Windproof effect of Robinia pseudoacacia forest in different forest belts
-
摘要:
目的 刺槐是我国造林常用树种,在黄河入海口地带广泛种植,但该地区易遭受大风侵袭,刺槐由于根系浅容易发生风倒,因此通过合理的林带布置降低林内最大风速,避免林木倒伏,提升刺槐林的防风效应刻不容缓。 方法 该研究以沿海刺槐防护林为研究对象,基于双向流固耦合技术利用Ansys Workbench平台建立风场与刺槐的计算模型,探讨不同林带结构刺槐林的防风效应。 结果 (1)建立刺槐流固耦合仿真模型,经现场实测数据验证,模型水平归一化风速误差为13%,垂直归一化风速误差为6%,枝干风振位移相对稳定时误差为7 mm,模型具有较高的仿真精度。(2)模拟试验表明首行刺槐对风速减弱的效果明显,在固定行间距5 m的工况下每增加一行刺槐,风速对比前一行刺槐依次降低0.12 $ {v}_{0} $ 、0.07$ {v}_{0} $ 、0.03$ {v}_{0} $ 和0.01$ {v}_{0} $ ($ {v}_{0} $ 为林前初始风速)。(3)相邻的两行刺槐随着行间距的增加,整体防风效果逐渐降低,风经过行间距分别为0.4H、0.5H、0.7H、1.0H和1.5H两行刺槐(H为刺槐树高),第二行风速分别比第一行减小0.15$ {v}_{0} $ 、0.12$ {v}_{0} $ 、0.07$ {v}_{0} $ 、0.04$ {v}_{0} $ 和0.01$ {v}_{0} $ 。(4)交错排列的刺槐林防风效果优于方形排列,并且交错排列刺槐分枝的风振振幅更小。结论 不同的林带结构对刺槐林的防风效应会产生较大的影响,通过数值模拟技术对不同林带结构的防风效应进行评估是一种有效的研究手段,研究结果能够为该地区后续合理造林提供科学支持。 Abstract:Objective Robinia pseudoacacia is a common used tree species for afforestation in China, which is widely planted in the estuary of the Yellow River. However, the area is vulnerable to strong wind invasion, and Robinia pseudoacacia root is prone to windfall due to its shallow root system. Therefore, a reasonable forest belt layout is of great urgency to reduce the maximum wind speed in the forest, avoid tree collapse and improve the wind-proof effect of Robinia pseudoacacia forest. Method The study focused on the coastal Robinia pseudoacacia shelter forest as the research object. The Ansys Workbench platform was used to establish the calculation model of the wind field and Robinia pseudoacacia based on the two-way fluid-structure coupling technology, so as to discuss the windproof effect of Robinia pseudoacacia forest in different forest belts. Result (1) Establishing the two-way fluid-structure coupling simulation model of Robinia pseudoacacia and the flow field, verified by field test data, the horizontal normalized wind speed error of the model was 13%, and the vertical normalized wind speed error was 6%, and when the wind vibration of the branches was relatively stable, the displacement error was 7 mm, the model had high simulation precision. (2) The simulation results showed that the first row of Robinia pseudoacacia had an obvious effect on reducing the wind speed, under the condition of fixed row spacing of 5 m, for each increased a row of Robinia pseudoacacia, the wind speed was reduced by 0.12 $ {v}_{0} $ , 0.07$ {v}_{0} $ , 0.03$ {v}_{0} $ and 0.01$ {v}_{0} $ ($ {v}_{0} $ was the initial wind speed before the forest). (3) With the increase of row spacing, the overall windproof effect of the two adjacent rows of Robinia pseudoacacia gradually decreased. After the wind passed through the two rows of Robinia pseudoacacia with row spacing of 0.4H, 0.5H, 0.7H, 1.0H and 1.5H, respectively(H is the height of the tree), the difference between the two reduced wind speeds of the two rows of Robinia pseudoacacia was 0.15$ {v}_{0} $ , 0.12$ {v}_{0} $ , 0.07$ {v}_{0} $ , 0.04$ {v}_{0} $ and 0.01$ {v}_{0} $ , respectively. (4) The windbreak effect of staggered Robinia pseudoacacia forests was better than square arrangement, and the wind vibration amplitude of staggered branches of Robinia pseudoacacia was smaller.Conclusion Different forest belt structures have a great influence on the windproof effect of Robinia pseudoacacia forest, it is an effective research method to evaluate the windbreak effect of different forest belt structures by numerical simulation technology, the results can provide scientific support for subsequent reasonable afforestation in this area. -
表 1 刺槐的弹性常数
Table 1. Elastic constant of Robinia pseudoacacia
项目 Project 数值 Numerical value 项目 Project 数值 Numerical value 项目 Project 数值 Numerical value $ {E}_{\mathrm{L}} $ 1.48 × 1010 Pa $ {G}_{\mathrm{L}\mathrm{R}} $ 4.62 × 108 Pa $ {\mu }_{\mathrm{L}\mathrm{R}} $ 0.043 $ {E}_{\mathrm{R}} $ 1.57 × 109 Pa $ {G}_{\mathrm{T}\mathrm{L}} $ 4.47 × 108 Pa $ {\mu }_{\mathrm{R}\mathrm{T}} $ 0.71 $ {E}_{\mathrm{T}} $ 8.04 × 108 Pa $ {G}_{\mathrm{R}\mathrm{T}} $ 1.24 × 108 Pa $ {\mu }_{\mathrm{T}\mathrm{L}} $ 0.029 注:L、R和T分别代表纵向、径向和弦向,E、G和$ \mu $分别代表弹性模量、剪切模量和泊松比。Notes: L, R and T represent longitudina, radial and chord direction, respectively, E, G and $ \mu $ represent elastic modulus, shear modulus and Poisson's ratio, respectively. 表 2 双向流固耦合详细设置参数
Table 2. Detailed setting parameters for two-way fluid-structure coupling
项目 Project 参数 Parameter 项目 Project 参数 Parameter 湍流模型
Turbulence model标准k-ε湍流模型
Standard k-ε turbulence model计算时间
Computing time10秒
10 s流体材料
Fluid material25 ℃下模拟生成的风速${v}_{0} $
Wind speed $ {v}_{0} $ generated by simulation at 25 ℃时间步数
Time step number100步
100 steps分析类型
Analysis type瞬态分析
Transient analysis时间步长
Time step0.01秒
0.01 s刺槐模型根部
Robinia pseudoacacia model root固结约束
Fixed support模型网格划分方法
Mesh generation method of model自由网格划分
Free grid division风场四周边界条件
Circumferential boundary conditions of wind field无滑移墙面
No slip wall风场出、入口边界条件
Boundary conditions at the entrance and exit of wind field静态网格移动模式
Static grid movement mode -
[1] Schelhaas M J, Nabuurs G J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries[J]. Global Change Biology, 2003, 9(11): 1620−1633. doi: 10.1046/j.1365-2486.2003.00684.x [2] 吴志华, 李天会, 张华林. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422Wu Z H, Li T H, Zhang H L. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422 [3] Gardiner B, Peltola H, Kellomaki S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees[J]. Ecological Modelling, 2000, 129(1): 1−23. doi: 10.1016/S0304-3800(00)00220-9 [4] Cornelis W M, Gabriels D. Optimal windbreak design for wind-erosion control[J]. Journal of Arid Environments, 2005, 61(2): 315−332. doi: 10.1016/j.jaridenv.2004.10.005 [5] Liu C, Zheng Z, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural & Forest Meteorology, 2018, 252: 27−38. [6] Mustafa M, Xu Y, Haritos G, et al. Measurement of wind flow behavior at the leeward side of porous fences using ultrasonic anemometer device[J]. Energy Procedia, 2016, 85: 350−357. doi: 10.1016/j.egypro.2015.12.261 [7] 孙忠. 基于大涡模拟方法的数值风洞技术与应用研究[D]. 西安: 西安建筑科技大学, 2013.Sun Z. Numerical wind tunnel technique and application study based on large eddy simulation method[D]. Xi’an: Xi’an University of Architecture and Technology, 2013. [8] 康文星, 赵仲辉, 邓湘雯. 杉木林冠层的动力效应及动能传递规律的研究[J]. 中南林业科技大学学报, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001Kang W X, Zhao Z H, Deng X W. Study of the dynamic effects and the law of kinetic energy transmission in the canopy of Chinese fir plantation ecosystems[J]. Journal of Central South University of Forestry & Technology, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001 [9] 关德新, 朱廷曜. 树冠结构参数及附近几场特征的风洞模拟研究[J]. 应用生态学报, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012Guan D X, Zhu T Y. Wind tunnel experiment on canopy structural parameters of isolated tree and wind velocity field characters nearby[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012 [10] Mayhead G J. Some drag coefficients for british forest trees derived from wind tunnel studies[J]. Agricultural Meteorology, 1973, 12(1): 123−130. [11] Dong Z, Qian G, Luo W, et al. Threshold velocity for wind erosion: the effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471−475. doi: 10.1007/s00254-006-0343-9 [12] Moore J R, Maguire D A. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method[J]. Tree Physiology, 2008, 28(1): 75−83. doi: 10.1093/treephys/28.1.75 [13] Ciftci C, Arwade S R, Kane B, et al. Analysis of the probability of failure for open-grown trees during wind storms[J]. Probabilistic Engineering Mechanics, 2014, 37: 41−50. doi: 10.1016/j.probengmech.2014.04.002 [14] 艾晓秋, 彭勇波, 承颖瑶. 城市行道树动力学特性与风致破坏分析[J]. 自然灾害学报, 2018, 27(1): 27−32.Ai X Q, Peng Y B, Cheng Y Y. Wind-induced failure and dynamical behaviors of urban trees[J]. Journal of Natural Disasters, 2018, 27(1): 27−32. [15] 黄盼盼, 胡艳. 脉动风时程模拟及应用[J]. 实验技术与管理, 2021, 38(5): 158−161.Huang P P, Hu Y. Time-history simulation and application of fluctuating wind[J]. Experimental Technology and Management, 2021, 38(5): 158−161. [16] 张鳌, 冀晓东, 丛旭, 等. 基于线性滤波法的单株林木抗风有限元模拟[J]. 北京林业大学学报, 2016, 38(2): 1−9.Zhang A, Ji X D, Cong X, et al. Finite element modeling of wind resistance of single trees based on linear filtering method[J]. Journal of Beijing Forestry University, 2016, 38(2): 1−9. [17] Bitog J P, Lee I B, Hwang H S, et al. Numerical simulation study of a tree windbreak[J]. Biosystems Engineering, 2012, 111(1): 40−48. doi: 10.1016/j.biosystemseng.2011.10.006 [18] Bitog J P, Lee I B, Shin M H, et al. Numerical simulation of an array of fences in Saemangeum reclaimed land[J]. Atmospheric Environment, 2009, 43(30): 4612−4621. doi: 10.1016/j.atmosenv.2009.05.050 [19] Rosenfeld M, Marom G, Bitan A. Numerical simulation of the airflow across trees in a windbreak[J]. Boundary-Layer Meteorology, 2010, 135(1): 89−107. doi: 10.1007/s10546-009-9461-8 [20] 孙恒, 冀晓东, 赵红华, 等. 人工林刺槐木材物理力学性质研究[J]. 北京林业大学学报, 2018, 40(7): 104−112.Sun H, Ji X D, Zhao H H, et al. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104−112. [21] 韩朝. 风荷载下刺槐力学响应研究[D]. 北京: 北京林业大学, 2020.Han C. Study on mechanical response of Robinia pseudoacacia under wind load[D]. Beijing: Beijing Forestry University, 2020. [22] 侯凯. 沿海地区刺槐防护林风速流场及数值模拟研究[D]. 北京: 北京林业大学, 2020.Hou K. Research on wind speed flow field and numerical simulation of Robinia pseudoacacia forest incoastal area[D]. Beijing: Beijing Forestry University, 2020. [23] 杨茂林, 冀晓东, 孙恒, 等. 不同年龄刺槐枝、干和根的物理力学性质对比[J]. 林业科学, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712Yang M L, Ji X D, Sun H, et al. comparation on physical and mechanical properties of branches, stems and roots of Robinia pseudoacacia at different ages[J]. Scientia Silvae Sinicae, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712 [24] 任一凡. 基于双向流固耦合的林木风致响应及防风效果研究[D]. 北京: 北京林业大学, 2020.Ren Y F. Study on wind-induced response and windproof effect of trees based on two-way fluid-structure interaction[D]. Beijing: Beijing Forestry University, 2020. [25] Adamopoulos S. Flexural properties of black locust (Robinia pseudoacacia L.) small clear wood specimens in relation to the direction of load application[J]. Holz als Roh- und Werkstoff, 2002, 60(5): 325−327. doi: 10.1007/s00107-002-0328-7 [26] 刘一星, 赵广杰. 木材学[M]. 城市: 中国林业出版社, 2012.Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012. [27] 高旭, 姜楠. 分形L系统理论与植物图像的计算机模拟[J]. 扬州大学学报(自然科学版), 2000(1): 71−74.Gao X, Jiang N. Fractal lindenmayer system and the computer simulation of plant image[J]. Journal of Yangzhou University(Natural Science Edition), 2000(1): 71−74. [28] Heisler G M, Dewalle D R. Effects of windbreak structure on wind flow[J]. Agriculture Ecosystems and Environment, 1988, 22: 41−69. -