• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于无人机激光雷达的天然林林隙识别

齐志勇, 李世明, 岳巍, 刘清旺, 李増元

齐志勇, 李世明, 岳巍, 刘清旺, 李増元. 基于无人机激光雷达的天然林林隙识别[J]. 北京林业大学学报, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524
引用本文: 齐志勇, 李世明, 岳巍, 刘清旺, 李増元. 基于无人机激光雷达的天然林林隙识别[J]. 北京林业大学学报, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524
Qi Zhiyong, Li Shiming, Yue Wei, Liu Qingwang, Li Zengyuan. Forest gap identification in natural forest based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524
Citation: Qi Zhiyong, Li Shiming, Yue Wei, Liu Qingwang, Li Zengyuan. Forest gap identification in natural forest based on UAV LiDAR[J]. Journal of Beijing Forestry University, 2022, 44(6): 44-53. DOI: 10.12171/j.1000-1522.20210524

基于无人机激光雷达的天然林林隙识别

基金项目: 高分专项(民用部分)项目(21-Y20B01-9001-19/22),国家自然科学基金面上项目(31370635)
详细信息
    作者简介:

    齐志勇。主要研究方向:无人机遥感应用。Email:535679943@qq.com 地址:100091 北京市海淀区中国林业科学研究院资源信息研究所

    责任作者:

    李世明,副研究员。主要研究方向:森林资源遥感监测、无人机遥感应用。Email:lism@ifrit.ac.cn 地址:下同

  • 中图分类号: S754.1;S771.8

Forest gap identification in natural forest based on UAV LiDAR

  • 摘要:
      目的  自然干扰引起的森林冠层林隙是天然林更新动态的主要驱动力,林隙的分布、形状和范围可以影响光照和土壤水分等生态因子。林隙的识别和特征描述对于理解森林的动态变化有着重要的意义。
      方法  以云南省普洱太阳河保护区无人机飞行区域为研究区,根据无人机激光雷达点云数据提取冠层高度模型;然后使用固定阈值法、相对高度阈值法和面向对象分类法对冠层高度模型数据进行林隙识别,通过图像目视解释获得独立验证样本进行精度评估;最后精度选取最优方法提取的林隙描述其空间特征。
      结果  固定阈值法的总体精度为92.00%,高于相对高度阈值法(66.00%)和面向对象分类法(88.00%)。研究区内林隙主要以中小林隙为主,干扰事件较少;研究区林隙的形状指数均值为1.97,多为形状指数较小、边缘效应不太明显的林隙,并且林隙的空间分布为聚集分布。
      结论  利用无人机激光雷达数据和固定阈值法可以准确绘制出小范围亚热带天然林的林隙空间分布特征。
    Abstract:
      Objective  The forest gaps caused by natural disturbance are the main driving force of the natural forest regeneration and the distribution, shape and extent of forest gaps can affect a series of ecological factors, such as sun light and soil moisture. The identification and characterization of forest gaps are of significance for understanding the dynamic changes of forests.
      Method  The remote sensing of UAV can quickly obtain the three-dimensional spatial information of the forest. The study site is located in the UAV flight coverage at the Puer Sun River Reserve in Yunnan Province of southwestern China. The canopy height model (CHM) was derived from the point cloud data of UAV LiDAR . The fixed threshold method, relative height threshold method and object-oriented classification were used to identify forest gaps in CHM. The reference data from visual interpretation of images were used for accuracy assessment of forest gap identification. Finally, the best method was selected to describe the spatial characteristics of forest gaps.
      Result  The experimental result showed that the overall accuracy of the fixed threshold method was 92.00%, which was higher than the relative height threshold method (66.00%) and object-oriented classification method (88.00%). The forest gaps in the study site area were mainly small and medium gaps, showing that there were fewer disturbance events. The average shape index of forest gaps in the study site was 1.97 and most of them with small shape index and less obvious edge effect. The spatial distribution of the gap was aggregation.
      Conclusion  The spatial distribution of forest gaps and its spatial characteristics in small-scale subtropical natural forests can be mapped by UAV LiDAR data and the fixed threshold method.
  • 图  1   研究区位置

    Figure  1.   Location of study area

    图  2   样点对比

    Figure  2.   Sample point comparison

    图  3   分割尺度参数对比

    Figure  3.   Comparison of segmentation scale parameters

    图  4   3种林隙识别方法剖面结果

    Figure  4.   Profile results of three forest gap identification methods

    图  5   不同方法林隙识别结果

    CHM. 冠层高度模型 Canopy height model

    Figure  5.   Forest gap identification results by different methods

    图  6   林隙面积和数量散点图

    Figure  6.   Scatter plot of forest gap area and number

    图  7   林隙面积和周长散点图

    Figure  7.   Scatter plot of forest gap area and perimeter

    表  1   无人机和激光雷达传感器参数

    Table  1   UAV and LiDAR sensor parameters

    参数 Parameter值 Value
    飞行器类型
    UAV type
    六轴无人机
    Six-axis UAV
    RTK定位精度
    RTK positioning accuracy/m
    0.05
    扫描角度
    Scanning angle/(°)
    45
    脉冲频率
    Pulse frequency/kHz
    720
    每秒激光点数量
    Number of laser points per second
    72 × 104
    定位精度
    Positioning accuracy/m
    水平0.01,垂直0.02
    Horizontal 0.01, vertical 0.02
    旁向重叠
    Sidelap/%
    50
    飞行速度
    Flight speed/(km·h−1)
    65
    点云密度/(个·m−2)
    Point cloud density/(number·m−2)
    53
    下载: 导出CSV

    表  2   分类精度汇总

    Table  2   Classification accuracy summary

    林隙识别方法
    Forest gap identification method
    用户精度
    User’s accuracy
    生产者精度
    Producer’s accuracy
    总体精度
    Overall accuracy/%
    Kappa 系数
    Kappa coefficient
    林隙
    Forest gap/%
    非林隙
    Non forest gap/%
    林隙
    Forest gap/%
    非林隙
    Non forest gap/%
    固定阈值法 Fixed threshold method 97.67 87.72 85.71 98.04 92.00 0.84
    相对高度阈值法
    Relative height threshold method
    61.19 75.76 83.67 49.02 66.00 0.32
    面向对象分类法
    Object-based classification method
    88.37 82.45 90.38 79.16 88.00 0.70
    下载: 导出CSV

    表  3   不同方法识别的林隙面积统计

    Table  3   Forest gap area statistics identified by different methods

    林隙识别方法
    Forest gap
    identification method
    数量
    Number
    平均面积
    Mean area/m2
    面积的中位数
    Median area/m2
    面积的标准差
    Standard deviation
    of area/m2
    总面积
    Total area/
    m2
    林隙所占研究区的比例
    (总面积4 491 220 m2)
    Proportion of forest gap
    area in the study area
    (total area is 4491220 m2)/%
    固定阈值法
    Fixed threshold method
    1 487 21.65 10.71 69.34 32 205.80 0.72
    相对高度阈值法
    Relative height threshold method
    8 987 30.58 12.74 58.81 274 831.40 6.12
    面向对象分类法
    Object-based classification method
    3 470 29.72 20.98 25.18 103 161.73 2.29
    下载: 导出CSV

    表  4   林隙内高度信息统计

    Table  4   Height information statistics in the forest gaps

    林隙识别方法
    Forest gap
    identification method
    平均高度值
    Average height value/m
    高度标准差
    Height standard
    deviation/m
    固定阈值法
    Fixed threshold method
    2.23 0.69
    相对高度阈值法
    Relative height threshold method
    10.24 3.66
    面向对象分类法
    Object-based classification method
    5.23 2.29
    下载: 导出CSV

    表  5   林隙形状指数统计

    Table  5   Statistics of forest gap shape index

    林隙识别方法
    Forest gap identification method
    平均值
    Mean
    最小值
    Min. value
    最大值
    Max. value
    下四分位数
    1st quartile
    中位数
    Median
    上四分位数
    3rd quartile
    标准差
    Standard deviation
    偏度
    Skewness
    固定阈值法
    Fixed threshold method
    1.97 1.19 5.78 1.64 1.88 2.21 0.48 1.69
    下载: 导出CSV
  • [1]

    Degena T, Devilleza F, Jacquemartb A. Gaps promote plant diversity in beech forests (Luzulo-Fagetum), North Vosges, France[J]. Annals of Forest Science, 2005, 62(5): 429−440. doi: 10.1051/forest:2005039

    [2]

    Brokaw N. The definition of treefall gap and its effect on measures of forest dynamics[J]. Biotropica, 1982, 14(2): 1−5.

    [3]

    Schliemann S, Bockheim J. Methods for studying treefall gaps: a review[J]. Forest Ecology and Management, 2011, 261(7): 1143−1151. doi: 10.1016/j.foreco.2011.01.011

    [4]

    Lima R. Gap size measurement: the proposal of a new field method[J]. Forest Ecology and Management, 2005, 214(1): 413−419.

    [5] 毛学刚, 杜子涵, 刘家倩, 等. 基于面向对象的QuickBird遥感影像林隙分割与分类[J]. 应用生态学报, 2018, 29(1): 44−52.

    Mao X G, Du Z H, Liu J Q, et al. Object-oriented segmentation and classification of forest gap based on QuickBird remote[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 44−52.

    [6]

    Malahlela O, Cho M, Mutanga O. Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data[J]. International Journal of Remote Sensing, 2014, 35(17): 6397−6417. doi: 10.1080/01431161.2014.954061

    [7]

    Ueli S, Christof B, Monika F, et al. Abiotic and biotic determinants of height growth of Picea abies regeneration in small forest gaps in the Swiss Alps[J]. Forest Ecology and Management, 2021, 490: 119076−119088. doi: 10.1016/j.foreco.2021.119076

    [8] 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3): 129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022

    Pang Y, Li Z Y, Chen E X, et al. Lidar remate sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005, 41(3): 129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022

    [9]

    Guimarães N, Pádua L, Marques P, et al. Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities[J]. Remote Sensing, 2020, 12(6): 1046−1081. doi: 10.3390/rs12061046

    [10]

    Vehmas M, Packalén P, Maltamo M, et al. Using airborne laser scanning data for detecting canopy gaps and their understory type in mature boreal forest[J]. Annals of Forest Science, 2011, 68(4): 6988−7004.

    [11]

    Zhang K. Identification of gaps in mangrove forests with airborne LIDAR[J]. Remote Sensing of Environment, 2008, 112(5): 2309−2325. doi: 10.1016/j.rse.2007.10.003

    [12]

    Gaulton R, Malthus T. LiDAR mapping of canopy gaps in continuous cover forests: a comparison of canopy height model and point cloud based techniques[J]. International Journal of Remote Sensing, 2010, 31(5): 1193−1211. doi: 10.1080/01431160903380565

    [13] 毛学刚, 侯吉宇, 白雪峰, 等. 基于DOM及LiDAR的多尺度分割与面向对象林隙分类[J]. 农业机械学报, 2017, 48(9): 152−159.

    Mao X G, Hou J Y, Bai X F, et al. Multiscale forest gap segmentation and object-oriented classification based on DOM and LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 152−159.

    [14] 毛学刚, 杜子涵, 刘家倩, 等. 基于无人机LiDAR的天然林与人工林林隙提取[J]. 农业机械学报, 2020, 51(3): 232−240.

    Mao X G, Du Z H, Liu J Q, et al. Extraction of forest gaps in natural forest and man-made forest based on UAV LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 232−240.

    [15]

    Lombard L, Ismail R, Poona N. Modelling forest canopy gaps using LiDAR-derived variables[J]. Geocarto International, 2019, 34(2): 179−193. doi: 10.1080/10106049.2017.1377775

    [16] 颜伟, 周雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 34(3): 445−454.

    Yan W, Zhou W, Yi L L, et al. Research progress of remote sensing classification and change monitoring on forest types[J]. Remote Sensing Technology and Application, 2019, 34(3): 445−454.

    [17] 石军南, 李和顺, 刘晓农, 等. 面向对象分类方法在森林采伐遥感监测中的应用[J]. 中南林业科技大学学报, 2010, 30(11): 6−10. doi: 10.3969/j.issn.1673-923X.2010.11.002

    Shi J N, Li H S, Liu X N, et al. Application of classification object-oriented to forest cutting monitoring based on remote sensing[J]. Journal of Central South University of Forestry Technology, 2010, 30(11): 6−10. doi: 10.3969/j.issn.1673-923X.2010.11.002

    [18]

    White J, Tompalski P, Coops N, et al. Comparison of airborne laser scanning and digital stereo imagery for characterizing forest canopy gaps in coastal temperate rainforests[J]. Remote Sensing of Environment, 2018, 208: 1−14. doi: 10.1016/j.rse.2018.02.002

    [19]

    Vepakomma U, Kneeshaw D, Fortin M. Spatial contiguity and continuity of canopy gaps in mixed wood boreal forests: persistence, expansion, shrinkage and displacement[J]. Journal of Ecology, 2012, 100: 1257−1268. doi: 10.1111/j.1365-2745.2012.01996.x

    [20]

    Bonnet S, Gaulton R, Lehaire F, et al. Canopy gap mapping from airborne laser scanning: an assessment of the positional and geometrical accuracy[J]. Remote Sensing, 2015, 7(9): 11267−11294. doi: 10.3390/rs70911267

    [21]

    Stephan G, Robert N, Kerstin W. Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests[J]. Remote Sensing, 2014, 6(8): 6988−7004. doi: 10.3390/rs6086988

    [22] 国家测绘地理信息局. 机载激光雷达数据获取技术规范: CH/T 8024—2011[S]. 北京: 国家测绘地理信息局, 2011: 1−17.

    National Administration of Surveying, Mapping and Geoinformation. Specifications for data acquisition of airborne LIDAR: CH/T 8024−2011 [S]. Beijing: China Standard Press, 2011: 1−17.

    [23]

    Jean-Romain R, David A, Nicholas C, et al. lidR: an R package for analysis of airborne laser scanning (ALS) data[J]. Remote Sensing of Environment, 2020, 251: 112061−112076. doi: 10.1016/j.rse.2020.112061

    [24] 李强, 王彬, 邓云, 等. 西双版纳热带雨林林窗空间分布格局及其特征指数与林窗下植物多样性的相关性[J]. 生物多样性, 2019, 27(3): 273−285. doi: 10.17520/biods.2018258

    Li Q, Wang B, Deng Y, et al. Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests[J]. Biodiversity Science, 2019, 27(3): 273−285. doi: 10.17520/biods.2018258

    [25] 解欢欢, 彭守璋, 赵传燕, 等. 黑河上游青海云杉林冠层空隙度的时间变异特征[J]. 兰州大学学报(自然科学版), 2016, 52(5): 628−633.

    Xie H H, Peng S Z, Zhao C Y, et al. Temporal variation of canopy openness of Qinghai spruce forest at upstream of Heihe River[J]. Journal of Lanzhou University (Natural Sciences), 2016, 52(5): 628−633.

    [26] 贠慧玲, 王军辉, 赵秋玲, 等. 楸树叶面积指数的测度及冠层空隙度的季节动态[J]. 南京林业大学学报(自然科学版), 2013, 56(2): 59−64.

    Yun H L, Wang J H, Zhao Q L, et al. Seasonal variability in leaf area index and canopy gap fraction of Catalpa bungei[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2013, 56(2): 59−64.

    [27] 陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006, 31(4): 316−320.

    Chen Y H, Feng T, Shi P J, et al. Classification of remot sensing image based on object oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 316−320.

    [28]

    Ángeles V, Rafael N, Rocío H, et al. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: the influence of pulse density[J]. International Journal of Applied Earth Observations and Geoinformation, 2016, 56: 54−64.

    [29]

    Drǎguţ L, Tiede D, Levick S. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6): 859−871. doi: 10.1080/13658810903174803

    [30] 张晓羽, 李凤日, 甄贞, 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016, 44(6): 53−57. doi: 10.3969/j.issn.1000-5382.2016.06.014

    Zhang X Y, Li F R, Zhen Z, et al. Forest vegetation classification of Landsat 8 remote sensing image based on random forest model[J]. Journal of Northeast Foresrty University, 2016, 44(6): 53−57. doi: 10.3969/j.issn.1000-5382.2016.06.014

    [31]

    Grizonnet M, Michel J, Poughon V, et al. Orfeo ToolBox: open source processing of remote sensing images[J]. Open Geospatial Data, Software and Standards, 2017, 2(1): 15−23. doi: 10.1186/s40965-017-0031-6

    [32]

    Zhou L, Luo T, Du M, et al. Machine learning comparison and parameter setting methods for the detection of dump sites for construction and demolition waste using the Google Earth Engine[J]. Remote Sensing, 2021, 13(4): 787−804.

    [33]

    James K, Gregory A. Convergent structural responses of tropical forests to diverse disturbance regimes[J]. Ecology Letters, 2009, 12(9): 887−897. doi: 10.1111/j.1461-0248.2009.01345.x

    [34]

    Asner G, Kellner J, Kennedy-Bowdoin T, et al. Forest canopy gap distributions in the southern Peruvian Amazon[J]. PLoS ONE, 2018, 8(4): 60875−60885.

    [35]

    Law R, Illian J, Burslem D, et al. Ecological information from spatial patterns of plants: insights from point process theory[J]. Journal of Ecology, 2009, 97(4): 616−628. doi: 10.1111/j.1365-2745.2009.01510.x

    [36]

    Goodbody T, Tompalski P, Coops N, et al. Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest[J]. Science Letter, 2020, 10: 6069−6081.

    [37]

    Gardon F, Santos R, Rodrigues R. Brazil’s forest restoration, biomass and carbon stocks: a critical review of the knowledge gaps[J]. Forest Ecology and Management, 2020, 462: 9−19.

  • 期刊类型引用(16)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
    2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
    3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
    4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
    5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
    6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
    7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
    8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
    9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
    10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
    11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
    12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
    13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
    14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
    15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
    16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术

    其他类型引用(13)

图(7)  /  表(5)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  257
  • PDF下载量:  131
  • 被引次数: 29
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2021-12-27
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-13
  • 发布日期:  2022-06-24

目录

    /

    返回文章
    返回