Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China
-
摘要:目的 碳 、氮元素对植物的生长发育至关重要,尤其是在极端干旱的内陆河流域,不同功能群植物对土壤水分和养分需求不同,往往表现出不同的化学计量特征。探寻黑河下游不同功能群植物的化学计量特征及对地下水变化的养分反应,对进一步了解全球气候变化背景下荒漠生态系统具有重要意义。方法 在黑河下游,根据与河道的距离,共设置22个采样点,采用相关性分析、方差分解方法分别对不同功能群植物的碳氮化学计量特征及其与环境因子的关系进行研究。结果 研究结果表明:黑河下游地区植物叶片和细根的碳元素含量平均值分别为408.53和16.30 mg/g;氮元素含量平均值分别为500.34和11.81 mg/g,碳氮比平均值分别为30.74和49.48。与全球和区域尺度研究相比,黑河下游植物具有较高的细根碳含量、较低的氮含量和较高的碳氮比。在不同地下水位梯度上,木本植物的碳含量、氮含量与碳氮比均与地下水深度显著相关,但草本植物与地下水不相关。黑河下游植物碳氮化学计量特征与土壤理化属性紧密相关。地下水和土壤含水量、土壤总氮共同解释了木本植物化学计量总变异的53% ~ 75%;土壤pH值和土壤电导率共同解释了草本植物化学计量总变异的20%。结论 面对极端干旱盐碱环境,水分是影响木本植物碳氮化学计量特征变化的关键因子,草本植物碳氮化学计量特征主要受土壤pH值和土壤电导率影响。Abstract:Objective Carbon (C) and nitrogen (N) elements are crucial for plant growth and development, especially in extremely arid inland river basins. Plants in different functional groups would show varied stoichiometric characteristics due to the variations in requirements for soil water and nutrients. It is of great significance to explore stoichiometric characteristics among different plant functional groups in the lower reaches of the Heihe River of northwestern China, as well as their nutrient contents responsing to groundwater fluctuation, aiming to further understand desert ecosystems under the background of global climate change.Method In the lower reaches of the Heihe River, a total of 22 sampling sites were set up according to the vertical distance between vegetation and river. Correlation analysis and variation partition analysis (VPA) were applied to determine the relationship between plant stoichiometry and environmental factors among plant functional groups, respectively.Result The average C contents of leaves and fine roots of plants in the lower reaches of Heihe River were 408.53 and 16.30 mg/g, the average N contents were 500.34 and 11.81 mg/g, and the average C∶N ratios were 30.74 and 49.48, respectively. Compared with global and regional studies, it was found that plants in the lower reaches of the Heihe River had higher C content, lower N content and higher C∶N. Different from herbaceous plants, the C content, N content and C∶N of woody plants were significantly correlated with the changes of groundwater depth. We found that the stoichiometric characteristics of plant carbon and nitrogen in the lower reaches of the Heihe River were significantly correlated with soil properties. The groundwater and soil variables jointly explained 53%−75% of the variation in woody plant stoichiometry. Additionally, soil pH and soil electrical conductivity explained 20% of the variation in herbaceous plant stoichiometry.Conclusion Our study finds that groundwater is the key factor influencing the carbon and nitrogen stoichiometry of woody plants under extreme drought and saline-alkali environment, and the carbon and nitrogen stoichiometry of herbaceous plants is mainly influenced by soil pH and soil electrical conductivity.
-
Keywords:
- groundwater /
- Heihe River /
- carbon and nitrogen /
- stoichiometric characteristics /
- functional group
-
-
图 4 环境因子对木本植物叶片和细根的碳、氮化学计量特征的解释
GW.地下水;SM1.土壤0 ~ 20 cm含水量;SM2.土壤20 ~ 40 cm含水量;SM4.土壤60 ~ 100 cm含水量;SEC.土壤电导率;STN.土壤全氮含量;NE.未解释率。NL.叶片氮含量;CL.叶片碳含量;CNL.叶片碳氮比;NR.细根氮含量;CR.细根碳含量;CNR.细根碳氮比。下同。GW, underground water; SM1, 0−20 cm soil water content; SM2, 20−40 cm soil water content; SM4, 60−100 cm soil water content; SEC, soil electrical conductivity; STN, soil total nitrogen content; NE, no-explanation rate. NL, leaf N concentration; CL, leaf C concentration; CNL, C∶N of leaf; NR, fine root N concentration; CR, fine root C concentration; CNR, C∶N of fine root. The same below.
Figure 4. Explanation of environmental factors on the carbon and nitrogen stoichiometric characteristics of leaves and fine roots of woody plants
表 1 采样点基本信息
Table 1 Basic information of the sampling sites
样点
Sample site地下水深度
Underground water depth/m木本植物 Woody plant 草本植物 Herb 优势种
Dominant species重要值
Importance value优势种
Dominant species重要值
Importance valueS1 1.46 多枝柽柳 Tamarix ramosissima 0.53 S2 1.51 胡杨 Populus euphratica 0.58 苦豆子 Sophora alopecuroides 0.37 S3 1.77 胡杨 Populus euphratica 0.63 苦豆子 Sophora alopecuroides 0.21 S4 1.78 胡杨 Populus euphratica 0.48 胀果甘草 Glycyrrhiza inflata 0.14 S5 1.96 多枝柽柳 Tamarix ramosissima 0.68 骆驼蓬 Peganum harmala 0.32 S6 2.00 黑果枸杞 Lycium ruthenicum 0.23 苦豆子 Sophora alopecuroides 0.49 S7 2.08 胡杨 Populus euphratica 0.48 芨芨草 Achnatherum splendens 0.42 S8 2.26 胡杨 Populus euphratica 0.54 苦豆子 Sophora alopecuroides 0.44 S9 2.30 多枝柽柳 Tamarix ramosissima 0.35 花花柴 Karelinia caspia 0.39 S10 2.49 白刺 Nitraria tangutorum 0.33 沙蒿 Artemisia desertorum 0.38 S11 2.56 多枝柽柳 Tamarix ramosissima 0.24 苦豆子 Sophora alopecuroides 0.70 S12 2.73 红砂 Reaumuria soongorica 0.80 沙蒿 Artemisia desertorum 0.10 S13 2.79 膜果麻黄 Ephedra przewalskii 0.43 驼蹄瓣 Zygophyllum fabago 0.14 S14 2.85 骆驼刺 Alhagi sparsifolia 0.70 花花柴 Karelinia caspia 0.38 S15 2.89 红砂 Reaumuria soongorica 0.37 花花柴 Karelinia caspia 0.54 S16 3.00 多枝柽柳 Tamarix ramosissima 0.83 骆驼蓬 Peganum harmala 0.26 S17 3.15 膜果麻黄 Ephedra przewalskii 0.85 S18 3.30 红砂 Reaumuria soongorica 0.71 骆驼蓬 Peganum harmala 0.12 S19 3.31 膜果麻黄 Ephedra przewalskii 0.47 S20 3.44 膜果麻黄 Ephedra przewalskii 0.54 S21 3.55 膜果麻黄 Ephedra przewalskii 0.85 S22 3.66 膜果麻黄 Ephedra przewalskii 0.66 表 2 不同功能群植物的叶片和细根养分组成
Table 2 Nutrient composition of leaves and fine roots of different functional groups of plants
指标 Index 总体 Total 木本植物 Woody plant 草本植物 Herb 叶片氮含量 Leaf N concentration/(mg·g−1) 16.30 ± 0.59 15.06 ± 0.75b 18.66 ± 1.02a 叶片碳含量 Leaf C concentration/(mg·g−1) 408.54 ± 10.89 396.80 ± 13.63a 429.05 ± 17.41a 叶片碳氮比 Leaf C∶N 30.74 ± 1.44 31.69 ± 1.83a 29.30 ± 2.54a 细根氮含量 Fine root N concentration/(mg·g−1) 11.81 ± 0.44 12.61 ± 0.47a 10.42 ± 1.03b 细根碳含量 Fine root C concentration/(mg·g−1) 500.34 ± 15.10 514.52 ± 18.92a 484.33 ± 26.14a 细根碳氮比 Fine root C∶N 49.49 ± 2.69 45.35 ± 3.09b 54.27 ± 5.14a 注:同行不同字母表示差异显著(P < 0.05)。 Note: different letters in the same line indicate significant difference (P < 0.05). 表 3 土壤因子对不同功能群植物化学计量的影响
Table 3 Effects of soil factors on plant stoichiometry of different functional groups
分类
Classification指标
Index电导率
Electrical conductivity土壤pH
Soil pH0 ~ 20 cm
含水量
0−20 cm
water content20 ~ 40 cm
含水量
20−40 cm
water content40 ~ 60 cm
含水量
40−60 cm
water content60 ~ 100 cm
含水量
60−100 cm
water content土壤总碳
Soil total carbon土壤全N
Soil total nitrogen土壤全P
Soil total phosphorus木本植物
Woody plant叶片氮含量
Leaf N concentration−0.10 0.14 0.50** 0.48** 0.37** 0.39** 0.27* 0.21** 0.13 叶片碳含量
Leaf C concentration0.03 0.04 −0.01 −0.05 −0.04 −0.24* −0.03 0.20 0.11 叶片碳氮比
Leaf C∶N0.30* −0.17 −0.28* −0.28* −0.25* −0.35** −0.15 −0.01 0.04 细根氮含量
Fine root N concentration0.25 −0.32 −0.41** −0.37** −0.34** −0.39** −0.37** −0.21** 0.19 细根碳含量
Fine root C concentration−0.07 −0.06 −0.34** −0.43** −0.45** −0.49** −0.27* −0.17 0.17 细根碳氮比
Fine root C∶N−0.27* 0.27* 0.21 0.11 0.09 0.03 0.18 0.11 −0.05 草本植物
Herb叶片氮含量
Leaf N concentration0.44* −0.40* −0.24 −0.30 −0.07 −0.18 −0.05 0.36 0.14 叶片碳含量
Leaf C concentration−0.17 0.26 0.46* 0.13 0.24 0.32 0.23 0.01 −0.16 叶片碳氮比
Leaf C∶N−0.38* 0.44* 0.32 0.18 0.04 0.20 0.02 −0.31 −0.26 细根氮含量
Fine root N concentration0.42* −0.45* −0.29 −0.25 −0.20 −0.29 −0.21 0.07 0.58 细根碳含量
Fine root C concentration−0.16 0.25 0.14 0.11 0.04 0.13 0.15 0.13 0.09 细根碳氮比
Fine root C∶N−0.38* 0.48** 0.21 −0.01 0.00 0.13 0.12 0.02 −0.10 注:* 表示相关性显著(P < 0.05);**表示相关性极显著(P < 0.01).Notes: * indicates significant correlation at P < 0.05 level; ** indicates extremely significant correlation at P < 0.01 level. -
[1] Ling H B, Zhang P, Xu H L, et al. How to regenerate and protect desert riparian Populus euphratica forest in arid areas[J/OL]. Scientific Reports, 2015, (5): 15418−15430[2021−12−29]. https://www.nature.com/articles/srep15418.
[2] Zhu Y H, Chen Y N, Ren L L, et al. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: problems and strategies[J]. Ecological Engineering, 2016, 94(1): 629−637.
[3] Zhang X L, Zhou J H, Guan T Y, et al. Spatial variation in leaf nutrient traits of dominant desert riparian plant species in an arid inland river basin of China[J]. Ecology and Evolution, 2019, 9(3): 1523−1531. doi: 10.1002/ece3.4877
[4] Tamea S, Laio F, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems(2): stochastic soil moisture dynamics[J]. Water Resources Research, 2009, 45(5): 5420−5433.
[5] 古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07 Gulimire·Hanati, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07
[6] Yao Y, Tian Y, Andrews C, et al. Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River Basin[J]. Journal of Geophysical Research-Atmospheres, 2018, 123: 6760−6776. doi: 10.1029/2018JD028432
[7] Harper J L. The value of a leaf[J]. Oecologia, 1989, 80: 53−58. doi: 10.1007/BF00789931
[8] Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219: 775−788. doi: 10.1007/s11258-018-0833-3
[9] Sommer B, Froend R. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean type landscape[J]. Journal of Vegetation Science, 2014, 25: 1045−1055. doi: 10.1111/jvs.12178
[10] Westheimer F. Why nature chose phosphates[J]. Science, 1987, 235: 1173−1178. doi: 10.1126/science.2434996
[11] Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133−2139. doi: 10.1080/014311698214910
[12] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141−153. Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141−153.
[13] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
[14] Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems [M]. Berlin: Springer-Verlag, 2007: 159−182. [15] Aroca R. Plant responses to drought stress[M]. Berlin: Springer, 2012.
[16] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29: 185−212. doi: 10.1051/agro:2008021
[17] 向云西, 潘萍, 陈胜魁, 等. 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95−103. Xiang Y X, Pan P, Chen S K, et al. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95−103.
[18] 张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22): 6538−6547. Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538−6547.
[19] Rong Q Q, Liu J T, Cai Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay Coastal Wetland, China[J]. Ecological Engineering, 2015, 76: 57−65. doi: 10.1016/j.ecoleng.2014.03.002
[20] Canadell J, Jackson R B, Ehleringer J B, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108: 583−595. doi: 10.1007/BF00329030
[21] Luo Y, Peng Q, Li K, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. doi: 10.1016/j.catena.2020.105100
[22] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
[23] Xu Z Z, Zhou G S, Wang Y H. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Carag ana intermedia[J]. Plant and Soil, 2007, 301(1/2): 87−97.
[24] 钟华平, 刘恒, 王义, 等. 黑河流域下游额济纳绿洲与水资源的关系[J]. 水科学进展, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016 Zhong H P, Liu H, Wang Y, et al. Relationship between Ejina oasis and water resources in the lower Heihe River Basin[J]. Advances in Water Science, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016
[25] 赵传燕, 赵阳, 彭守璋, 等. 黑河下游绿洲胡杨生长状况与叶生态特征[J]. 生态学报, 2014, 34(16): 4518−4525. Zhao C Y, Zhao Y, Peng S Z, et al. The growth state of Populus euphratical Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518−4525.
[26] Wang R, Wang Q F, Zhao N, et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits[J]. Functional Ecology, 2017, 32: 29−39.
[27] 王健铭, 崔盼杰, 钟悦鸣, 等. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14−23. Wang J M, Cui P J, Zhong Y M, et al. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14−23.
[28] Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution and Systematics, 2008, 39(39): 153−170.
[29] Foulds W. Nutrient concentrations of foliage and soil in south-western Australia[J]. New Phytologist, 1993, 125(3): 529−546. doi: 10.1111/j.1469-8137.1993.tb03901.x
[30] 阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学报, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002 Yan E R, Wang X H, Zhou W. N∶P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, East China[J]. Chinese Journal of Plant Ecology, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002
[31] Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi: 10.1038/ncomms1346
[32] 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716−1725. Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. Environmental Science, 2010, 31(8): 1716−1725.
[33] 宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048 Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
[34] Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry, 2003, 65(1): 121−150. doi: 10.1023/A:1026020210887
[35] Zhang Q, Xiong G M, Li J X, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types[J]. Plant and Soil, 2018, 427(1−2): 305−319. doi: 10.1007/s11104-018-3655-0
[36] Zhang K, Li M M, Su Y Z, et al. Stoichiometry of leaf carbon, nitrogen, and phosphorus along a geographic, climatic, and soil gradients in temperate desert of Hexi Corridor, northwest China[J]. Journal of Plant Ecology, 2019, 13(1): 114−121.
[37] 何茂松, 罗艳, 彭庆文, 等. 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系[J]. 生态学杂志, 2019, 38(9): 2603−2614. He M S, Luo Y, Peng Q W, et al. Carbon, nitrogen and phosphorus stoichimentry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang[J]. Chinese Journal of Ecology, 2019, 38(9): 2603−2614.
[38] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur[J]. Biogeochemistry, 1991, 13(2): 87−115.
[39] Yang Y H, Luo Y Q. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20(2): 354−361. doi: 10.1111/j.1466-8238.2010.00602.x
[40] 王凯博, 上官周平. 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化[J]. 生态学报, 2011, 31(17): 4985−4991. Wang K B, Shangguan Z P. Seasonal variations in leaf C, N and P stoichiometry of typical plants in the Yangou Watershed in the loess hilly gully region[J]. Acta Ecologica Sinica, 2011, 31(17): 4985−4991.
[41] Gusewell S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
[42] Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136: 679−689. doi: 10.1046/j.1469-8137.1997.00787.x
[43] Reich P B, Oleksyn J. Global patternsof plant leaf N and Pinrelation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001−11006. doi: 10.1073/pnas.0403588101
[44] Zhang J H, He N P, Liu C C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J]. Oikos, 2018, 127(10): 1506−1514. doi: 10.1111/oik.05517
[45] 王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927−934. Wang Z N, Yang H M. Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors[J]. Pratacultural Science, 2013, 30(6): 927−934.
[46] Li W, Yu T F, Li X Y, et al. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, northwest China[J]. Environmental Monitoring and Assessment, 2016, 188: 561. doi: 10.1007/s10661-016-5570-2
[47] 钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20−29. Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20−29.
[48] 安申群, 贡璐, 朱美玲, 等. 塔里木盆地北缘典型荒漠植物根系化学计量特征及其与土壤理化因子的关系[J]. 生态学报, 2017, 37(16): 5444−5450. An S Q, Gong L, Zhu M L, et al. Root stoichiometric characteristics of desert plants and their correlation with soil physicochemical factors in the northern Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(16): 5444−5450.
[49] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103: 551−560. doi: 10.1093/aob/mcn125
[50] Niu D, Zhang C, Ma P, et al. Responses of leaf C∶N∶P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum[J]. Plant Biology, 2019, 21: 82−88. doi: 10.1111/plb.12897
[51] Wang Z, Yu K, Lü S, et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis[J]. Functional Ecology, 2019, 33: 2081−2094. doi: 10.1111/1365-2435.13434
[52] Wang Y, Wang J M, Wang X L, et al. Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N∶P ratios of plant communities[J]. Journal of Plant Ecology, 2021, 14(6): 1158−1174. doi: 10.1093/jpe/rtab062
[53] Setia R, Gottschalk P, Smith P, et al. Soil salinity decreases global soil organic carbon stocks[J]. Science of the Total Environment, 2013, 465: 267−272. doi: 10.1016/j.scitotenv.2012.08.028
[54] Wang L L, Zhao G X, Li M, et al. C∶N∶P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China[J/OL]. PLoS One, 2015, 10(3): e0119935[2021−12−24]. https://doi.org/10.1371/journal.pone.0119935.
[55] Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160: 1741−1761. doi: 10.1104/pp.112.208785
[56] 张晓龙, 周继华, 来利明, 等. 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征[J]. 生态环境学报, 2019, 28(9): 1739−1747. Zhang X L, Zhou J H, Lai L M, et al. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China[J]. Ecology and Environmental Sciences, 2019, 28(9): 1739−1747.
[57] 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012 Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Tech R&D, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012
[58] Min W, Su Y, Xiao Y. Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, northwest China[J/OL]. PLoS One, 2014, 9(4): e94652[2021−12−28]. https://doi.org/10.1371/journal.pone.0094652.
[59] He M Z, Zhang K, Tan H J, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions[J]. Ecology and Evolution, 2015, 5(7): 1494−1503. doi: 10.1002/ece3.1441
[60] 王健铭, 董芳宇, 巴海·那斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12): 3488−3498. Wang J M, Dong F Y, Bahai·Nasila, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488−3498.
-
期刊类型引用(2)
1. Heng Zhang,Shihao Ma,Ping Kang,Qiuliang Zhang,Zhiwei Wu. Spatial heterogeneity of dead fuel moisture content in a Larix gmelinii forest in Inner Mongolia using geostatistics. Journal of Forestry Research. 2021(02): 569-577 . 必应学术
2. 臧建成,孙涛,洪大伟,杨小林. 拉萨半干旱河谷植被对地表节肢动物多样性的影响. 生态学报. 2018(22): 8205-8212 . 百度学术
其他类型引用(2)