和竞争差异是否影响树木对干旱事件的响应策略。
      结果  (1)不同间伐强度下低竞争组树木生长量显著高于高竞争组生长量(P < 0.05) 。高竞争组树木生长量在伐后变化不明显,除色木槭低竞争组生长量保持稳定(9.43 cm2/a),其他树种低竞争组树木呈现显著增加趋势。随着间伐强度增加,低竞争组树木生长出现峰值的时间不一致。(2)不同间伐样地内色木槭不同竞争组树木生长量与温度和降水均呈显著相关关系,而红松、水曲柳和紫椴的不同竞争组树木生长与气候因子的关系受到间伐强度和树种因素的共同影响。在中度间伐下,低竞争组红松对气候因子较敏感。随着间伐强度增加,不同竞争组水曲柳和最低温度的正相关关系稳定性下降,而低竞争组紫椴生长与降水的正相关关系稳定性增加(P < 0.05)。(3)间伐增强了树木对干旱的适应能力,高竞争压力的红松和紫椴的恢复力,低竞争色木槭的抵抗力和恢复力均得到增强。红松、色木槭和紫椴恢复力均在重度间伐后呈现最大值。
      结论  本文研究结果表明保留木竞争环境是影响树木生长的关键要素,并改变了树木生长与气候因子的相关关系。轻度和中度间伐能够有效提高保留木低竞争株数比例,促进保留木的生长,重度间伐增强保留木对干旱事件的恢复力。因此,间伐能够缓解气候暖干化带来的生长下降。
    Abstract:
      Objective  This paper aims to explore whether the competition environment difference of trees under different thinning measures affects the trend of tree growth and its response strategies to climate factors, so as to provide scientific basis for forest management under the background of climate change.
      Method  Four dominant tree species in the broadleaved Korean pine forest of Forestry Experimental Administration in Jiaohe, Jilin Province of northeastern China, Pinus koraiensis, Fraxinus mandshurica, Acer mono, and Tilia amurensis, were selected in four permanent monitoring sample plots with an area of 1 ha, with thinning intensity of 0 (control, CK), 15% (light treatment, LT), 35% (moderate treatment, MT), and 50% (high treatment, HT). Hegyi competition index was used to quantify competition and divide competition pressure groups, compare and analyze the growth differences of various tree species under different thinning intensities and competition, build the relationship between trees in different competition pressure groups and climate factors, and discuss whether thinning intensity and competition differences affect trees’ response strategies to drought events.
      Result  (1) The growth of trees in the low competition group was significantly higher than that in the high competition group under different thinning intensities (P < 0.05). The growth of trees in the high-competition group did not vary significantly after thinning. Except for Acer truncatum, the growth of trees in the low-competition group remained stable (9.43 cm2/year), and other trees in the low-competition group showed a significant increase trend. With the increasing of thinning intensity, the occurrence of highest growth value of trees in the low-competition group was not consistent. (2) The tree growth of different competition groups of Acer mono in different thinning sample plots was significantly correlated with temperature and precipitation, while the relationship between tree growth of different competition groups of Pinus koraiensis, Fraxinus mandshurica and Tilia amurensis and climate factors was jointly affected by thinning intensity and tree species factors. Under medium thinning, Korean pine in low competition group was more sensitive to climate factors. With the increase of thinning intensity, the stability of positive correlation between Fraxinus mandshurica and minimum temperature in different competition groups decreased, while the stability of the positive correlation between Tilia amurensis growth in low-competition group and precipitation increased (P<0.05). (3) Thinning treatment enhanced the ability of trees to adapt to drought event. The resilience of Pinus koraiensis in high competitive group, as well as the resistance and resilience of Tilia amurensis in low-competitive showed remarkable improvement. The highest resilience of Pinus koraiensis, Acer mono and Tilia amurensis was observed in high thinning sample plot.
      Conclusion  Our results add evidence that the competitive environment of retained trees is a key element to affecting the growth of trees, which change the relationship between tree growth and climate factors. Light and medium thinning can effectively improve the proportion of retained trees in low-competition group and promote the growth of retained trees. Height treatment enhances the resilience of retained trees for drought events. Therefore, thinning can alleviate the growth decline caused by climate warming and drying.
  • 图  1   不同间伐强度下各竞争组标准年表

    Figure  1.   Standard chronology of competitive groups under different thinning intensities

    图  2   不同间伐强度下各竞争组伐后树木生长变化趋势

    Figure  2.   Growth trend of each competitive group trees under different thinning intensities

    图  3   不同间伐强度下各竞争组伐后树木生长与气候因子相关关系

    *表示P < 0.05。* means P < 0.05.

    Figure  3.   Correlations between tree growth of competitive groups and climate under different thinning intensities

    图  4   竞争和气候在模型中的显著性百分比

    Figure  4.   Significance percentage of competition and climate in the models

    图  5   不同间伐强度下各竞争组伐后树木抵抗力和恢复力

    Figure  5.   Resistance and resilience of trees after cutting in different competition groups under varied thinning intensities

    表  1   不同树种竞争压力等级划分依据

    Table  1   Classification basis of competitive pressure for different tree species

    树种
    Tree species
    对照
    Control (CK)
    轻度间伐
    Light thinning (LT)
    中度间伐
    Moderate thinning (MT)
    重度间伐
    Heavy thinning (HT)
    红松 Pinus koraiensis4.511.62
    水曲柳 Fraxinus mandshurica2.21.733
    色木槭 Acer mono7.5234.4
    紫椴 Tilia amurensis31.535
    下载: 导出CSV
  • [1]

    Jiang X Y, Huang J G, Cheng J, et al. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests[J]. Science of the Total Environment, 2018, 631−632: 1070−1078.

    [2]

    Trugman A T, Medvigy D, Anderegg W R L, et al. Differential declines in Alaskan boreal forest vitality related to climate and competition[J]. Global Change Biology, 2018, 24(3): 1097−1107. doi: 10.1111/gcb.13952

    [3]

    Liang H, Huang J G, Ma Q, et al. Contributions of competition and climate on radial growth of Pinus massoniana in subtropics of China[J]. Agricultural and Forest Meteorology, 2019, 274: 7−17. doi: 10.1016/j.agrformet.2019.04.014

    [4]

    Pretzsch H. Forest dynamics, growth, and yield[M]//Pretzsch H. Forest dynamics, growth and yield: a review, analysis of the present state, and perspective. Berlin: Springer-Verlag, 2009: 1−39.

    [5]

    Connell J H. Apparent versus “real” competition in plants[M]//Grace J B, Tilman D. Perspectives on plant competition. San Diego: Academic Press, 1990: 9−26.

    [6]

    Foster J R, Finley A O, D’Amato A W, et al. Predicting tree biomass growth in the temperate–boreal ecotone: is tree size, age, competition, or climate response most important?[J]. Global Change Biology, 2016, 22(6): 2138−2151. doi: 10.1111/gcb.13208

    [7]

    Clark J S, Bell D M, Hersh M H, et al. Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates[J]. Global Change Biology, 2011, 17(5): 1834−1849. doi: 10.1111/j.1365-2486.2010.02380.x

    [8]

    Helluy M, Prévosto B, Cailleret M, et al. Competition and water stress indices as predictors of Pinus halepensis Mill. radial growth under drought[J/OL]. Forest Ecology and Management, 2020, 460: 117877[2021−06−11]. https://iopscience.iop.org/article/10.1088/1748-9326/10/3/034010.

    [9]

    Cescatti A, Piutti E. Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest[J]. Forest Ecology and Management, 1998, 102(2−3): 213−223. doi: 10.1016/S0378-1127(97)00163-1

    [10]

    Calama R, Conde M, de Dios G J, et al. Linking climate, annual growth and competition in a Mediterranean forest: Pinus pinea in the Spanish Northern Plateau[J/OL]. Agricultural and Forest Meteorology, 2019, 264: 309−321[2020−01−24]. https://doi.org/10.1016/j.agrformet.2018.10.017.

    [11]

    Martín-Benito D, Cherubini P, del Río M, et al. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes[J]. Trees, 2008, 22(3): 363−373. doi: 10.1007/s00468-007-0191-6

    [12]

    Fang K, Frank D, Zhao Y, et al. Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings[J/OL]. Environmental Research Letters, 2015, 10(3): 034010[2021−10−15]. https://iopscience.iop.org/article/10.1088/1748-9326/10/3/034010.

    [13] Kwon S, 潘磊磊, 时忠杰, 等. 不同竞争强度下的沙地樟子松天然林树木径向生长及其气候响应[J]. 生态学杂志, 2019, 38(7): 1962−1972. doi: 10.13292/j.1000-4890.201907.020

    Kwon S, Pan L L, Shi Z J, et al. Radial growth of Mongolian pine and its response to climate at different competition intensities[J]. Chinese Journal of Ecology, 2019, 38(7): 1962−1972. doi: 10.13292/j.1000-4890.201907.020

    [14]

    Magruder M, Chhin S, Palik B, et al. Thinning increases climatic resilience of red pine[J]. Canadian Journal of Forest Research, 2013, 43(9): 878−889. doi: 10.1139/cjfr-2013-0088

    [15]

    Aldea J, Bravo F, Bravo-Oviedo A, et al. Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands[J]. Agricultural and Forest Meteorology, 2017, 237: 371−383.

    [16]

    Vilà-Cabrera A, Coll L, Martínez-Vilalta J, et al. Forest management for adaptation to climate change in the Mediterranean Basin: a synthesis of evidence[J]. Forest Ecology and Management, 2018, 407: 16−22. doi: 10.1016/j.foreco.2017.10.021

    [17]

    Ford K R, Breckheimer I K, Franklin J F, et al. Competition alters tree growth responses to climate at individual and stand scales[J]. Canadian Journal of Forest Research, 2017, 47(1): 53−62. doi: 10.1139/cjfr-2016-0188

    [18]

    Gazol A, Camarero J J, Anderegg W R L, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests[J]. Global Ecology and Biogeography, 2017, 26(2): 166−176. doi: 10.1111/geb.12526

    [19]

    Wang X C, Pederson N, Zhen J C, et al. Recent rising temperatures drive younger and southern Korean pine growth decline[J]. Science of the Total Environment, 2019, 649: 1105−1116. doi: 10.1016/j.scitotenv.2018.08.393

    [20]

    Wang X, Yang B, Li G. Drought-induced tree growth decline in the desert margins of Northwestern China[J/OL]. Dendrochronologia, 2020, 60: 12568[2021−02−10]. https://doi.org/10.1016/j.dendro.2020.125685.

    [21] 何怀江, 张忠辉, 张春雨, 等. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1−12. doi: 10.11707/j.1001-7488.20190201

    He H J, Zhang Z H, Zhang C Y, et al. Short-term effects of thinning intensity on stand growth and species diversity of mixed coniferous and broad-leaved forest in Northeastern China[J]. Scientia Silvae Sinicae, 2019, 55(2): 1−12. doi: 10.11707/j.1001-7488.20190201

    [22]

    Geng Y, Yue Q, Zhang C, et al. Dynamics and drivers of aboveground biomass accumulation during recovery from selective harvesting in an uneven-aged forest[J]. European Journal of Forest Research, 2021, 140: 1163−1178. doi: 10.1007/s10342-021-01394-9

    [23] 李建, 彭鹏, 何怀江, 等. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 2017, 39(9): 48−57. doi: 10.13332/j.1000-1522.20170220

    Li J, Peng P, He H J, et al. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 48−57. doi: 10.13332/j.1000-1522.20170220

    [24]

    Weber P, Bugmann H, Fonti P, et al. Using a retrospective dynamic competition index to reconstruct forest succession[J]. Forest Ecology and Management, 2008, 254(1): 96−106.

    [25] 刘珂, 姜大膀. 基于两种潜在蒸散发算法的SPEI对中国干湿变化的分析[J]. 大气科学, 2015, 39(1): 23−36. doi: 10.3878/j.issn.1006-9895.1402.13265

    Liu K, Jiang D B. Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1): 23−36. doi: 10.3878/j.issn.1006-9895.1402.13265

    [26]

    Zhang J, Huang S, He F. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate[J]. Proceedings of the National Academy of Sciences, 2015, 112(13): 4009−4014. doi: 10.1073/pnas.1420844112

    [27]

    Bakker J D. A new, proportional method for reconstructing historical tree diameters[J]. Canadian Journal of Forest Research, 2005, 35(10): 2515−2520. doi: 10.1139/x05-136

    [28]

    Sánchez-Salguero R, Linares J C, Camarero J J, et al. Disentangling the effects of competition and climate on individual tree growth: a retrospective and dynamic approach in Scots pine[J]. Forest Ecology and Management, 2015, 358: 12−25. doi: 10.1016/j.foreco.2015.08.034

    [29] 魏志刚, 夏德安, 王瑞琪, 等. 小兴安岭带岭地区不同类型次生林下红松种源试验研究[J]. 森林工程, 2021, 37(3): 1−11. doi: 10.3969/j.issn.1006-8023.2021.03.001

    Wei Z G, Xia D A, Wang R Q, et al. Study on the provenance test of Pinus koraiensis under different natural secondary forests in Dailing Area of Xiaoxing’an Mountains[J]. Forest Engineering, 2021, 37(3): 1−11. doi: 10.3969/j.issn.1006-8023.2021.03.001

    [30]

    Bladon K D, Silins U, Landhäusser S M, et al. Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting[J]. Agricultural and Forest Meteorology, 2006, 138(1): 104−119.

    [31] 张东来, 张玲. 帽儿山林区紫椴群落物种多样性、种间关系及对环境因子的响应[J]. 森林工程, 2015, 31(6): 41−44. doi: 10.3969/j.issn.1001-005X.2015.06.009

    Zhang D L, Zhang L. Study on species diversity, Interspecific association and response to environmental factors of Tilia amurensis community in Maoer Mountain[J]. Forest Engineering, 2015, 31(6): 41−44. doi: 10.3969/j.issn.1001-005X.2015.06.009

    [32] 宣海憧, 郭梦昭, 高露双, 等. 竞争强度变化对针阔混交林红松和水曲柳径向生长的影响[J]. 生态学报, 2020, 40(12): 4087−4093.

    Xuan H T, Guo M Z, Gao L S, et al. Effect of competition environment changes on the radial growth of Pinus koraiensis and Fraxinus mandshurica in mixed coniferous-broadleaved forest[J]. Acta Ecological Sinica, 2020, 40(12): 4087−4093.

    [33]

    Li X Y, Piao S L, Wang K, et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought[J]. Nature Ecology & Evolution, 2020, 4: 1075−1083.

    [34] 彭钟通, 郭明明, 张远东, 等. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响[J]. 生态学报, 2021, 41(20): 8202−8211.

    Peng Z T, Guo M M, Zhang Y D, et al. Effects of abrupt warming on Picea likiangensis var. balfouriana and Abies squamata growth at tree line in Dafu, Sichuan, China[J]. Acta Ecological Sinica, 2021, 41(20): 8202−8211.

    [35]

    Castagneri D, Vacchiano G, Hacket-Pain A, et al. Meta-analysis reveals different competition effects on tree growth resistance and resilience to drought[J]. Ecosystems, 2021, 25: 30−43.

  • 期刊类型引用(2)

    1. 苏岫,王祥,宋德瑞,李飞,杨正先,张浩. 基于改进光谱角法的红树林高分遥感分类方法研究. 海洋环境科学. 2021(04): 639-646 . 百度学术
    2. 陈冀岱,牛树奎. 多时相高分辨率遥感影像的森林可燃物分类和变化分析. 北京林业大学学报. 2018(12): 38-48 . 本站查看

    其他类型引用(3)

图(5)  /  表(1)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  167
  • PDF下载量:  124
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-12-02
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-12-29
  • 发布日期:  2023-01-24

目录

    /

    返回文章
    返回