高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MaxEnt模型的北方抗旱造林树种适宜区分布

刘佳琪 魏广阔 史常青 赵廷宁 钱云楷

刘佳琪, 魏广阔, 史常青, 赵廷宁, 钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布[J]. 北京林业大学学报, 2022, 44(7): 63-77. doi: 10.12171/j.1000-1522.20210527
引用本文: 刘佳琪, 魏广阔, 史常青, 赵廷宁, 钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布[J]. 北京林业大学学报, 2022, 44(7): 63-77. doi: 10.12171/j.1000-1522.20210527
Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. doi: 10.12171/j.1000-1522.20210527
Citation: Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. doi: 10.12171/j.1000-1522.20210527

基于MaxEnt模型的北方抗旱造林树种适宜区分布

doi: 10.12171/j.1000-1522.20210527
基金项目: 半干旱栗钙土区抗旱防沙造林综合技术研究(2015HXFWSBXY014)
详细信息
    作者简介:

    刘佳琪。主要研究方向:生态修复。Email:1748620425@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    史常青,博士,副教授。主要研究方向:林业生态工程。Email:scqbj@126.com 地址:同上

  • 中图分类号: S725.1

Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model

  • 摘要:   目的  樟子松、油松、山桃和山杏作为中国北方半干旱半湿润气候区的常用造林树种,具备抗旱耐寒特性和保持水土的功能,研究其适宜空间分布对中国北方植被恢复具有指导作用。  方法  以半干旱半湿润气候区的樟子松、油松、山桃和山杏为研究对象,获取树种地理分布点位数据和与树种生态学相关的24个环境因子(地形、土壤和气象),基于协同克里金插值法,将限制因子叠加法与最大熵模型(MaxEnt)相结合,研究4类树种适宜区分布。  结果  (1)4类树种MaxEnt模型预测精度达到准确水平(AUC > 0.90)。(2)影响樟子松分布的主导因子依次为土壤类型、最冷月均温和最冷月平均风速;油松的主导因子依次为高程、年均气温标准差、土壤类型、年降水量;山桃的主导因子依次为最暖月均温、高程、年极端最低气温、年均降水量标准差、坡度、土壤类型;山杏的主导因子依次为高程、土壤类型、最暖月平均降水量、湿润系数、最暖月均温。(3)樟子松中高适宜区主要分布于内蒙古、黑龙江、吉林等地,油松、山桃和山杏主要分布在山西、陕西、甘肃、河北、内蒙古等地。  结论  MaxEnt模型模拟结果,可准确反映4类树种的适宜区分布情况,结果可为我国半干旱半湿润区绿化造林提供适地适树的科学指导。

     

  • 图  1  半干旱半湿润气候区分布

    底图审图号:GS(2021)5448号。下同。Base drawing review No.:GS(2021)5448. The same below.

    Figure  1.  Distribution of semi-arid and semi-humid climate zone

    图  2  樟子松(a)、油松(b)、山桃(c)和山杏(d)可能适宜区分布图

    Figure  2.  Distribution map of possible suitable areas of Pinus sylvestris var. mongolica (a), Pinus tabuliformis (b), Amygdalus davidiana (c) and Armeniaca sibirica (d)

    图  3  气象因子相关性分析

    Figure  3.  Correlation analysis of meteorological factors

    图  4  樟子松(a)、油松(b)、山桃(c)和山杏(d)的受试者工作特征曲线

    AUC为ROC曲线下方的面积。AUC is area under the curve of ROC.

    Figure  4.  Receiver operating characteristic curves of Pinus sylvestris var. mongolica (a), Pinus tabuliformis (b), Amygdalus davidiana (c) and Armeniaca sibirica (d)

    图  5  主导因子累积贡献率

    Figure  5.  Cumulative contribution rates of dominant factors

    图  6  主导环境因子响应曲线

    图a~c、d~g、h~m和n~r分别为樟子松、油松、山桃和山杏主导环境因子;a、f、m和o中,1为褐土;2为棕壤土;3为栗褐土;4为灰褐土;5为石质土;6为黑钙土;7为粗骨土;8为新积土;9为栗钙土;10为黄棕壤;12为潮土;13为白浆土;18为黄绵土;24为风沙土;26为黑土;28为草甸土;B为存在概率。In the figure, a−c、d−g、h−m and n−r are dominant environmental factors of Pinus sylvestris var. mongolica, Pinus tabuliformis, Amygdalus davidiana and Armeniaca sibirica, respectively. In figure a, f, m and o, 1 is cinnamon soil; 2 is brown soil; 3 is chestnut cinnamon soil; 4 is grey cinnamon soil; 5 is stony soil; 6 is chernozem; 7 is coarse bone soil; 8 is newly accumulated soil; 9 is chestnut soil; 10 is yellow brown soil; 12 is fluvo-aquic soil; 13 is albic soil; 18 is loessial soil; 24 is aeolian sandy soil; 26 is black soil; 28 is meadow soil. B is probability of existence.

    Figure  6.  Response curves of dominant environmental factors

    图  7  樟子松(a)、油松(b)、山桃(c)和山杏(d)适宜分布区

    Figure  7.  Suitable distribution areas of Pinus sylvestris var. mongolica (a), Pinus tabuliformis (b), Amygdalus davidiana (c) and Armeniaca sibirica (d)

    图  8  樟子松、油松、山桃和山杏中高适宜区各省份占比

    IM.内蒙古自治区;HL.黑龙江省;JL.吉林省;HE.河北省;SX.山西省;SN.陕西省;GS.甘肃省。IM, Inner Mongolia Autonomous Region; HL, Heilongjiang Province; JL, Jilin Province; HE, Hebei Province; SX, Shanxi Province; SN, Shaanxi Province; GS, Gansu Province.

    Figure  8.  Distribution ratio of provinces in middle and high suitable areas of Pinus sylvestris var. mongolica, Pinus tabuliformis, Amygdalus davidiana and Armeniaca sibirica

    图  9  樟子松(a)、油松(b)、山桃(c)和山杏(d)最高适生省份中高适宜区地级分布

    Figure  9.  Distribution of Pinus sylvestris var. mongolica (a), Pinus tabuliformis (b), Amygdalus davidiana (c) and Armeniaca sibirica (d) at prefecture level in middle and high suitable areas of the highest suitable provinces

    表  1  环境因子

    Table  1.   Environmental factors

    类型 Type变量 Variable描述 Description单位 Unit
    地形
    Terrain
    Ele 高程 Elevation m
    Slo 坡度 Slope (°)
    Asp 坡向 Aspect
    土壤
    Soil
    Soil-type 土壤类型 Soil type
    Soil-pH-t 0 ~ 30 cm土壤pH Soil pH in 0−30 cm
    Soil-pH-s 30 ~ 100 cm土壤pH Deep soil pH in 30−100 cm
    气象
    Meteorology
    PRE1 最暖月平均降水量 Mean precipitation in the warmest month mm
    PRE2 最冷月平均降水量 Mean precipitation in the coldest month mm
    PRE3 年降水量 Annual precipitation mm
    PRE4 累年年最多降水量 Cumulative annual maximum precipitation mm
    PRE5 年均降水量标准差 SD of mean annual precipitation mm
    TEM1 年日均温 Annual mean temperature
    TEM2 最暖月均温 Mean temperature of the warmest month
    TEM3 最冷月均温 Mean temperature the coldest month
    TEM4 年平均气温 Annual mean temperature
    TEM5 气温年较差 Annual range of temperature
    TEM6 年极端最高气温 Annual extreme maximum temperature
    TEM7 年极端最低气温 Annual extreme minimum temperature
    TEM8 年均气温日较差 Annual mean daily temperature range
    TEM9 年均气温标准差 SD of mean annual temperature
    GDD5 ≥ 5 ℃积温 ≥ 5 ℃ accumulated temperature ℃·d
    Wind 最冷月平均风速 Mean wind speed of the coldest month m/s
    HUM 年平均相对湿度 Annual average relative humidity %
    Wet 湿润系数 Humid coefficient
    下载: 导出CSV

    表  2  限制因子适宜区范围

    Table  2.   Suitable range of limiting factors

    树种
    Tree species
    限制因子
    Limiting factor
    可能适宜区范围
    Possible suitable
    area range
    樟子松
    Pinus sylvestris var. mongolica
    Ele/m [500, 2 000]
    PRE3/mm [350, 900]
    TEM7/℃ [−50, 25]
    Soil-pH-t (5, 8]
    Soil-pH-s (5, 8]
    油松
    Pinus tabuliformis
    Ele/m [100, 2 600]
    PRE3/mm [400, 968]
    TEM7/℃ [−25, 25]
    山桃
    Amygdalus davidiana
    Ele/m [800, 3 200]
    PRE3/mm [100, 1 700]
    TEM4/℃ [8, 25]
    TEM7/℃ [−26, 25]
    山杏
    Armeniaca sibirica
    Ele/m [700, 2 000]
    PRE3/mm [200, 600]
    TEM4/℃ [4, 12]
    TEM7/℃ [−40, 25)
    下载: 导出CSV

    表  3  树种主要环境因子

    Table  3.   Main environmental factors of tree species

    樟子松 Pinus sylvestris var. mongolica油松 Pinus tabuliformis山桃 Amygdalus davidiana山杏 Armeniaca sibirica
    Ele Ele Ele Ele
    Slo Slo Slo Slo
    Asp Asp Asp Asp
    Soil-pH-T Soil-pH-T Soil-pH-T Soil-pH-T
    Soil-pH-S Soil-pH-S Soil-pH-S Soil-pH-S
    Soil-type Soil-type Soil-type Soil-type
    PRE1 PRE1 PRE1 PRE1
    PRE2 PRE2 PRE2 PRE2
    PRE3 PRE3 PRE5 PRE3
    TEM1 TEM1 TEM2 TEM1
    TEM2 TEM2 TEM6 TEM2
    TEM3 TEM5 TEM7 TEM3
    TEM6 TEM6 TEM8 TEM6
    TEM8 TEM7 TEM9 TEM8
    TEM9 TEM8 GDD5 TEM9
    Wet TEM9 Wet Wet
    Wind Wet Wind Wind
    HUM Wind HUM HUM
    HUM
    下载: 导出CSV

    表  4  树种的适宜分布区面积

    Table  4.   Suitable distribution area of tree species

    树种
    Tree species
    高适宜区
    High suitable area
    中适宜区
    Moderate suitable area
    低适宜区
    Low suitable area
    不适宜区
    Unsuitable area
    面积
    Area/km2
    占比
    Proportion/%
    面积
    Area/km2
    占比
    Proportion/%
    面积
    Area/km2
    占比
    Proportion/%
    面积
    Area/km2
    占比
    Proportion/%
    樟子松
    Pinus sylvestris var. mongolica
    231 997.00 5.65 366 445.00 8.93 579 222.00 14.11 2926 535.00 71.31
    油松
    Pinus tabuliformis
    337 415.00 8.22 279 967.00 6.82 224 080.00 5.46 3262 737.00 79.50
    山桃
    Amygdalus davidiana
    195 493.00 4.76 162 468.90 3.96 318 831.50 7.77 3427 405.60 83.51
    山杏
    Armeniaca sibirica
    341 497.80 8.32 311 319.90 7.59 672 050.90 16.37 2779 330.40 67.72
    下载: 导出CSV

    表  5  4类树种最高适生省份的县级分布

    Table  5.   County-level distribution of the provinces with the highest suitability of four tree species

    树种
    Tree species
    省级行政区
    Provincial-level administrative region
    地市级行政区
    Prefecture-level administrative region
    县级行政区
    County-level administrative region
    樟子松
    Pinus sylvestris var. mongolica
    内蒙古自治区
    Inner Mongolia Autonomous Region
    呼和浩特市
    Hohhot City
    全市
    Whole City
    赤峰市
    Chifeng City
    林西县、阿鲁科尔沁旗、巴林左旗、巴林右旗、克什克腾旗、翁牛特旗
    Linxi County, Alukhorqin Banner, Balinzuo Banner, Balinyou Banner, Hexigten Banner, Ongniud Banner
    通辽市
    Tongliao City
    扎鲁特旗
    Jarud Banner
    鄂尔多斯市
    Ordos City
    准格尔旗、乌审旗、伊金霍洛旗
    Jungar Banner, Wushen Banner, Ejin Horo Banner
    呼伦贝尔市
    Hulunbeier City
    满洲里市、阿荣旗、新巴尔虎左旗、鄂伦春自治旗、鄂温克族自治旗
    Manzhouli City, Arong Banner, Xinbaerhuzuo Banner, Oroqen Autonomous Banner, Ewenki Autonomous Banner
    乌兰察布市
    Wulanchabu City
    丰镇市、卓资县、化德县、商都县、兴和县、察哈尔右翼中旗、察哈尔右翼后旗
    Fengzhen City, Zhuozi County, Huade County, Shangdu County, Xinghe County, Chahar Wing Right Middle Banner, Chahar Wing Right Back Banner
    兴安盟
    Hinggan League
    突泉县、科尔沁右翼前旗、科尔沁右翼中旗
    Tuquan County, Horqin Right Front Banner, Horqin Right Middle Banner
    锡林郭勒盟
    Xilinguole League
    锡林浩特市、多伦县、镶黄旗、正镶白旗、正蓝旗
    Xilinhot City, Duolun County, Xianghuang Banner, Zhengxiangbai Banner, Zhenglan Banner
    油松
    Pinus tabuliformis
    山西省
    Shanxi Province
    太原市 Taiyuan City 全市 Whole city
    阳泉市 Yangquan City 全市 Whole city
    长治市 Changzhi City 全市 Whole city
    晋城市 Jincheng City 全市 Whole city
    朔州市 Shuozhou City 全市 Whole city
    晋中市 Jinzhong City 全市 Whole city
    忻州市 Xinzhou City 全市 Whole city
    吕梁市 Lüliang City 全市 Whole city
    运城市 Yuncheng City 绛县、夏县 Jiang County, Xia County
    山桃
    Amygdalus davidiana
    山西省
    Shanxi Province
    阳泉市
    Yangquan City
    全市
    Whole city
    长治市
    Changzhi City
    全市
    Whole city
    晋城市
    Jincheng City
    全市
    Whole city
    晋中市
    Jinzhong City
    全市
    Whole city
    运城市
    Yuncheng City
    全市
    Whole city
    临汾市
    Linfen City
    全市
    Whole city
    吕梁市
    Lüliang City
    全市
    Whole city
    太原市
    Taiyuan City
    古交市、清徐县、阳曲县、娄烦县
    Gujiao City, Qingxu County, Yangqu County, Loufan County
    大同市
    Datong City
    广灵县、灵丘县、浑源县
    Guangling County, Lingqiu County, Hunyuan County
    山杏
    Armeniaca sibirica
    内蒙古自治区
    Inner Mongolia Autonomous Region
    呼和浩特市
    Hohhot City
    托克托县、清水河县、武川县
    Tuoketuo County, Qingshuihe County, Wuchuan County
    赤峰市
    Chifeng City
    林西县、宁城县、巴林左旗、巴林右旗、克什克腾旗、翁牛特旗、喀喇沁旗、敖汉旗
    Linxi County, Ningcheng County, Balinzuo Banner, Balinyou Banner, Hexigten Banner, Ongniud Banner, Harqin Banner, Aohan Banner
    通辽市
    Tongliao City
    霍林郭勒市、库伦县、奈曼旗、扎鲁特旗、科尔沁右翼中旗
    Huolinguole City, Kulun County, Naiman Banner, Jarud Banner, Horqin Right Middle Banner
    鄂尔多斯市
    Ordos City
    达拉特旗、准格尔旗、伊金霍洛旗
    Datuk Banner, Jungar Banner, Ejinhoro Banner
    乌兰察布市
    Ulanqab City
    丰镇市、卓资县、化德县、商都县、兴和县、凉城县、察哈尔右翼中旗、察哈尔右翼后旗
    Fengzhen City, Zhuozi County, Huade County, Shangdu County, Xinghe County, Liangcheng county, Chahar Right Middle Banner, Chahar Right Back Banner
    兴安盟
    Hinggan League
    乌兰浩特市、突泉县、扎赉特旗、科尔沁右翼前旗
    Wulanhaote City, Tuquan County, Jalaid Banner, Horqin Right Front Banner
    锡林郭勒盟
    Xilinguole League
    多伦县、西乌珠穆沁旗、太仆寺旗、镶黄旗、正镶白旗、正蓝旗
    Duolun County, West Ujimqin Banner, Taipusi Banner, Xianghuang Banner, Zhengxiangbai Banner, Zhenglan Banner
    下载: 导出CSV
  • [1] 程林仙, 王万瑞, 仁宗启, 等. 陕北仁用杏气候适宜性区划[J]. 西北林学院学报, 2001, 16(2): 18−21. doi: 10.3969/j.issn.1001-7461.2001.02.005

    Cheng L X, Wang W R, Ren Z Q, et al. Climatic adaptability division for apricot in northern Shaanxi[J]. Journal of Northwest Forestry University, 2001, 16(2): 18−21. doi: 10.3969/j.issn.1001-7461.2001.02.005
    [2] 赖文豪, 席沁, 武海龙, 等. 内蒙古兴和县低山丘陵立地类型划分与林草适宜性评价[J]. 浙江农林大学学报, 2018, 35(2): 331−339. doi: 10.11833/j.issn.2095-0756.2018.02.018

    Lai W H, Xi Q, Wu H L, et al. Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia[J]. Journal of Zhejiang A&F University, 2018, 35(2): 331−339. doi: 10.11833/j.issn.2095-0756.2018.02.018
    [3] 闫烨琛. 大清河流域山丘区立地类型划分与评价[D]. 北京: 北京林业大学, 2020.

    Yan Y C. Classification and evaluation of site types in hilly areas of Daqing River Basin [D]. Beijing: Beijing Forestry University, 2020.
    [4] 周立江. 低效林评判与改造途径的探讨[J]. 四川林业科技, 2004, 25(1): 16−21. doi: 10.3969/j.issn.1003-5508.2004.01.003

    Zhou L J. Discussion on judgment and rebuilding approaches of low-efficiency forest[J]. Journal of Sichuan Forestry Science and Technology, 2004, 25(1): 16−21. doi: 10.3969/j.issn.1003-5508.2004.01.003
    [5] 张明珠, 叶兴状, 刘益鹏, 等. 基于SSPs预测格木在中国的潜在地理分布[J]. 北京林业大学学报, 2022, 44(4): 54−65. doi: 10.12171/j.1000-1522.20210308

    Zhang M Z, Ye X Z, Liu Y P, et al. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54−65. doi: 10.12171/j.1000-1522.20210308
    [6] Ahmed S E, Mcinerny G, O’Hara K, et al. Scientists and software-surveying the species distribution modelling community[J]. Diversity & Distributions, 2015, 21(3): 258−267.
    [7] 郭虹扬, 史明昌, 杨建英, 等. 白洋淀大清河流域油松精准适宜性空间分布[J]. 浙江农林大学学报, 2021, 38(6): 1−9. doi: 10.11833/j.issn.2095-0756.20200751

    Guo H Y, Shi M C, Yang J Y, et al. Precise spatial distribution of suitability of Pinus tabulaeformis in Daqing River Basin, Baiyangdian[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1−9. doi: 10.11833/j.issn.2095-0756.20200751
    [8] 张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8): 33−41. doi: 10.13332/j.1000-1522.20170002

    Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33−41. doi: 10.13332/j.1000-1522.20170002
    [9] Sharifian S, Kamrani E, Saeedi H. Global future distributions of mangrove crabs in response to climate change[J]. Wetlands, 2021, 41(8): 1−14.
    [10] 黄睿智, 于涛, 赵辉, 等. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测[J]. 北京林业大学学报, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254

    Huang R Z, Yu T, Zhao H, et al. Prediction of suitable distribution area of endangered plant Acer catalpa in China under the background of climate change[J]. Journal of Beijing Forestry University, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254
    [11] 刘维, 赵儒楠, 圣倩倩, 等. 矮牡丹在中国的地理分布及潜在分布区预测[J]. 北京林业大学学报, 2021, 43(12): 83−92. doi: 10.12171/j.1000-1522.20200360

    Liu W, Zhao R N, Sheng Q Q, et al. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83−92. doi: 10.12171/j.1000-1522.20200360
    [12] 满多清, 孙坤, 刘世增, 等. 干旱荒漠区樟子松幼苗的抗逆性分析[J]. 甘肃农业大学学报, 2004, 39(5): 543−547. doi: 10.3969/j.issn.1003-4315.2004.05.017

    Man D Q, Sun K, Liu S Z, et al. A research on seedling resistance of Pinus sylvestris var. mongolica in arid desert area[J]. Journal of Gansu Agricultural University, 2004, 39(5): 543−547. doi: 10.3969/j.issn.1003-4315.2004.05.017
    [13] Xi Q, Lai W H, Cui Y Y, et al. Effect of yeast extract on seedling growth promotion and soil improvement in afforestation in a semiarid chestnut soil area[J/OL]. Forests, 2019, 10(1): 76[2021-12-20]. https://doi.org/10.3390/f10010076.
    [14] Zhebentyayeva T, Reighard G, Gorina V, et al. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm[J]. Theoretical and Applied Genetics, 2003, 106(3): 435−444. doi: 10.1007/s00122-002-1069-z
    [15] 于笑, 纪若璇, 常远, 等. 四种抗旱植物在不同区域的生长稳定性[J]. 应用生态学报, 2021, 32(12): 4212−4222. doi: 10.13287/j.1001-9332.202112.011

    Yu X, Ji R X, Chang Y, et al. Growth stability of four drought resistant plant species in different regions[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4212−4222. doi: 10.13287/j.1001-9332.202112.011
    [16] 张淑勇, 周泽福, 张光灿, 等. 水分胁迫下天然次生灌木山桃和山杏光合气体交换特征[J]. 西北植物学报, 2008, 28(12): 2492−2499. doi: 10.3321/j.issn:1000-4025.2008.12.021

    Zhang S Y, Zhou Z F, Zhang G C, et al. Gas exchange characteristics of natural secondary shrubs Prunus davidiana and Prunus sibirica under different water stresses[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(12): 2492−2499. doi: 10.3321/j.issn:1000-4025.2008.12.021
    [17] Garzón M, Blazek R, Neteler M, et al. Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula[J]. Ecological Modelling, 2006, 197(3−4): 383−393. doi: 10.1016/j.ecolmodel.2006.03.015
    [18] 张晨星, 张炜, 徐晶晶, 等. 基于GIS和最大熵模型的河北省油松适宜性分布分析[J]. 地理与地理信息科学, 2020, 36(6): 18−25. doi: 10.3969/j.issn.1672-0504.2020.06.004

    Zhang C X, Zhang W, Xu J J, et al. Analysis on suitability distribution of Pinus tabulaeformis in Hebei Province based on GIS and MaxEnt model[J]. Geography and Geo-Information Science, 2020, 36(6): 18−25. doi: 10.3969/j.issn.1672-0504.2020.06.004
    [19] 吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下河北省3个优势树种适宜分布区预测[J]. 林业科学, 2019, 55(3): 13−21. doi: 10.11707/j.1001-7488.20190302

    Lü Z G, Li W B, Huang X R, et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province[J]. Scientia Silvae Sinicae, 2019, 55(3): 13−21. doi: 10.11707/j.1001-7488.20190302
    [20] Vasquez V L, de Lima A A, dos Santos A P, et al. Influence of spatial extent on habitat suitability models for primate species of Atlantic forest[J/OL]. Ecological Informatics, 2021, 61: 101179[2022−02−10]. https://doi.org/10.1016/j.ecoinf.2020.101179.
    [21] 李昂. 应用ArcGIS软件和最大熵模型分析樟子松潜在分布及其气候适宜性[D]. 沈阳: 沈阳农业大学, 2016.

    Li A. Using ArcGIS software and maximum entropy model to analyze the potential distribution and climate suitability of Pinus sylvestris var. mongolica [D]. Shenyang: Shenyang Agricultural University, 2016.
    [22] 唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103

    Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103
    [23] 王爱君, 路东晔, 张国盛, 等. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8): 43−55. doi: 10.11707/j.1001-7488.20210805

    Wang A J, Lu D Y, Zhang G S, et al. Potential distribution of Juniperus sabina under climate change in Eurasia continent based on MaxEnt model[J]. Scientia Silvae Sinicae, 2021, 57(8): 43−55. doi: 10.11707/j.1001-7488.20210805
    [24] Zhou Y, Zhang Z, Zhu B, et al. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China[J/OL]. Forests, 2021, 12(6): 752[2022−02−10]. https://doi.org/10.3390/f12060752.
    [25] 赵宇铭, 邱新法, 朱晓晨, 等. 1971—2010年中国干湿区降雨资源变化特征分析[J]. 长江科学院院报, 2019, 36(5): 34−41.

    Zhao Y M, Qiu X F, Zhu X C, et al. Characteristics of rainfall amount variations in wet and drv partitions of China from 1971 to 2010[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(5): 34−41.
    [26] 祖力卡尔·海力力, 赵廷宁, 姜群鸥. 西北干旱荒漠区边界范围及变化分析[J]. 干旱区地理, 2021, 44(6): 1635−1643.

    Zulikar H, Zhao T N, Jiang Q O. Boundary scope and change of arid desert area in northwest China[J]. Arid Land Geography, 2021, 44(6): 1635−1643.
    [27] 中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978.

    Editorial Board of Flora of China. Flora of China[M]. Beijing: Science Press, 1978.
    [28] 阳宽达, 谢红霞, 隋兵, 等. 基于GIS的降雨空间插值研究: 以湖南省为例[J]. 水土保持研究, 2020, 27(3): 134−138.

    Yang K D, Xie H X, Sui B, et al. Research on spatial interpolation of rainfall based on GIS: a case study of Hunan Province[J]. Research of Soil and Water Conservation, 2020, 27(3): 134−138.
    [29] 李宗梅, 张增祥, 赵晓丽, 等. 全国干湿分布区动态变化研究[J]. 地球与环境, 2017, 45(4): 420−433.

    Li Z M, Zhang Z X, Zhao X L, et al. Study on the dynamic change of dry and wet distribution areas in China[J]. Earth and Environment, 2017, 45(4): 420−433.
    [30] 赵兴梁, 李万英. 樟子松[M]. 北京: 农业出版社, 1963: 154.

    Zhao X L, Li W Y. Pinus sylvestris var. mongolica [M]. Beijing: Agriculture Press, 1963: 154.
    [31] 徐化成. 油松[M]. 北京: 中国林业出版社, 1993.

    Xu H C. Pinus tabuliformis [M]. Beijing: China Forestry Publishing House, 1993.
    [32] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.

    Wu Z Y. Vegetation in China [M]. Beijing: Science Press, 1980.
    [33] 贾光林, 王珍, 李家春, 等. 山桃仁产地适宜性分析[J]. 湖北农业科学, 2011, 50(18): 3778−3780. doi: 10.3969/j.issn.0439-8114.2011.18.033

    Jia G L, Wang Z, Li J C, et al. Regional suitability evaluation of Prunus daviadiana[J]. Hubei Agricultural Sciences, 2011, 50(18): 3778−3780. doi: 10.3969/j.issn.0439-8114.2011.18.033
    [34] Jaynes E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 343–369.
    [35] 车乐, 曹博, 白成科, 等. 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价[J]. 生态学杂志, 2014, 33(6): 1623−1628.

    Che L, Cao B, Bai C K, et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS[J]. Chinese Journal of Ecology, 2014, 33(6): 1623−1628.
    [36] 古丽米拉·克孜尔别克, 邱琴, 海拉提·克孜尔别克. 基于MaxEnt模型的阿勒泰金莲花潜在适生区预测[J]. 江苏农业科学, 2021, 49(4): 82−87.

    Gulimilla K, Qiu Q, Hailati K. Prediction of potential suitable area of Trollius altaicus based on MaxEnt model[J]. Jiangsu Agricultural Sciences, 2021, 49(4): 82−87.
    [37] 吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12): 2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006

    Wu X Y, Jiang F Q, Li X D, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land[J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006
    [38] 赵哈林, 李瑾, 周瑞莲, 等. 不同强度净风频繁吹袭对樟子松(Pinus sylvestris var. mongolica)幼苗光合蒸腾特征的影响[J]. 生态学报, 2017, 37(5): 1431−1437.

    Zhao H L, Li J, Zhou R L, et al. Effects of wind frequency on the rates of photosynthesis and transpiration in Pinus sylvestris var. mongolica seedlings[J]. Acta Ecologica Sinica, 2017, 37(5): 1431−1437.
    [39] 肖敏, 胡卓玮, 董琳. 基于MaxEnt模型的油松潜在地理分布研究[J]. 地理空间信息, 2017, 15(6): 34−37. doi: 10.3969/j.issn.1672-4623.2017.06.010

    Xiao M, Hu Z W, Dong L. Potential geographical distribution of Pinus Tabuliformis based on MaxEnt model[J]. Geospatial Information, 2017, 15(6): 34−37. doi: 10.3969/j.issn.1672-4623.2017.06.010
    [40] 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1): 3−12. doi: 10.11821/xb201001002

    Zheng J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1): 3−12. doi: 10.11821/xb201001002
    [41] Wang, Jr, Hawkins, et al. Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes[J]. Forest Ecol Manage, 1998, 112(3): 233−244.
    [42] Ribes A, Azas J M, Planton S. A method for regional climate change detection using smooth temporal patterns[J]. Climate Dynamics, 2010, 35(2): 391−406.
    [43] 张家琛, 党怡雯, 陈亚恒. 基于GIS的阜平县北流河区域山杏生态适宜性区划研究[J]. 西南林业大学学报(自然科学), 2021, 41(5): 98−104.

    Zhang J C, Dang Y W, Chen Y H. Ecological suitability regionalization of Armeniaca sibirica in Beiliuhe region of Fuping County based on GIS[J]. Journal of Southwest Forestry University (Natural Sciences), 2021, 41(5): 98−104.
    [44] 张山清, 吉春容, 普宗朝. 气候变暖对新疆杏种植气候适宜性的影响[J]. 中国农业资源与区划, 2019, 40(9): 131−141.

    Zhang S Q, Ji C R, Pu Z C. Impact of climate warming on climate suitability of apricot planting in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(9): 131−141.
    [45] 李蒙蒙, 丁国栋, 高广磊, 等. 樟子松(Pinus sylvestris var. mongholica)在中国北方10省(区)引种的适宜性[J]. 中国沙漠, 2016, 36(4): 1021−1028.

    Li M M, Ding G D, Gao G L, et al. Introduction suitability of Pinus sylvestris var. mongholica in 10 northern provinces of China [J]. Journal of Desert Research 2016, 36(4): 1021−1028.
    [46] 喻方圆, 徐锡增. 植物逆境生理研究进展[J]. 世界林业研究, 2003, 16(5): 6−11. doi: 10.3969/j.issn.1001-4241.2003.05.002

    Yu F Y, Xu X Z. A review on plant stress physiology[J]. World Forestry Research, 2003, 16(5): 6−11. doi: 10.3969/j.issn.1001-4241.2003.05.002
    [47] Zhao Q, Zeng D H, Fan Z P. Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil[J]. Applied Soil Ecology, 2010, 46(3): 341−346.
    [48] 赵晓彬, 刘光哲. 沙地樟子松引种栽培及造林技术研究综述[J]. 西北林学院学报, 2007, 22(5): 86−89. doi: 10.3969/j.issn.1001-7461.2007.05.022

    Zhao X B, Liu G Z. A review of studies of introduction cultivates and afforestation technology on Pinus sylvestris var. mongolica in sandy area[J]. Journal of Northwest Forestry University, 2007, 22(5): 86−89. doi: 10.3969/j.issn.1001-7461.2007.05.022
    [49] 冯奥哲, 孔涛, 孙溥璠, 等. 沙地不同密度樟子松人工林土壤矿化氮质量分数与矿化特征[J]. 东北林业大学学报, 2021, 49(10): 96−103. doi: 10.3969/j.issn.1000-5382.2021.10.017

    Feng A Z, Kong T, Sun P F, et al. Soil mineralized nitrogen content and mineralization characteristics of Pinus sylvestris var. mongolica plantations with different densities in sandy land[J]. Journal of Northeast Forestry University, 2021, 49(10): 96−103. doi: 10.3969/j.issn.1000-5382.2021.10.017
    [50] 张雷, 刘世荣, 孙鹏森, 等. 气候变化对物种分布影响模拟中的不确定性组分分割与制图: 以油松为例[J]. 生态学报, 2011, 31(19): 5749−5761.

    Zhang L, Liu S R, Sun P S, et al. Partitioning and mapping the sources of variations in the ensemble forecasting of species distribution under climate change: acase study of Pinus tabulaeformis[J]. Acta Ecologica Sinica, 2011, 31(19): 5749−5761.
    [51] Wang T, Wang G, Innes J, et al. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region[J]. Forest Ecology & Management, 2016, 360: 357−366.
    [52] Fettig C J, Reid M L, Bentz B J, et al. Changing climates, changing forests: a western north American rerspective[J]. Journal of Forestry, 2013, 111(3): 214−228. doi: 10.5849/jof.12-085
    [53] Poland T M, Mccullough D G. Emerald A B: invasion of the urban forest and the threat to north America's Ash resource[J]. Journal of Forestry, 2006, 104(3): 118−124.
    [54] 裴顺祥, 法蕾, 杜满义, 等. 种间关系对中条山油松人工林天然更新及群落稳定性的影响[J]. 林业科学研究, 2022, 35(1): 150−157. doi: 10.13275/j.cnki.lykxyj.2022.01.017

    Pei S X, Fa L, Du M Y, etl. Effects of interspecific relationships on natural regeneration and community stability of Pinus tabulaeformis plantation in Zhong tiao Mountain[J]. Forestry Research, 2022, 35(1): 150−157. doi: 10.13275/j.cnki.lykxyj.2022.01.017
    [55] Yang X Q, Kushwaha S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  23
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回