Ecological restoration effect evaluation of Zhangxuan iron tailings in Hebei Province of northern China under different vegetation patterns
-
摘要:
目的 探讨不同植被模式对铁尾矿库生态恢复效果的影响,筛选出适宜张宣矿区的植被模式,以解决铁尾矿废弃地土壤养分低下、植物生长困难和水土流失严重等问题。 方法 以该区铁尾矿库的14种植被模式为研究对象,从植物生长特征、植被群落特征、土壤养分情况等方面选取指标对其恢复效果进行评价。 结果 各模式植被盖度普遍处于中上水平,油松、沙棘、芦苇和野艾蒿分别为研究区内乔木、灌木、草本植物的优势种;乔木、乔灌等模式多样性指数普遍高于灌木、灌草等恢复模式,但丰富度指数普遍较差。不同植被模式、不同土壤深度对土壤养分均影响显著,该区土壤富含速效钾,但缺乏氮、磷和有机质。经CRITIC-GRA法得分排序,油松、油松 + 洋白蜡、沙棘 + 胡枝子为研究区内得分排名前3的模式,所有恢复措施中仅自然恢复措施评价等级处于“差”。 结论 建议当地采用覆土整地植苗恢复措施,植物种选择上优先考虑油松 + 沙棘或胡枝子 + 野艾蒿或草木犀,另外可施用适量氮磷肥或有机肥,以加快铁尾矿库土壤养分改良。 -
关键词:
- 植被模式 /
- CRITIC-GRA /
- 植物多样性 /
- 土壤养分
Abstract:Objective To explore the effects of different vegetation restoration patterns on ecological restoration effects in iron ore abandoned sites, suitable vegetation restoration patterns were selected to solve the problems of low soil nutrients, plant growth difficulties and serious soil and water loss in abandoned iron tailings land. Method Fourteen types of vegetation restoration patterns of iron tailings ponds in Zhangxuan mining area of Hebei Province, northern China were studied. The vegetation growth characteristics, species composition and plant diversity characteristics, soil nutrients and other indicators were selected to compare their restoration effects in order to screen out suitable vegetation restoration patterns in the area. Result The vegetation coverage of all patterns was generally at the middle and upper level, and Pinus tabuliformis, Hippophae rhamnoides, Phragmites communis and Artemisia lavandulaefolia were the dominant species of tree, shrub and herb in the study area, respectively. The diversity index of tree and tree + shrub patterns were generally higher than that of shrub and shrub + herb, but the richness index was generally poor. Different vegetation restoration patterns and soil depths all had significant effects on soil nutrients. The soil was rich in fast-acting potassium (K), but low in phosphorus (P), nitrogen (N) and organic matter in the area. According to CRITIC-GRA model, the top three patterns in the study area were Pinus tabuliformis, Pinus tabuliformis + Fraxinus pennsylvanica and Hippophae rhamnoides + Lespedeza bicolor, among all the restoration measures, only the natural restoration measures were rated “poor”. Conclusion It is suggested to adopt soil covering for seedling restoration, and give priority to Pinus tabuliformis + Hippophae rhamnoides/Lespedeza bicolor + Artemisia lavandulaefolia/Melilotus officinalis in plant species selection. In addition, appropriate amount of nitrogen and phosphate fertilizer or organic fertilizer can be applied to accelerate soil nutrient improvement of iron tailings pond. -
Key words:
- vegetation pattern /
- CRITIC-GRA /
- plant diversity /
- soil nutrient
-
表 1 样地基本情况
Table 1. General condition of sample plots
编号
No.恢复措施
Restoration measure植被模式
Vegetation pattern坡向
Aspect坡度
Grade/(°)海拔
Altitude/m栽植密度/
(株·ha−1) Planting density/(plant·hm−2)恢复年份
Restoration timeⅠ A 油松 + 元宝枫
Pinus tabuliformis + Acer truncatum阳坡 Sunny slope 10 1 315 750 2015 Ⅱ 油松 + 洋白蜡
Pinus tabuliformis + Fraxinus pennsylvanica阳坡 Sunny slope 10 1 315 780 2015 Ⅲ 油松
Pinus tabuliformis阳坡 Sunny slope 15 1 305 820 2015 Ⅳ 油松 + 胡枝子
Pinus tabuliformis + Lespedeza bicolor阳坡 Sunny slope 18 1 129 760 2014 Ⅴ 沙棘 + 胡枝子
Hippophae rhamnoides + Lespedeza bicolor阳坡 Sunny slope 15 1 137 3 650 2014 Ⅵ 紫穗槐 + 胡枝子
Amorpha fruticosa + Lespedeza bicolor阳坡 Sunny slope 25 1 181 2 980 2014 Ⅶ 沙棘
Hippophae rhamnoides阳坡 Sunny slope 20 1 310 4 350 2015 Ⅷ 胡枝子
Lespedeza bicolor阳坡 Sunny slope 18 1 182 2 800 2016 Ⅸ 紫穗槐
Amorpha fruticosa阳坡 Sunny slope 27 1 167 3 230 2014 Ⅹ B 黄芪 + 狗尾草
Astragalus membranaceus + Setaria viridis阳坡 Sunny slope 14 1 221 2016 Ⅺ 草木犀 + 披碱草
Melilotus officinalis + Elymus dahuricus阴坡 Cloudy slope 25 1 130 2016 Ⅻ 芦苇 + 野艾蒿
Phragmites communis + Artemisia lavandulaefolia阳坡 Sunny slope 28 1 309 2016 XIII 野艾蒿 + 牛筋草
Artemisia lavandulaefolia + Eleusine indica阴坡 Cloudy slope 18 1 154 2016 XIV C 裸露尾矿
Bare tailings阴坡 Cloudy slope 30 1 200 2014 注:A、B和C分别为覆土整地植苗恢复、覆土自然恢复和自然恢复,X-XIV中未出现乔木或灌木种,因此未进行栽植密度测定。Notes: A, B and C are soil preparation and planting restoration, natural restoration and natural restoration, respectively, no tree or shrub species are found in pattern X-XIV, so planting density is not determined. 表 2 各指标权重与评价标准
Table 2. Index weight and evaluation standard
指标 Index 权重 Weight 优 Excellent 良 Credit 中 Medium 差 Poor H 0.15 > 0.7 0.7 ~ 0.5 0.5 ~ 0.3 < 0.3 M 0.12 > 10 10 ~ 7.5 7.5 ~ 5 < 5 E 0.12 > 0.7 0.7 ~ 0.5 0.5 ~ 0.3 < 0.3 植被盖度 Vegetation coverage/% 0.10 > 60 60 ~ 40 40 ~ 20 < 20 pH值 pH value 0.03 6.5 ~ 8.5 — — — 有机质 Organic matter/(g·kg−1) 0.12 30 ~ 20 20 ~ 15 15 ~ 10 < 10 速效氮 Available nitrogen/(mg·kg−1) 0.13 120 ~ 90 90 ~ 60 60 ~ 45 < 45 速效磷 Available phosphorus/(mg·kg−1) 0.15 20 ~ 10 10 ~ 5 5 ~ 3 < 3 速效钾 Available potassium/(mg·kg−1) 0.07 150 ~ 100 100 ~ 50 50 ~ 30 < 30 注:H. Shannon-Wierner 多样性指数;M. Margalef 丰富度指数;E. Pielout均匀度指数。下同。Notes: H, Shannon-Wierner diversity index; M, Margalef richness index; E, Pielout evenness index. The same below. 表 3 不同模式的植物生长特征
Table 3. Plant growth characteristics of different patterns
编号
No.乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer植被盖度
Vegetation coverage/%树种
Tree species平均树高
Mean tree height/cm平均胸径
Mean DBH/cm平均冠幅
Average crown width/cm平均株高
Mean plant height/cm平均株高
Mean plant height/cmⅠ 油松
Pinus tabuliformis217.58 ± 9.95c 2.81 ± 0.19b 187.62 ± 15.74c 21.99 ± 2.98c 52.30 元宝枫
Acer truncatumBunge265.38 ± 13.83b 2.75 ± 0.21b 176.78 ± 14.05c Ⅱ 油松
Pinus tabuliformis210.67 ± 14.14c 2.29 ± 0.30b 149.77 ± 9.34c 32.84 ± 4.39bc 48.30 洋白蜡
Fraxinus pennsylvanica519.63 ± 35.07a 9.05 ± 0.77a 302.75 ± 2.45a Ⅲ 油松
Pinus tabuliformis185.11 ± 13.83d 2.65 ± 0.23b 174.24 ± 14.94c 13.22 ± 2.25d 64.80 Ⅳ 油松
Pinus tabuliformis213.79 ± 24.14c 8.22 ± 0.85a 224.89 ± 20.38b 53.27 ± 5.74c 8.23 ± 1.76de 72.30 Ⅴ 189.25 ± 16.37a 6.99 ± 0.82e 68.10 Ⅵ 132.33 ± 11.21b 5.73 ± 1.11e 50.30 Ⅶ 176.55 ± 13.95a 8.32 ± 1.45de 85.00 Ⅷ 45.68 ± 3.58c 15.33 ± 3.25d 48.60 Ⅸ 157.54 ± 18.22ab 9.84 ± 0.99de 54.70 Ⅹ 41.37 ± 5.39bc 33.10 Ⅺ 83.91 ± 4.46a 38.20 Ⅻ 90.28 ± 10.26a 36.20 XIII 66.18 ± 7.33b 40.00 注:模式Ⅴ-XIII中没有出现乔木树种,Ⅰ-Ⅲ和Ⅹ-XIII中没有出现灌木树种,模式XIV没有出现任何植物种。不同小写字母分别表示不同模式间差异显著(P < 0.05)。Notes:there are no tree species in pattern Ⅴ-XIII, no shrub species in pattern Ⅹ-XIII and Ⅹ-XIV, and no plant species in pattern XIV. Different lowercase letters indicate significant differences among different patterns (P < 0.05). 表 4 不同模式的植物多样性
Table 4. Species diversity of different patterns
编号 No. Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ XIII XIV H 1.53 1.88 1.76 1.03 0.60 0.66 0.72 0.55 0.52 0.69 0.44 0.64 0.21 — M 1.37 1.41 0.98 0.94 0.78 0.79 0.51 0.63 0.68 0.98 0.33 0.79 0.47 — E 0.74 0.82 0.80 0.50 0.31 0.34 0.45 0.31 0.29 0.33 0.40 0.32 0.13 — 注:模式XIV没有出现植物种。Note:there are no plant species in pattern XIV. 表 5 植被和土壤指标的相关性分析
Table 5. Correlation analysis of vegetation and soil index
指标 Index H M E 植被盖度 Vegetation coverage pH值 pH value −0.091 −0.150 0.020 0.375 有机质 Organic matter 0.234 0.005 0.310 0.718** 速效氮 Available nitrogen 0.685** 0.379 0.739** 0.557* 速效磷 Available phosphorus 0.173 0.040 0.228 0.824** 速效钾 Available potassium 0.598* 0.528 0.613* 0.747** 注:** 表示P < 0.01水平上极显著相关;* 表示P < 0.05水平上显著相关。Notes:** indicates the correlation is significant at the 0.01 level; * indicates the correlation is significant at the 0.05 level. 表 6 各模式评价等级
Table 6. Evaluation levels of different patterns
编号 No. 植被模式 Vegetation pattern 评价等级 Evaluation level 排名 Ranking 优 Excellent
1 ~ 0.70良 Credit
0.69 ~ 0.60中 Medium
0.59 ~ 0.45差 Poor
0.44 ~ 0Ⅰ 油松 + 元宝枫 Pinus tabuliformis + Acer truncatuma 0.63 6 Ⅱ 油松 + 洋白蜡 Pinus tabuliformis + Fraxinus pennsylvanic 0.72 2 Ⅲ 油松 Pinus tabuliformis 0.80 1 Ⅳ 油松 + 胡枝子 Pinus tabuliformis + Lespedeza bicolor 0.64 5 Ⅴ 沙棘 + 胡枝子 Hippophae rhamnoides + Lespedeza bicolor 0.71 3 Ⅵ 紫穗槐 + 胡枝子 Amorpha fruticosa + Lespedeza bicolor 0.64 5 Ⅶ 沙棘 Hippophae rhamnoides 0.68 4 Ⅷ 胡枝子 Lespedeza bicolor 0.60 8 Ⅸ 紫穗槐 Amorpha fruticosa 0.61 7 Ⅹ 黄芪 + 狗尾草 Astragalus membranaceus + Setaria viridis 0.52 11 Ⅺ 草木犀 + 披碱草 Melilotus officinalis + Elymus dahuricus 0.54 10 Ⅻ 芦苇 + 野艾蒿 Phragmites communis + Artemisia lavandulaefolia 0.55 9 XIII 野艾蒿 + 牛筋草Artemisia lavandulaefolia + Eleusine indica 0.49 12 XIV 裸露尾矿 Bare tailings 0.41 13 -
[1] 胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报, 2020, 45(1): 351−359. doi: 10.13225/j.cnki.jccs.YG19.1694Hu Z Q, Xiao W, Zhao Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation[J]. Journal of China Coal Society, 2020, 45(1): 351−359. doi: 10.13225/j.cnki.jccs.YG19.1694 [2] 王璐, 杨胜香, 赵东波, 等. 不同有机废弃物对铅锌尾矿基质性质和植物生长的影响[J]. 农业环境科学学报, 2020, 39(9): 1946−1956. doi: 10.11654/jaes.2020-0283Wang L, Yang S X, Zhao D B, et al. Effects of different organic wastes on plant growth and tailings properties of a Pb-Zn mine[J]. Journal of Agro-Environment Science, 2020, 39(9): 1946−1956. doi: 10.11654/jaes.2020-0283 [3] Fang Y, Ma R T, An S S, et al. Heidaigou opencast coal mine: soil enzyme activities and soil physical and chemical properties under different vegetation restoration[J]. Environmental Science, 2016, 37(3): 1121−1127. [4] 张艳, 赵廷宁, 史常青, 等. 坡面植被恢复过程中植被与土壤特征评价[J]. 农业工程学报, 2013, 29(3): 124−131.Zhang Y, Zhao T N, Shi C Q, et al. Evaluation of vegetation and soil characteristics during slope vegetation recovery procedure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 124−131. [5] 张中世. 铁矿废弃地不同生态恢复模式对土壤理化性质的影响[J]. 林业勘察设计, 2020, 40(4): 20−23. doi: 10.3969/j.issn.1004-2180.2020.04.005Zhang Z S. Influence of different ecological restoration modes on soil physical and chemical characteristic in abandon area of iron mine[J]. Forestry Prospect and Design, 2020, 40(4): 20−23. doi: 10.3969/j.issn.1004-2180.2020.04.005 [6] 安俊珍, 蔡崇法, 罗进选, 等. 蛇屋山金矿生态环境损害与尾矿植被恢复模式[J]. 中国水土保持科学, 2013, 11(2): 77−83. doi: 10.3969/j.issn.1672-3007.2013.02.013An J Z, Cai C F, Luo J X, et al. Damage on eco-environment and re-vegetation patterns of tailings in Shewushan Gold Mine[J]. Science of Soil and Water Conservation, 2013, 11(2): 77−83. doi: 10.3969/j.issn.1672-3007.2013.02.013 [7] Zang Y J. Chongqing mine ecological restoration and management research[J]. Advanced Materials Research, 2013, 864−867: 1307−1310. doi: 10.4028/www.scientific.net/AMR.864-867.1307 [8] 郝喆, 曹明杰, 杨青潮. 尾矿库生态退化区修复效果评价[J]. 矿业研究与开发, 2019, 39(10): 143−147.Hao Z, Cao M J, Yang Q C. Evaluation on remediation effect of ecological degradation area of tailings pond[J]. Mining Research and Development, 2019, 39(10): 143−147. [9] 潘德成, 宋品玉, 吴祥云, 等. 矿区废弃地不同植被模式生态稳定性评价[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(8): 1076−1080.Pan D C, Song P Y, Wu X Y, et al. Ecosystem stability evaluation of different vegetation modes in mining wasteland[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(8): 1076−1080. [10] 彭东海, 侯晓龙, 何宗明, 等. 金尾矿废弃地不同植被恢复模式群落特征[J]. 水土保持研究, 2016, 23(1): 50−55.Peng D H, Hou X L, He Z M, et al. Community characteristics of different vegetation restoration patterns in abandoned gold tailings land[J]. Research of Soil and Water Conservation, 2016, 23(1): 50−55. [11] Qin F R, Zhang S Y, Xia Y S, et al. Investigation of dominant plants and analysis of ecological restoration potential in Lailishan tin tailings[J]. Environmental Science, 2021, 42(8): 3962−3970. [12] 闫烨琛, 赵廷宁, 张艳, 等. 不同植物恢复措施对采石矿废弃地土壤物理性质的改良效果及评价[J]. 浙江农林大学学报, 2019, 36(6): 1062−1068. doi: 10.11833/j.issn.2095-0756.2019.06.002Yan Y C, Zhao T N, Zhang Y, et al. Improvements and evaluation of soil physical properties with different plant types in an abandoned quarry[J]. Journal of Zhejiang A& F University, 2019, 36(6): 1062−1068. doi: 10.11833/j.issn.2095-0756.2019.06.002 [13] Courtney R, Xue S G. Rehabilitation of bauxite residue to support soil development and grassland establishment[J]. Journal of Central South University, 2019, 26(2): 353−360. doi: 10.1007/s11771-019-4007-9 [14] Li P J, Sun T H, Gong Z Q, et al. An approach to the theoretical meaning of ecological remediation of contaminated soil[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 747−750. [15] Guo W, Zhao R X, Zhang J, et al. Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia[J]. Environmental Science, 2011, 32(10): 3099−3105. [16] An X L, Zhou Q X. Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation[J]. The Journal of Applied Ecology, 2007, 18(8): 1897−1902. [17] 侯永莉, 曹明杰, 郝喆. 铁矿排土场不同基质改良方法下生态修复效果评价[J]. 有色金属工程, 2020, 10(6): 114−119. doi: 10.3969/j.issn.2095-1744.2020.06.017Hou Y l, Cao M J, Hao Z. Effect evaluation of ecological restoration under different matrix improvement methods in iron ore dump[J]. Nonferrous Metals Engineering, 2020, 10(6): 114−119. doi: 10.3969/j.issn.2095-1744.2020.06.017 [18] 李想, 张宝娟, 李继泉, 等. 保水剂与有机肥配施对铁尾矿理化性质的改良作用[J]. 应用生态学报, 2017, 28(2): 554−562.Li X, Zhang B J, Li J Q, et al. Effects of combined application of water retention agent and organic fertilizer on physic-chemical properties of iron tailings[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 554−562. [19] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6): 2884−2892.Zhou Y, Chen Q, Deng S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China[J]. Environmental Science, 2018, 39(6): 2884−2892. [20] 张桂莲, 张金屯, 郭逍宇. 运用模糊排序研究露天矿区人工植被土壤主要化学成分的变化[J]. 北京林业大学学报, 2004, 26(6): 30−35. doi: 10.3321/j.issn:1000-1522.2004.06.006Zhang G L, Zhang J T, Guo X Y. Primary chemical composition variation in soil of artifical vegetation in open mine by fuzzy set ordination[J]. Journal of Beijing Forestry University, 2004, 26(6): 30−35. doi: 10.3321/j.issn:1000-1522.2004.06.006 [21] 贺祥, 林振山, 刘会玉, 等. 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析[J]. 地理学报, 2016, 71(7): 1119−1129. doi: 10.11821/dlxb201607003He X, Lin Z S, Liu H Y, et al. Analysis of the driving factors of PM2.5 in Jiangsu Province based on grey correlation model[J]. Acta Geographica Sinica, 2016, 71(7): 1119−1129. doi: 10.11821/dlxb201607003 [22] Krishnan A R, Kasim M M, Hamid R, et al. A modified CRITIC method to estimate the objective weights of decision criteria[J]. SYMMETRY-BASEL, 2021, 13(6): 1321−1333. [23] 赵耀, 王百田. 晋西黄土区不同林地植物多样性研究[J]. 北京林业大学学报, 2018, 40(9): 45−54.Zhao Y, Wang B T. Plant diversity of different forestland in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 45−54. [24] 王卓. 安太保露天矿复垦地草本群落多样性及影响因素研究[D]. 太谷: 山西农业大学, 2015.Wang Z. Study on herbaceous community diversity and its influencing factors in the reclaimed land of Antaibao Open-pit Mine[D]. Taigu: Shanxi Agricultural University, 2015. [25] 闫升. 张宣矿区干排铁尾矿不同植被恢复模式生态效益评价[D]. 北京: 北京林业大学, 2020.Yan S. Ecological benefit evaluation of different vegetation restoration models for dry-discharged iron tailings in Zhangxuan Mining Area[D]. Beijing: Beijing Forestry University, 2020. [26] 刘平, 马履一, 贾黎明, 等. 北京低山油松人工林径阶结构及林下植物多样性特征[J]. 北京林业大学学报, 2011, 33(3): 57−63.Liu P, Ma L Y, Jia L M, et al. Diameter structure and understory diversity in Chinese pine plantations in Beijing low mountain areas[J]. Journal of Beijing Forestry University, 2011, 33(3): 57−63. [27] 魏彦波, 程艳霞, 李金功, 等. 植物多样性促进种支配局域空间多样性结构[J]. 北京林业大学学报, 2014, 4(6): 66−72.Wei Y B, Cheng Y X, Li J G, et al. Plant diversity accumulators govern local spatial diversity[J]. Journal of Beijing Forestry University, 2014, 4(6): 66−72. [28] 白中科, 师学义, 周伟, 等. 人工如何支持引导生态系统自然修复[J]. 中国土地科学, 2020, 34(9): 1−9. doi: 10.11994/zgtdkx.20200918.123606Bai Z K, Shi X Y, Zhou W, et al. How does artificiality support and guide the natural restoration of ecosystems[J]. China Land Science, 2020, 34(9): 1−9. doi: 10.11994/zgtdkx.20200918.123606 [29] 黄仲德. 矿山开采对生态环境的影响及矿区生态修复分析[J]. 中国资源综合利用, 2020, 38(10): 134−136. doi: 10.3969/j.issn.1008-9500.2020.10.037Huang Z D. Impact of mine Mining on ecological environment and analysis of ecological restoration in mining area[J]. China Resources Comprehensive Utilization, 2020, 38(10): 134−136. doi: 10.3969/j.issn.1008-9500.2020.10.037 [30] Ruan C J, Li D Q. Community characteristics of Hippophae rhamnoides forest and water and nutrient condition of the woodland in loess hilly region[J]. Chinese Journal of Applied Ecology, 2002, 13(9): 1061−1064. [31] 刘敏, 吴得荣, 张向峰. 三种水保树种枯落物保水功能[J]. 水土保持研究, 2014, 21(1): 81−84.Liu M, Wu D R, Zhang X F. Water conserving function of litter of three water conservation tree species[J]. Research of Soil and Water Conservation, 2014, 21(1): 81−84. [32] 韩煜, 赵伟, 张淇翔, 等. 不同植被恢复模式下矿山废弃地的恢复效果研究[J]. 水土保持研究, 2018, 25(1): 120−125.Han Y, Zhao W, Zhang Q X, et al. Effects of different vegetation patterns on ecological restoration in mining wasteland[J]. Research of Soil and Water Conservation, 2018, 25(1): 120−125. [33] 任余艳, 韩易良, 刘朝霞, 等. 毛乌素沙地立地类型划分与抗逆树种筛选[J]. 干旱区资源与环境, 2021, 35(1): 135−140.Ren Y Y, Han Y L, Liu Z X, et al. Classification of Mu Us Sandy Land stands and the election of resistant tree species[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 135−140. [34] Hardtle W, von Oheimb G, Friedel A, et al. Relationship between pH-value and nutrient availability in forest soils: the consequence for the use of ecograms in forest ecology [J]. Flora, 2004, 199(2): 134-142. [35] 胡婵娟, 郭雷. 植被恢复的生态效应研究进展[J]. 生态环境学报, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023Hu C J, Guo L. Advances in the research of ecological effects of vegetation restoration[J]. Journal of Ecological Environment, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023 [36] 龚雪蛟, 秦琳, 刘飞, 等. 有机类肥料对土壤养分含量的影响[J]. 应用生态学报, 2020, 31(4): 1403−1416. doi: 10.13287/j.1001-9332.202004.025Gong X J, Qin L, Liu F, et al. Effects of organic manure on soil nutrient content: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1403−1416. doi: 10.13287/j.1001-9332.202004.025 [37] 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977−4987.Li Y N, Zhou X M, Zhang N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977−4987. [38] 周月杰, 苏芳莉, 郭成久, 等. 铁矸石山生态修复初期土壤主要特征分析[J]. 现代农业科学, 2008, 15(11): 44−46.Zhou Y J, Su F L, Guo C J, et al. Analysis of the main characteristics of the soil in the waste iron ecological restoration in the early[J]. Modern Agricultural Science, 2008, 15(11): 44−46. [39] 任晓旭, 蔡体久, 王笑峰. 不同植被恢复模式对矿区废弃地土壤养分的影响[J]. 北京林业大学学报, 2010, 32(4): 151−154.Ren X X, Cai T J, Wang X F. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151−154. [40] 王浩, 黄晨璐, 杨方社, 等. 砒砂岩区沙棘根系的生境适应性[J]. 应用生态学报, 2019, 30(1): 157−164.Wang H, Huang C L, Yang F S, et al. Root habitat flexibility of seabuckthorn in the Pisha sandstone area[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 157−164. [41] 闫升, 杨建英, 史常青, 等. 基于AHP-PCA的铁尾矿不同植被恢复模式土壤养分评价[J]. 中国水土保持科学, 2019, 17(6): 111−118.Yan S, Yang J Y, Shi C Q, et al. Soil nutrient evaluation of iron tailings in different vegetation restoration modes based on AHP-PCA[J]. Science of Soil and Water Conservation, 2019, 17(6): 111−118. -