高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真实感林木建模方法研究综述

淮永建 孟庆阔 陈园园 马天容 徐海峰 聂笑盈

淮永建, 孟庆阔, 陈园园, 马天容, 徐海峰, 聂笑盈. 真实感林木建模方法研究综述[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210544
引用本文: 淮永建, 孟庆阔, 陈园园, 马天容, 徐海峰, 聂笑盈. 真实感林木建模方法研究综述[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210544
Huai Yongjian, Meng Qingkuo, Chen Yuanyuan, Ma Tianrong, Xu Haifeng, Nie Xiaoying. Review on realistic forest modeling methods[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210544
Citation: Huai Yongjian, Meng Qingkuo, Chen Yuanyuan, Ma Tianrong, Xu Haifeng, Nie Xiaoying. Review on realistic forest modeling methods[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210544

真实感林木建模方法研究综述

doi: 10.12171/j.1000-1522.20210544
基金项目: 国家自然科学基金(31770589),国家自然科学基金(42001376)
详细信息
    作者简介:

    淮永建,教授,博士生导师。主要研究方向:虚拟现实,植物可视化。Email:huaiyj@bjfu.edu.cn 地址:100083 北京市海淀区清华东路 35 号北京林业大学信息学院

  • 中图分类号: TP391.9;S75

Review on realistic forest modeling methods

  • 摘要: 林木作为国家自然资源的重要组成部分,具有重要的研究价值,构建虚拟林木真实感模型可产生影视特效、游戏娱乐、森林生态等经济社会效益,且有助于世界数字林木资源的积累和整理。但目前不同的虚拟林木建模方法在表现模型的真实感方面仍然存在一些不足。本文在分析虚拟林木研究状况的基础上,给出了真实感建模方法的不同分类,并总结了基于真实世界数据的重建方法、交互式建模方法和基于规则或程序的系统建模方法的理论基础、适用领域以及优缺点。此外,还汇总了当前最流行的适用强的建模软件,并进行对比分析。最后讨论了真实感林木建模方法存在的问题及进一步的发展趋势。

     

  • 图  1  虚拟林木模型构建流程

    Figure  1.  Construction process of virtual forest model

    图  2  室内林木模型与现实对比

      引自参考文献[9]。Cited from reference [9].

    Figure  2.  Comparison between indoor forest model and reality

    图  3  林木图像分割

        引自参考文献[12]。Cited from reference [12].

    Figure  3.  Forest image segmentation

    图  4  单幅图像林木模型构建流程

            引自参考文献[13]。Cited from reference [13].

    Figure  4.  Construction process of single image forest model

    图  5  杨树模型交互式构建流程

            引自参考文献[16]。Cited from reference [16].

    Figure  5.  Interactive construction process of poplar model

    图  6  模型与环境变化的交互

            引自参考文献[24]。Cited from reference [24].

    Figure  6.  Interaction between model and environmental change

    图  7  交互式林木建模系统

    引自参考文献[29]。Cited from reference [29].

    Figure  7.  Interactive forest modeling system

    图  8  Xfrog文件编辑模式

    图片来源于https://www.jianshu.com/p/b424fc48da11。Pictures in the table are from https://www.jianshu.com/p/b424fc48da11.

    Figure  8.  Xfrog file editing mode

    图  9  SpeedTree文件编辑模式

    Figure  9.  SpeedTree file editing mode

    图  10  Unity Tree Editor文件编辑模式

    图片来源于https://docs.unity3d.com/Manual/tree-FirstTree.html Pictures in the table are from https://docs.unity3d.com/Manual/tree-FirstTree.html

    Figure  10.  Unity Tree Editor file editing mode

    表  1  虚拟林木建模平台对比

    Table  1.   Comparison of virtual forest modeling platforms

    软件名称
    Software name
    优点
    Advantage
    缺点
    Disadvantage
    生成图像示例
    Generate image example
    Xfrog 1.对L系统进行了良好的抽象,与直接使用L系统相比,其复杂性大大降低。
    2.参数与操作简单,使用者对建模过程的大量控制一般足以产生几乎任何类型植物的一般形状(包括向光性与向重力性的效果)。
    3.具有一定的可移植性,能简单方便的制造植物生长发育动画。
    1. L system is well abstracted, and its complexity is greatly reduced compared with using L system directly.
    2. With fewer parameters and simple operation, the user’s large amount of control over the modeling process is generally enough to produce the general shape of almost any type of plant (including the effect of phototropism and gravitropism).
    3. It has certain portability, and can easily and conveniently produce animation of plant growth and development.
    1.Xfrog进行简单模型的构建仍需要大量训练,不能对模型的叶脉结构进行模拟,缺乏三维叶片的真实感。
    2.Xfrog考虑虚拟植物模型在图形学上的形态结构的真实感,而不考虑其植物学理论的真实性。
    3.Xfrog产生的模型没有随机性且其十分消耗计算机资源。
    1. Xfrog still needs a lot of training to build a simple model. It cannot simulate the leaf vein structure of the model and lacks the realism of three-dimensional leaves.
    2. Xfrog considers the realism of the morphological structure of the virtual plant model in graphics, without considering the authenticity of its botanical theory.
    3. The model generated by Xfrog has no randomness and it consumes computer resources very much.
    SpeedTree 1.SpeedTree可以制造出完全的三维可视化林木,无需使用大量多边形,而且具有动态 LOD。
    2.使用者可以设计自己的林木的选项,并在运行时允许林木随风移动。
    3.可移植性强,SpeedTree制造的模型可以导入其它三维建模软件使用,如Unity等。
    1. SpeedTree can produce complete three-dimensional visual trees without using a large number of polygons, and has dynamic LOD.
    2. Users can design their own tree options and allow trees to move with the wind during operation.
    3. It has strong portability. The model made by speedTree can be imported into other 3D modeling software, such as unity.
    1.SpeedTree所使用的的参数多为数字,没有Xfrog对于模型形状用曲线控制的直观,制造的树叶没有下垂感。
    2.SpeedTree无法用于自由分发的应用程序。
    1. The parameters used by speedTree are mostly numbers, which is not as intuitive as Xfrog’s curve control of the model shape, and the leaves produced have no drooping feeling.
    2. SpeedTree cannot be used for freely distributed applications.

    Unity Tree Editor
    1.在Unity使用该插件可以制造出非常美观的树,并对实时渲染进行了优化。
    2.可以进行对树干、树枝和树叶的自动化生成与调控,低端硬件同样可以运行流畅的茂盛植物景观。
    1. Using this plug-in in unity can create very beautiful trees and optimize real-time rendering.
    2. It can automatically generate and control trunks, branches and leaves, and the low-end hardware can also run a smooth lush plant landscape.
    1.作为Unity的内置插件与游戏引擎紧密集成,无法在 Unity 之外使用。
    2.模型面数难以控制、缺乏真实性。
    3.该插件生成的虚拟植物模型无法达到与Xfrog或SpeedTree近似的水平。
    1. As the built-in plug-in of unity, it is closely integrated with the game engine and cannot be used outside unity.
    2. The number of model faces is difficult to control and lacks authenticity.
    3. The virtual plant model generated by the plug-in cannot reach the level similar to that of Xfrog or speedTree.
    注:表中图片来源为https://www.jianshu.com/p/b424fc48da11。Note: pictures in the table are from https://www.jianshu.com/p/b424fc48da11.
    下载: 导出CSV
  • [1] 杨垠晖, 王锐. 树木的真实感建模与绘制综述[J]. 计算机辅助设计与图形学学报, 2018, 30(2): 191−216.

    Yang Y H, Wang R. Realistic modeling and rendering of trees: a survey[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(2): 191−216.
    [2] 欧中斌, 廖桂平, 喻飞, 等. 虚拟植物生长建模[J]. 系统仿真学报, 2006, 18(增刊1): 291−294. doi: 10.3969/j.issn.1004-731X.2006.z1.088

    Ou Z B, Liao G P, Yu F, et al. Modeling of crop growth virtual plant[J]. Journal of System Simulation, 2006, 18(Suppl.1): 291−294. doi: 10.3969/j.issn.1004-731X.2006.z1.088
    [3] 孙永香, 刘彤, 郑永果, 等. 虚拟植物的建模方法[J]. 系统仿真学报, 2006, 18(增刊1): 263−266. doi: 10.3969/j.issn.1004-731X.2006.z1.080

    Sun Y X, Liu T, Zheng Y G, et al. Virtual plant modeling[J]. Journal of System Simulation, 2006, 18(Suppl.1): 263−266. doi: 10.3969/j.issn.1004-731X.2006.z1.080
    [4] Stava O, Pirk S, Kratt J, et al. Inverse procedural modelling of trees[J]. Journal of the European Association for Computer Graphics, 2014, 33(6): 118−131.
    [5] Li C, Deussen O, Song Y Z, et al. Modeling and generating moving trees from video[J]. ACM Transactions on Graphics (TOG), 2011, 30(6): 1−12.
    [6] Li D, Yang R, Hu Y, et al. Tracking trajectory of 3D trees moving based on video data driven[C]//Guerrero J E. 2014 Seventh International Symposium on Computational Intelligence and Design. Washington: IEEE Computer Society, 2014: 89−92.
    [7] Shlyakhter I, Rozenoer M, Dorsey J, et al. Reconstructing 3D tree models from instrumented photographs[J]. IEEE Computer Graphics and Applications, 2001, 21(3): 53−61.
    [8] Reche-Martinez A, Martin I, Drettakis G. Volumetric reconstruction and interactive rendering of trees from photographs[M]// Marks J. ACM SIGGRAPH 2004 Papers. New York: Association for Computing Machinery, 2004: 720−727.
    [9] Quan L, Tan P, Zeng G, et al. Image-based plant modeling[M]//Finnegan J. ACM SIGGRAPH 2006 Papers. New York: Association for Computing Machinery, 2006: 599−604.
    [10] Neubert B, Franken T, Deussen O. Approximate image-based tree-modeling using particle flows[M]//Levoy M. ACM SIGGRAPH 2007 papers. New York: Association for Computing Machinery, 2007: 88−90.
    [11] Tan P, Zeng G, Wang J, et al. Image-based tree modeling[M]//Levoy M. ACM SIGGRAPH 2007 papers. New York: Association for Computing Machinery, 2007: 87−90.
    [12] Argudo O, Chica A, Andujar C. Single-picture reconstruction and rendering of trees for plausible vegetation synthesis[J]. Computers & Graphics, 2016, 57: 55−67.
    [13] Li B, Kałużny J, Klein J, et al. Learning to reconstruct botanical trees from single images[J]. ACM Transactions on Graphics (TOG), 2021, 40(6): 1−15.
    [14] Livny Y, Yan F, Olson M, et al. Automatic reconstruction of tree skeletal structures from point clouds[M]// Drettakis G. ACM SIGGRAPH Asia 2010 papers. New York: Association for Computing Machinery, 2010: 1−8.
    [15] Li Y, Fan X, Mitra N J, et al. Analyzing growing plants from 4D point cloud data[J]. ACM Transactions on Graphics (TOG), 2013, 32(6): 1−10.
    [16] Xie K, Yan F, Sharf A, et al. Tree modeling with real tree-parts examples[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(12): 2608−2618.
    [17] 刘阁, 周国民. L系统理论及其应用综述[J]. 农业网络信息, 2008(9): 21−23. doi: 10.3969/j.issn.1672-6251.2008.09.007

    Liu G, Zhou G M. The summarization of the theory and application of L-systems[J]. Agriculture Network Information, 2008(9): 21−23. doi: 10.3969/j.issn.1672-6251.2008.09.007
    [18] Bielefeldt B R, Akleman E, Reich G W, et al. L-system-generated mechanism topology optimization using graph-based interpretation[J]. Journal of Mechanisms and Robotics, 2019, 11(2): 020905. doi: 10.1115/1.4042512
    [19] Juhari J, Alghar M Z. Modeling plant stems using the deterministic lindenmayer system[J]. CAUCHY: Jurnal Matematika Murni dan Aplikasi, 2021, 6(4): 286−295. doi: 10.18860/ca.v6i4.11591
    [20] Cieslak M, Prusinkiewicz P. Gillespie-Lindenmayer systems for stochastic simulation of morphogenesis[J]. In Silico Plants, 2019, 1(1): diz009. doi: 10.1093/insilicoplants/diz009
    [21] Sievänen R, Godin C, de Jong T M, et al. Functional-structural plant models: a growing paradigm for plant studies[J]. Annals of Botany, 2014, 114(4): 599−603. doi: 10.1093/aob/mcu175
    [22] Guo J, Jiang H, Benes B, et al. Inverse procedural modeling of branching structures by inferring L-systems[J]. ACM Transactions on Graphics, 2020, 39(5): 1−13.
    [23] Zhao X, Reffye P D, Houllier F, et al. Interactive simulation of plant architecture based on a dual-scale automaton model[C]// Hu B G. Plant growth modeling and applications. Beijing: Tsinghua University Press, 2003: 144−153.
    [24] Pirk S, Stava O, Kratt J, et al. Plastic trees: interactive self-adapting botanical tree models[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 1−10.
    [25] Zhao Y, Barbič J. Interactive authoring of simulation-ready plants[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 1−12.
    [26] Pirk S, Niese T, Hädrich T, et al. Windy trees: computing stress response for developmental tree models[J]. ACM Transactions on Graphics (TOG), 2014, 33(6): 1−11.
    [27] Hädrich T, Benes B, Deussen O, et al. Interactive modeling and authoring of climbing plants[C]//Chen M. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2017: 49−61.
    [28] Quigley E, Yu Y, Huang J, et al. Real-time interactive tree animation[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(5): 1717−1727.
    [29] Liu Z, Shen C, Li Z, et al. Interactive modeling of trees using VR devices[C]//Wang D X. 2019 International Conference on Virtual Reality and Visualization (ICVRV). Los Alamitos: IEEE Computer Society, 2019: 69−75.
    [30] Yan F, Gong M, Cohen-Or D, et al. Flower reconstruction from a single photo[C]//Deussen O. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2014: 439−447.
    [31] Loi C, Cournède P H. A Markovian framework to formalize stochastic L-systems and application to models of plant development[J/OL]. INRIA, 2008 [2021−10−12]. https://hal.inria.fr/inria-00359515
    [32] 黄争舸, 陈建军, 杨廷俊, 等. 基于二叉树的上下文相关L-系统实现[J]. 浙江大学学报(工学版), 2008, 42(3): 403−406. doi: 10.3785/j.issn.1008-973X.2008.03.008

    Huang Z G, Chen J J, Yang T J, et al. Implementation of context-sensitive L-system based on binary tree[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(3): 403−406. doi: 10.3785/j.issn.1008-973X.2008.03.008
    [33] 石银涛, 程效军, 张鸿飞. 基于参数L-系统的三维树木仿真[J]. 同济大学学报(自然科学版), 2011, 39(12): 1871−1876. doi: 10.3969/j.issn.0253-374x.2011.12.026

    Shi Y T, Cheng X J, Zhang H F. Three dimensional trees emulation based on parametric L-system[J]. Journal of Tongji University (Natural Science), 2011, 39(12): 1871−1876. doi: 10.3969/j.issn.0253-374x.2011.12.026
    [34] 林郁欣, 唐丽玉, 陈崇成, 等. 基于组合型L-系统的单树建模工具的设计与实现[J]. 农业工程学报, 2011, 27(3): 185−190. doi: 10.3969/j.issn.1002-6819.2011.03.035

    Lin Y X, Tang L Y, Chen C C, et al. Design and implementation of tree individual modeling tool based on compounded L-system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 185−190. doi: 10.3969/j.issn.1002-6819.2011.03.035
    [35] Hamon L, Richard E, Richard P, et al. RTIL-system: a real-time interactive L-system for 3D interactions with virtual plants[J]. Virtual Reality, 2012, 16(2): 151−160. doi: 10.1007/s10055-011-0193-y
    [36] 王志维, 江梦璇, 李晖. 基于OpenGL迭代函数植物建模算法的改进及实现[J]. 武汉工程大学学报, 2016, 38(2): 204−208. doi: 10.3969/j.issn.1674-2869.2016.02.019

    Wang Z W, Jiang M X, Li H. Improvement and implementation of plant modeling algorithm of iterative function based on openGL[J]. Journal of Wuhan Institute of Technology, 2016, 38(2): 204−208. doi: 10.3969/j.issn.1674-2869.2016.02.019
    [37] Zhang F X, Lu F Y, Wang M L. Realistic simulation of potted monocot plant based on IFS[J]. Journal of System Simulation, 2017, 29(11): 2678−2684.
    [38] Reeves W T. Particle systems: a technique for modeling a class of fuzzy objects[J]. ACM Transactions On Graphics (TOG), 1983, 2(2): 91−108. doi: 10.1145/357318.357320
    [39] 熊海桥, 蒋立华, 罗轶先, 等. 基于粒子系统的物理约束植物根生长建模[J]. 计算机应用, 2002(7): 39−41.

    Xiong H Q, Jiang L H, Luo Y X, et al. A physically restrained plant root growing model based on particle system[J]. Computer Applications, 2002(7): 39−41.
    [40] Ding W, Zhao Y, Xin W, et al. Parameter extraction method of virtual plant growth model based on improved particle swarm optimization[J]. Computers and Electronics in Agriculture, 2021, 191: 106470. doi: 10.1016/j.compag.2021.106470
    [41] Sievänen R, Nikinmaa E, Perttunen J. Evaluation of importance of sapwood senescence on tree growth using the model Lignum[J]. Silva Fennica, 1997, 31(3): 329−340.
    [42] Perttunen J, Nikinmaa E, Lechowicz M J, et al. Application of the functional-structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps[J]. Annals of Botany, 2001, 88(3): 471−481. doi: 10.1006/anbo.2001.1489
    [43] Kang M Z, Heuvelink E, Carvalho S M P, et al. A virtual plant that responds to the environment like a real one: the case for chrysanthemum[J]. New Phytologist, 2012, 195(2): 384−395. doi: 10.1111/j.1469-8137.2012.04177.x
    [44] Cieslak M, Owens A, Prusinkiewicz P. Computational models of auxin-driven patterning in shoots[J]. Cold Spring Harbor Perspectives in Biology, 2021, 14(3): a040097.
    [45] Hong S M, Simpson B, Baranoski G V G. Interactive venation-based leaf shape modeling[J]. Computer Animation and Virtual Worlds, 2005, 16(3−4): 415−427. doi: 10.1002/cav.88
    [46] 董春胜, 荣霞. 三维迭代函数系统植物模拟[J]. 辽宁工程技术大学学报, 2014, 33(5): 712−715.

    Dong C S, Rong X. Plant simulation three dimension iterated function system[J]. Journal of Liaoning Technical University (Natural Science), 2014, 33(5): 712−715.
    [47] Perttunen J, Änen R S, Nikinmaa E, et al. LIGNUM: a tree model based on simple structural units[J]. Annals of Botany, 1996, 77(1): 87−98. doi: 10.1006/anbo.1996.0011
    [48] Yi L, Li H, Guo J, et al. Tree growth modelling constrained by growth equations[C]//Chen M. Computer graphics forum. Hoboken: Wiley-Blackwell Publishing Ltd, 2018: 239−253.
    [49] Jullien A, Mathieu A, Allirand J M, et al. Characterization of the interactions between architecture and source–sink relationships in winter oilseed rape (Brassica napus) using the GreenLab model[J]. Annals of Botany, 2011, 107(5): 765−779. doi: 10.1093/aob/mcq205
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  20
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-07-06
  • 修回日期:  2022-07-05
  • 网络出版日期:  2022-07-08

目录

    /

    返回文章
    返回