Short-term effects of disturbance and nitrogen deposition on Alternanthera philoxeroides invading wetland plant communities
-
摘要:目的 干扰和氮沉降是影响植物入侵的重要环境要素。目前,干扰和氮沉降如何协同影响空心莲子草入侵湿地植物群落的研究相对缺乏。本研究探讨了干扰、氮沉降和湿地植物群落对空心莲子草入侵的短期影响,为入侵植物空心莲子草的物理控制及湿地植被的恢复与重建提供了一定的理论支撑和实践基础。方法 以入侵植物空心莲子草为主要研究对象,构建4种湿地植物粉绿狐尾藻、水葱、黄花鸢尾和千屈菜组成的湿地植物群落,设计干扰(无干扰、模拟采食、刈割)、氮沉降(无氮添加和氮添加)以及有无湿地植物群落竞争(仅空心莲子草单种模式和空心莲子草与湿地植物群落混种模式)的三因素控制试验。结果 模拟采食和刈割两种干扰显著降低了空心莲子草的生长繁殖指标,且刈割相较于模拟采食影响更大。刈割处理下空心莲子草生物量、茎长和节数的相对生长率为负值,同时,刈割处理下空心莲子草生物量、茎长和分枝数的补偿系数均显著小于模拟采食处理,但存在欠补偿生长;湿地植物群落显著影响了空心莲子草根、叶、总生物量、叶片数、茎长和分枝数等指标;而氮沉降仅显著影响了空心莲子草分枝数补偿系数。除叶片数和分枝补偿系数,干扰与氮沉降对空心莲子草入侵的湿地植物群落并没有显著的交互作用。结论 模拟采食和刈割两种干扰一定程度上抑制空心莲子草的入侵,且随着干扰强度增加,对空心莲子草生长恢复抑制效应越强。氮沉降对空心莲子草综合指标影响不显著。本地湿地植物群落一定程度上可抑制空心莲子草入侵。而干扰与氮沉降的交互作用仅对空心莲子草叶片数和分枝数补偿系数有显著影响,对其入侵的湿地植物群落并无显著作用。Abstract:Objective Disturbance and nitrogen deposition are important environmental factors influencing plant invasion. At present, studies on the synergistic effects of disturbance and nitrogen deposition on plant communities in wetland invaded by Alternanthera philoxeroides are relatively lacking. This study was to explore the short-term effects of disturbance, nitrogen deposition and wetland plant communities on A. philoxeroides invasion, which established a strong theoretical support and practical foundation for the physical control of A. philoxeroides and the restoration and reconstruction of wetland vegetation.Method In this study, invasive plant A. philoxeroides and four wetland plant communities, including Myriophyllum aquaticum, Scirpus validus, Iris wilsonii and Lythrum salicaria were selected as the subjects. And three-factor control experiments were designed for invasive plant disturbance (no disturbance, simulated herbivory, mowing), nitrogen deposition (no nitrogen addition and with nitrogen addition), and native plant competition or not (only A. philoxeroides modes, and A. philoxeroides and wetland plant communities composed by 4 plant species).Result Simulated herbivory and mowing had significantly reduced the growth and reproduction traits, including the relative growth rate based on biomass, plant height and node number of A. philoxeroides. And mowing had a greater impact than simulated herbivory. The growth rate of biomass, stem length and internode numbers of A. philoxeroides was negative under mowing, the compensation index of biomass, stem length and ramet numbers of A. philoxeroides was significantly lower than those of simulated herbivory treatment, but there was insufficient compensation. Furthermore, the wetland plant community significantly reduced the indexes including root, leaf, total biomass, leaf number, stem length and branch number of A. philoxeroides. However, nitrogen deposition only significantly affected the compensation coefficient of A. philoxeroides branching. Except for leaf number and branching compensation coefficient, there was no significant interaction between disturbance and nitrogen deposition on plant communities in the wetland invaded by A. philoxeroides.Conclusion Simulated herbivory and mowing are not conducive to the invasion of A. philoxeroides to a certain extent, and have a strong inhibitory effect on the growth and recovery of A. philoxeroides with the increase of interference intensity. Nitrogen deposition does not significantly affect the composite indicator of A. philoxeroides. The local wetland plant community can inhibit the invasion of A. philoxeroides to a certain extent. Combination of the disturbance and nitrogen deposition only has a significant effect on the compensation coefficient of number of leaves and number of ramets, but has no significant effect on the wetland plant community invaded by A. philoxeroides.
-
Keywords:
- Alternanthera philoxeroides /
- compensation /
- simulated herbivory /
- mowing /
- relative growth rate
-
松属(Pinus)是针叶树各属中最大且最为重要的一个属[1]。马尾松(Pinus massoniana)综合利用价值高、推广应用前景广阔,是我国南方生态建设和工业用材的主要造林树种[2]。广西多年来一直从事马尾松良种选育方面的工作,在全国处于领先地位,先后选育了宁明桐棉、忻城古蓬、容县浪水等速生、优质、高产优良种源11个。其中,宁明桐棉种源(桐棉松)在全国17个省(区)的马尾松全分布地理种源试验中表现优异,通过了国家良种审定,是我国最为优良的马尾松地理种源之一。由于桐棉松干形通直、皮薄、生长快、产量高,是马尾松骨干育种资源[3]。然而,由于马尾松育种周期长,加之近年来种子园母树林老化、结实量低等问题,导致良种匮乏,人工林生产力水平整体不高,严重限制和阻碍了马尾松产业的发展[4]。
无性快繁技术能有效提升良种选育效率,同时还能保持亲本的优良性状,是解决良种匮乏,改善人工林生产力低的有效途径。受插穗母株与季节影响,扦插育苗效率较低[5],而组培技术在速生、优质、高抗林木优良种质创制与利用方面发挥了重要作用,为多目标品种林业的发展提供了有力的生物技术工具[6-7]。体胚发生(somatic embryogenesis,SE)和器官发生(organogenesis)是植物组培育苗中两种主要途径[6]。其中,通过SE途径的植株再生,繁殖速度快、育苗效率高,但程序繁琐、技术难度大;而通过器官发生途径的植株再生,作为一种传统的组培育苗技术,虽繁殖系数低于前者,但具有高度保持亲本遗传稳定性的优势,且操作较为简便,在生产上应用广泛[8-10],二者各有利弊。
马尾松属于组织培养顽拗型的树种[11]。在马尾松体胚育苗方面,众多学者先后以成熟或未成熟种子合子胚为材料诱导了体胚发生,但由于体胚萌发率低,且经萌发形成的体胚苗生长势弱、根系质量差、成活率低,植株再生困难[4, 12]。而以茎芽、种子等为外植体,通过器官发生途径,先后获得了马尾松的再生植株[13-15],但受繁殖效率的影响,生产成本高昂,尚未实现组培苗规模化生产与应用。基于此,本研究旨在优化马尾松体胚萌发效率,并通过芽苗复壮与不定根诱导,创建一种体胚发生与器官发生途径相结合的高效组培育苗技术,为实现马尾松优良种质无性育苗产业化奠定坚实基础。
1. 材料与方法
1.1 试验材料
以2013—2016年6月中下旬,于广西宁明县国有派阳山林场桐棉松优良林分中采集的未成熟球果为体胚培养材料,参照杨模华等[4]方法,无菌条件下剥取带胚乳的幼胚为外植体,经过体胚诱导(图1A)和维持增殖(图1B)培养获得了大量活力旺盛的桐棉松胚性细胞系。根据胚性愈伤组织的增殖速率,选择培养时间 ≤ 1年,增殖系数 ≥ 25.0/14 d,色泽透明,无水渍化现象的17个胚性细胞系作为研究对象,以LP[16]为基本培养基,附加37.8 µmol/L ABA,55.5 mmol/L 麦芽糖,15 mmol/LPEG 8000,23.8 mmol/L 琼脂(> 900 g/cm2),经成熟培养(图1C、G)4 ~ 5个月后,将分化成型的胚状体(图1H)作为本试验研究材料。
图 1 桐棉松体胚发生途径植株再生A.体胚诱导;B. 体胚增殖;C. 成熟培养;D. 诱导阶段胚性细胞显微观察;E. 增殖阶段胚性细胞显微观察;F. 成熟培养胚性细胞显微观察;G. 形成优势、成熟胚的胚性细胞团;H. 成熟体细胞胚;I. 体胚萌发培养;J. 生长中的萌发体胚;K. 再生体萌苗;L. 体胚苗移栽。标尺: 2 cm(A), 1cm(B, I−L), 0.5 cm(C), 2 mm(G, H), 500 μm(D, E), 200 μm(F). A, induction of somatic embryos; B, proliferation of somatic embryos; C, maturation culture; D, microscopic observation on induced somatic embryos; E, microscopic observation on proliferated somatic embryos; F, microscopic observation on somatic embryos during mature culture; G, embryogenic cells with dominative and mature somatic embryos; H, mature somatic embryos; I, germination of somatic embryos; J, growth of germinated somatic embryos; K, regenerated somatic seedlings; L, transplanting of somatic seedlings. Scale bars: 2 cm (A), 1cm (B, I−L), 0.5 cm (C), 2 mm (G, H), 500 μm (D, E), 200 μm (F).Figure 1. Plant regeneration via somatic embryogenesis in Pinus massoniana ‘Tongmiansong’1.2 试验设计
1.2.1 体胚萌发
(1)活性炭(AC)处理:将成熟胚状体直接转入1/2LP培养基中,附加0 ~ 1 mol/L AC ,73.1 mmol/L蔗糖,23.8 mmol/L琼脂(> 900 g/cm2),在无光照、(4 ± 0.5)℃条件下预培养1周,然后于80 µmol/(m2·s)光照强度下培养4 ~ 5周,光照时间12 h/d,培养温度(25 ± 0.5)℃。该试验设13个AC处理,每处理3重复,每重复60个胚状体,共接种2 340个胚状体。
(2)基本培养基处理:将胚状体接种在附加0.83 mol/L AC的1/2LP、1/2DCR[17]、1/2GD[18]、1/2MS[19]、1/2MMS[11]5种不同基本培养基中,其余培养条件同上。本试验共设置5个处理,每处理3重复,每重复60个胚状体,共接种900个胚状体。
待萌发培养40 d左右,将上胚轴部位形成绿色叶片的体胚计为萌发体胚(图1I)。
体胚萌发率 = 萌发体胚数/接种胚状体总数 × 100%。
1.2.2 芽苗复壮
将萌发体胚下胚轴靠胚根部分2 ~ 3 mm切除(图2A),然后转入MMS并附加0、0.42、0.83 mol/L AC,87.7 mmol/L蔗糖,23.8 mmol/L琼脂(> 900 g/cm2)培养基中培养40 d(图2B),待萌发体胚伸长形成健壮芽苗(图2C),截取3 ~ 5 cm顶芽直接转入MMS + 87.7 mmol/L蔗糖+ 17.8 mmol/L 琼脂(> 900 g/cm2)和 0、2、4、6、8 µmol/L 6-BA 或TDZ 的培养基中处理35 d诱导腋芽(图2D),最后转入MMS + 0.42 mol/L AC的无激素培养基中培养50 d促进健壮丛芽形成(图2E)。培养光照强度40 µmol/(m2·s),光照时间12 h/d,培养温度同上。将丛生芽中芽高 ≥ 3 cm的单芽计为有效芽,有效芽增殖系数 = 有效芽个数/接种顶芽总数。本阶段在促萌发体胚伸长生长的试验中,共接种1 632个生长良好的萌发体胚(包括0、0.42、0.83 mol/L 3个AC处理,每处理5重复,每重复80 ~ 144个体胚);从伸长的萌发体胚中,则截取了1 280个顶芽(包括0、2、4、6、8 µmol/L 5个6-BA和0、2、4、6、8 µmol/L 5个TDZ浓度处理,每处理4重复,每重复28 ~ 40个顶芽)进行腋芽诱导与复壮。
图 2 通过芽苗复壮与不定根诱导的桐棉松萌发体胚离体植株再生A.切除胚根的萌发体胚;B. 切根处理后的萌发体胚复壮培养;C. 复壮的体胚苗;D. 复壮体胚苗腋芽诱导;E. 形成丛生芽的复壮体胚苗;F. 复壮体胚苗的大量增殖与扩繁;G. 形成发达根系的生根苗;F. 生根苗苗圃移栽;I. 移栽3个月后成活的生根苗。标尺: 10 cm(F), 5 cm(I), 2 cm(H), 1cm(A−E, G). A, germinated somatic embryos with radicle cutting; B, reinvigoration of germinated somatic embryos after radicle cutting; C, reinvigorated shoots originated from somatic embryos; D, induction of axillary buds for reinvigorated shoots originated from somatic embryos; E, clustered shoots from reinvigorated shoots originated from somatic embryos; F, massive proliferation of reinvigorated shoots originated from somatic embryos; G, rooted shoots with robust root system; H, transplanting of rooted shoot in the nursery; I, survival seedlings after 3-month transplanting. Scale bars: 10 cm (F), 5 cm (I), 2 cm (H), 1 cm (A−E, G).Figure 2. In vitro regeneration of plants originated from germinated somatic embryos of Pinus massoniana ‘Tongmiansong’ through shoot reinvigoration and adventitious root induction1.2.3 不定根诱导
在前期研究中,笔者已报道培养基中添加NAA对马尾松不定根诱导是有效的,并在1.2 µmol/L NAA处理下生根效果最佳,生根率为80%左右[20]。为进一步改善生根效果,利用激素协同作用,在开展1.2 µmol/L NAA + 0 ~ 16 µmol/L IAA、IBA或多效唑(PBZ)生根诱导预实验前提下,本试验单个截取丛芽中2 ~ 3 cm高的顶芽接种在1/2MMS,附加1.2 µmol/L NAA和/或2 µmol/L IAA、IBA、PBZ,以及58.5 mmol/L蔗糖、14.9 mmol/L琼脂(> 900 g/cm2)的培养基中进行生根诱导60 d(图2G),培养光照、温度条件同1.2.2。将不定根长度 ≥ 0.5 cm的芽苗计为生根苗,并以接种单芽中50%以上为生根苗的生根处理时间作为生根时间,统计长度 ≥ 1 cm的不定根数作为根条数。其中,生根率 = 生根苗数/接种单芽数 × 100%。在不定根诱导试验中,共接种了1 040个单芽(包括无激素对照、1.2 µmol/L NAA、1.2 µmol/L NAA + 2 µmol/L IAA、1.2 µmol/L NAA + 2 µmol/L IBA、1.2 µmol/L NAA + 2 µmol/L PBZ 5种激素处理,每处理5重复,每重复40 ~ 48个单芽)。
1.3 移栽与管护
将生根瓶苗移至自然环境条件下炼苗棚中,按照从99%至70%逐渐降低的湿度条件进行炼苗。两周后,将苗木从瓶中取出,洗净培养基,用0.1%多菌灵浸泡根部10 min后移至装有体积比为3∶2∶3∶2的黄心土、泥炭土、椰糠、珍珠岩混合基质的育苗杯中(图2H)。然后,根据常规育苗管理方法,进行水肥、光照和病虫害管护。移栽3个月后统计苗高 ≥ 15 cm的株数并计为成活株数(图2I),成活率 = 成活株数/移栽生根苗数 × 100%。
1.4 数据分析
通过单因素方差分析(One-way ANOVA,P < 0.05)对不同AC浓度、培养基类型与激素处理间的均值进行差异显著性检验;利用Duncan’s multiple range test进行多重比较,t-test进行两个处理间差异性分析。数据处理采用SPSS 19.0统计分析软件,用Excel软件绘图。
2. 结果与分析
2.1 AC、基本培养基对体胚萌发与生长的影响
在前期研究中,笔者以桐棉松未成熟球果合子胚为外植体,经过体胚发生途径,完成了体胚苗的再生(图1)。但整体上,体胚萌发率偏低,胚根发育不完善,导致移栽成活困难,体胚育苗效率低。然而,在获取成熟胚状体的基础上,通过器官发生途径,对萌发体胚芽苗进行复壮与不定根诱导,育苗效果显著提升(图2)。
从图3可以看出,培养基中不添加AC时,体胚萌发率为0。随着培养基中附加的AC浓度的增加,体胚萌发率呈上升趋势,在AC浓度为0.75 ~ 0.83 mol/L时,体胚萌发率最高,但AC浓度为0.92 ~ 1 mol/L时,体胚萌发率降低。这说明,AC在桐棉松胚状体萌发中很有必要,但较高浓度AC对体胚萌发可能会产生一定的抑制性。
在培养基中均附加0.83 mol/L AC的基础之上,不同基本培养基上所接种成熟胚状体的萌发效果也不同(表1)。从培养效果来看,以1/2MMS的培养效果最佳,萌发率高达94.1%,且萌发体胚生长健壮、活性好;其次是1/2LP培养基,萌发率68.5%,但芽苗生理活性较弱,有一定的褐化现象;在1/2DCR培养基上,萌发率最低(10.7%),且萌发芽苗生长缓慢,有严重的褐化问题,体胚萌发困难。这些结果表明,培养基中矿质元素组成对体胚萌发的影响显著。
表 1 基本培养基对桐棉松体胚萌发的影响Table 1. Effects of basal media on germination of somatic embryos in Pinus massoniana ‘Tongmiansong’基本培养基 Basal media 萌发率 Germination rate/% 萌发芽苗生长情况 Growth of shoots from germinated somatic embryos 1/2LP 68.5 ± 2.1b 叶片颜色深绿,顶芽形成缓慢,有褐化现象
Leaves are dark green, the formation of top shoots is slow, and the browning of shoots is occasionally observed1/2DCR 10.7 ± 2.2e 生长缓慢,叶片颜色发黄,褐化严重
Growth of shoots is slow, their leaves are yellow, and the browning of shoots is serious1/2GD 37.7 ± 2.6d 叶片短小、颜色发黄,顶芽形成困难,褐化现象明显
Leaves are short and yellow, the formation of top shoots is difficult, and the browning of shoots is obvious1/2MS 42.4 ± 3.2c 叶片呈浅绿色,形成顶芽水渍化现象明显
Leaves are light green, and the formed top shoots are easy to be water-soaking1/2MMS 94.1 ± 2.8a 叶片颜色翠绿,顶芽形成快、生长健壮,无褐化、玻璃化现象
Leaves are green, the formation of top shoots is efficient, and the shoots are robust without browning and vitrification注:同一列中不同小写字母表示不同基本培养基间差异显著(P < 0.05)。Note: different lowercase letters from the same column indicate significant differences among varied basal media at P < 0.05 level. 2.2 AC、细胞分裂素对芽苗复壮的影响
为实现萌发体胚芽苗的复壮,首先对萌发体胚进行切根处理,然后将上胚轴接种在含不同AC浓度的MMS培养基中。由图4显示结果来看,与不添加AC的对照相比,在0.42 mol/L AC处理下,萌发体胚芽苗生长最快,40 d伸长培养后即可形成健壮芽苗(图2C),平均芽高为7.1 cm。在0.83 mol/L AC处理下,芽苗高度虽高于对照,但明显低于0.42 mol/L AC处理。
从伸长芽苗上截取顶芽接种在添加不同浓度的细胞分裂素(6-BA和TDZ)培养基上进行增殖。表2结果表明,细胞分裂素是实现腋芽诱导的关键。从细胞分裂素处理浓度来看,在6 µmol/L 6-BA和4 µmol/L TDZ处理下,有效芽增殖系数较高,但丛芽高生长和芽苗生长情况均以4 µmol/L 6-BA或TDZ处理下的效果佳。在同一浓度处理条件下,有效芽增殖系数仅在4 µmol/L 6-BA和TDZ间差异显著,分别为2.9和5.6;而丛芽高度在2 ~ 6 µmol/L浓度处理范围内,TDZ作用下丛芽高度显著高于6-BA,但在8 µmol/L浓度处理下,丛芽高度在6-BA和TDZ作用下无明显差异。从6-BA和TDZ对芽苗生长影响来看,在较高浓度(6 ~ 8 µmol/L)作用下,与TDZ处理相比,6-BA处理下芽苗针叶较为卷曲、密集,茎节间距短,芽苗褐化与玻璃化问题更为严重。
表 2 细胞分裂素对桐棉松萌发体胚芽苗增殖和生长的影响Table 2. Effects of cytokinins on proliferation and growth of shoots originated from germinated somatic embryos in Pinus massoniana ‘Tongmiansong’激素浓度
Hormone concentration/
(µmol·L− 1)有效芽增殖系数
Proliferation coefficient of effective shoots丛芽高度
Height of clustered shoots/cm芽生长情况
Shoot growth6-BA TDZ 6-BA TDZ 6-BA TDZ 0 0dA 0eA — — 未形成丛芽,针叶短小、颜色深绿,茎节间短,植株矮小
Cluster shoots are not found, leaves are short and dark green, internodes of shoots are short, and the whole plant is dwarf2 0.9 ± 0.2cA 1.1 ± 0.5dA 4.8 ± 0.4bB 8.1 ± 0.8bA 多呈单芽,大部分芽节间短、针叶密且呈深绿色
Most of shoots are single, their internodes are short, and leaves are compact and dark green丛生芽少,针叶细长,叶片为浅绿色
Cluster shoots are rare, leaves are tenuous and light green4 2.9 ± 0.7bB 5.6 ± 0.7aA 7.8 ± 0.8aB 9.2 ± 0.8aA 丛芽多,芽苗节间长,叶片颜色翠绿,生长健壮
Plenty of cluster shoots are observed, with long internodes, green leaves, and they grow well丛芽多,针叶长,叶片颜色翠绿,茎节间长,生长健壮
Plenty of cluster shoots are investigated, with long and green leaves, long internodes, and the whole shoots are thriving6 4.1 ± 0.5aA 3.3 ± 1.0bA 5.0 ± 0.8bB 6.7 ± 0.9cA 短簇状丛生芽较多,茎节间短,叶片颜色发黄,有褐化现象
Short cluster shoots are usually found, with short internodes, yellow leaves, and the browning of shoots is observed丛芽多,顶稍针叶较短,有部分叶片颜色发黄
Cluster shoots are sufficient, leaves of top shoots are short, and part of leaves are yellow8 2.5 ± 0.8bA 2.1 ± 0.7cA 3.6 ± 0.8cA 3.7 ± 0.4dA 丛芽呈短簇状,叶子卷曲,短小,褐化、玻璃化现象明显
Cluster shoots are short and small, leaves are cured and short, and the vitrification of shoots is remarkable丛芽矮小,叶片颜色发黄,有玻璃化现象
Cluster shoots are shorts, leaves are yellow, and the vitrification of shoots is occasionally found注:同一列中不同小写字母表示不同激素浓度处理间差异显著,同一行中不同大写字母表示两种激素处理间差异显著(P < 0.05)。Notes: different lowercase letters from the same column indicate significant differences among varied hormone concentration treatments, while different capital letters from the same row indicate significant differences between two hormone treatments at P < 0.05 level. 2.3 生长调节剂对不定根形成的影响
从表3可以看出,生长调节剂(PGR)影响桐棉松不定根形成。在无PGR添加培养基上,单芽生根率为0。从几种PGR组合来看,以NAA + PBZ处理下生根效果最好,生根率高,生根时间短,根条数多,根系长,移栽成活率高;其次是NAA + IAA处理,除根条数和移栽成活率外,其单芽生根率、生根时间、根长与NAA + PBZ处理均无明显差异。
表 3 生长调节剂对桐棉松萌发体胚复壮芽苗生根能力的影响Table 3. Effects of plant growth regulators on rooting capacity of reinvigorated shoots originated fromgerminated somatic embryos in Pinus massoniana ‘Tongmiansong’激素处理
Hormone treatment生根率
Rooting rate/%生根时间
Rooting time/d根条数
Number of roots根长
Root length/cm成活率
Survival rate/%对照 Control 0c — — — — NAA 87.7 ± 4.5b 28.7 ± 2.1a 2.3 ± 0.4d 0.6 ± 0.2b 50.3 ± 3.6d NAA + IAA 91.4 ± 2.7ab 20.8 ± 1.5c 4.2 ± 0.7b 2.1 ± 0.4a 83.4 ± 3.2b NAA + IBA 90.5 ± 2.2ab 24.0 ± 2.3b 3.5 ± 0.8c 2.7 ± 0.4a 70.8 ± 4.6c NAA + PBZ 94.3 ± 3.8a 18.6 ± 1.2c 6.4 ± 0.7a 2.3 ± 0.6a 95.8 ± 2.4a 注:同一列中不同小写字母表示不同激素处理间差异显著(P < 0.05)。Note: different lowercase letters from the same column indicate significant differences among varied hormone treatments at P < 0.05 level. 3. 结论与讨论
研究发现,活性炭能改善繁殖材料褐化,促进植株伸长生长,因此被广泛应用于植物组培中[8]。以往研究证明,培养基中附加的活性炭能影响植物对培养基中金属元素的获取[9]。Van Winkle等[21]认为,活性炭在松树组培中所发挥的作用主要在于其对酚酸物质及残留激素的吸收。而Pan等[10]认为,受树种和培养材料的影响,活性炭在植物组培中存在促进或抑制性的效果。对马尾松而言,活性炭在组培中的促进作用在笔者以往研究中已证实[11, 15]。本研究在无活性炭培养基中未发现萌发体胚,而通过在培养基中添加活性炭,体胚萌发率、芽苗生长高度显著增加,但过高浓度活性炭导致体胚萌发率与苗高增长量下降。这说明,活性炭对提升桐棉松体胚萌发率、促进芽苗伸长生长起到关键性的作用,但过量使用会降低培养效果。因此,根据培养材料及其生长情况的差异,应对活性碳使用量进行优化,根据本试验研究结果,建议胚状体萌发0.83 mol/L、芽苗伸长0.42 mol/L。
一般情况下,因树种、繁殖材料、基因型的不同,所适用的培养基也不同[22]。其中,培养基中矿质营养元素(大量元素)组成对植物组培效果影响最大[1]。在探讨了活性炭对马尾松体胚萌发作用的基础上,为进一步改善马尾松体胚萌发效果,本试验对DCR、GD、LP、MS、MMS 5种不同类型基本培养基上胚状体萌发情况进行了研究。通过观测发现,与低矿质元素含量的DCR、GD相比,在高矿质元素含量的LP、MS、MMS上体胚萌发率普遍偏高。LP、MS、MMS均属于高N培养基,但LP、MMS中铵态氮含量较低,此外LP中K、Ca含量高于MS和MMS。马尾松属高N需求树种[23],高N培养基更适于马尾松体胚萌发可能与此有关。从LP、MS、MMS上萌发体胚生长情况来看,LP体胚芽生长活性差,可能是受到高K、Ca影响。K、Ca参与植物光合、呼吸等多种生理代谢活动,在细胞壁、韧皮部、木质部发育中起重要作用[24-25]。LP上芽苗长势弱可能是高浓度K、Ca引起的生理代谢活动紊乱,细胞壁加厚,木质化加剧,芽苗出现生理老化所致,这有待从解剖构造和生理生化角度进一步验证。整体而言,5种供试基本培养基中以MMS体胚萌发培养效果最好,与MS相比,MMS减少了铵态氮用量,提高了硝态氮/铵态氮比值,从而有效避免了因芽苗细弱出现的水渍化问题。初步认为,高N但低铵态/硝态氮比,K、Ca量适中的培养基更利于桐棉松体胚萌发。
细胞分裂素能调节植物细胞生长发育,促进组织分化与生长,是实现培养材料复壮的重要调控因子[26]。然而研究发现,高浓度细胞分裂素的应用会导致培养材料中毒,进而发生水渍玻璃化、褐化,伸长生长困难等问题[27-28]。因此,挖掘开发一种高活性细胞分裂素很有必要。为进一步开展桐棉松萌发体胚芽的生理复壮,本研究以常规使用的6-BA作为参照,分析了TDZ对萌发体胚芽苗腋芽诱导与生长的影响。从研究结果来看,在无激素培养基上未发现丛芽,说明受马尾松萌蘖能力差的影响,芽增殖培养基中细胞分裂素的添加必不可少。在2 ~ 8 µmol/L的测试浓度范围内,TDZ以4 µmol/L条件下的芽苗复壮效果好,而6-BA在6 µmol/L时芽增殖最多(4.1),在4 µmol/L时丛芽最高。6-BA与TDZ的分子量均为220,但TDZ在较低浓度时获得了较高的增殖系数(5.6),且芽苗伸长快。此外,在6 ~ 8 µmol/L较高浓度条件下,6-BA作用下的芽苗褐化、玻璃化现象明显较TDZ严重,暗示了6-BA对培养材料的毒害性大于TDZ。这些说明,TDZ可作为一种高活性的高效细胞分裂素应用于植物组培芽苗复壮培养中。
马尾松属诱生根原基树种,不定根形成困难[13]。生长素是诱导马尾松不定根形成的关键,通过本试验无生长素对照处理中未发现生根苗这点可以证实。NAA能促进马尾松不定根发生与形成,但生根效果不稳定,生根率波动范围较大[11, 13, 15, 20, 29]。本研究利用NAA与IAA、IBA或PBZ进行组合,生根效果得到了不同程度的改善,其中以NAA + PBZ效果最佳。PBZ作为赤霉素(GA)的一种生物合成抑制剂,被应用于多种植物组培生根培养中[30-31]。GA有类似于IAA的生物活性,能协同IAA促进植物细胞生长,加快不定根发育[32]。然而有学者提出,GA通过影响IAA的极性运输,抑制根系径向发育,对不定根形成具有抑制作用[33-34]。我们推测,PBZ的促根性效果可能是由于繁殖材料中较高的内源GA水平所致,这需进一步开展有关生根能力与内源激素水平相关性方面的研究。此外,与NAA相比,NAA + IAA、NAA + IBA作用下生根率无明显变化,但生根时间、根条数、根长与移栽效果显著提升,其中NAA + IAA效果优于NAA + IBA。从不定根发育过程来看,包括不定根发生(生根率)和形态建成(根条数、根长)两个阶段[35]。其中,IAA对不定根形态建成的促进性在一些国外研究中已证实[36-37],这点与本试验研究结果一致。因此,对不定根发生容易,而根系发育缓慢、根条数少的树种,可考虑在培养基中添加IAA促进根系质量的改善。
-
图 2 干扰、氮沉降及湿地植物群落对空心莲子草生物量指标的影响
对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式。大写字母A表示有无氮沉降差异显著,不同小写字母a、b、c表示干扰差异显著,不同小写字母x、y表示有无湿地植物群落差异显著。下同。The control is a single species model of A. philoxeroides, and the community is a mixed species model of A. philoxeroides and wetland plant communities. The capital letter A indicates whether there is significant difference in nitrogen deposition, different lowercase letters a, b, c indicate significant difference in disturbance, and different lowercase letters x, y indicate whether there is significant difference in wetland plant community. The same below.
Figure 2. Effects of disturbance, nitrogen deposition and plant community on the biomass index of A. philoxeroides
图 5 干扰、氮沉降和湿地植物群落对空心莲子草补偿系数的影响
*表明t-检验结果显示与1.0之间无显著差异,即为等量补偿。对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式。* indicates that there is no significant difference between the t-test result and 1.0, which is equal compensation. The control is a single species model of A. philoxeroides, and the community is a mixed species model of A. philoxeroides and wetland plant community.
Figure 5. Effects of disturbance, nitrogen deposition and plant community on the CI of A. philoxeroides
图 6 干扰和氮沉降对被空心莲子草入侵的湿地植物群落的整体生长指标的影响
不同大写字母表示有无干扰显著差异,不同小写字母表示有无氮沉降显著差异。Different uppercase letters indicate significant difference in disturbance, while different lowercase letters indicate significant difference in nitrogen deposition.
Figure 6. Effects of disturbance and nitrogen deposition on the overall growth of wetland plant communities invaded by A. philoxeroides
图 7 干扰、氮沉降及湿地植物群落对空心莲子草所有生长指标的影响
实线表示促进作用,虚线表示抑制作用。***表示P < 0.001,**表示P < 0.01。数值表示3个处理对生长指标的综合影响。Gof是一种模型整体拟合度指标,反映模型拟合数据的程度。拟合优度的取值范围为0~1。N为氮沉降,D为干扰,C为群落,SH为模拟采食,M为刈割,K为空心莲子草的所有生长指标,R为根生物量,S茎生物量,L为叶生物量,T为总生物量,NL为叶片数,IL为节间长,NI为节数,SL为茎长,NR为分枝。The solid line indicates promoting effect, the dashed line indicates inhibitory effect. *** indicates P < 0.001, ** indicates P < 0.01. The data indicate the comprehensive impact of three treatments on growth indicators. Gof is an indicator of the overall fit of a model, reflecting the degree to which the model fits the data. The value range of goodness of fit is 0−1. N is nitrogen deposition, D is disturbance, C is community, SH is simulated herbivory, M is mowing, K is the total growth indexes of A. philoxeroides, R is root biomass, S is stem biomass, L is leaf biomass, T is total biomass, NL is the number of leaf, IL is internode length, NI is number of internode, SL is stem length, NR is the number of ramet.
Figure 7. Effect of disturbance, nitrogen deposition and wetland plant community on the total growth indexes of A. philoxeroides
表 1 干扰、氮沉降及群落对空心莲子草生长的影响
Table 1 Effects of disturbance, nitrogen deposition and wetland plant community on growth traits of A. philoxeroides
指标 Index 二级指标 Secondary index 干扰
Disturbance (D)氮沉降
Nitrogen deposition (N)群落
Community (C)
D × ND × C N × C
D × N × C生物量
Biomass根生物量 Root biomass 25.497*** 0.885 12.881** 0.449 1.174 0.020 0.697 茎生物量 Stem biomass 68.514*** 0.289 3.952 0.236 2.701 0.191 0.123 叶生物量 Leaf biomass 52.331*** 0.395 18.869*** 0.265 7.982** 0.001 0.123 总生物量 Total biomass 66.938*** 0.423 9.733** 0.231 4.457* 0.064 0.138 生长指标
Growth index叶片数 Number of leaf 131.223*** 0.734 19.582*** 3.465** 9.794*** 1.465 0.459 节间长 Internode length 6.862** 3.129 3.419 0.882 0.482 0.069 0.190 节数 Number of internode 148.776*** 0.170 0.503 1.121 0.090 0.369 0.207 茎长 Stem length 357.447*** 1.922 18.329*** 0.221 0.454 1.566 0.995 分枝数 Number of ramet 71.112*** 0.137 7.802** 2.438 7.271** 0.137 0.157 相对生长率
Relative growth
rate (RGR)生物量相对生长率
RGR of biomass568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669 叶片数相对生长率
RGR of leaf number223.261*** 0.482 21.877*** 2.608 5.247** 1.692 1.692 茎长相对生长率
RGR of stem length568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669 节数相对生长率
RGR of internode number184.376*** 0.054 0.676 0.876 0.138 0.200 0.200 补偿系数
Compensation
index (CI)生物量补偿系数a Biomass CIa 58.763*** 1.717 4.981* 0.198 0.004 0.663 0.264 茎长补偿系数 CI of stem length 257.899*** 0.495 0.006 0.017 0.334 0.019 0.722 分枝数补偿系数
CI of ramet number101.221*** 7.746* 22.956*** 7.474* 8.822** 2.278 0.315 注:数据为F值,标粗表示具有显著性。*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。a表示数据经过取对数数据转换。下同。Notes: the data are F values, and the bold mark indicates significant. * means P < 0.05, ** means P < 0.01, *** means P < 0.001. a means data has been converted from logarithmic data. The same below. 表 2 干扰和氮沉降对湿地植物群落生物量的影响
Table 2 Effects of disturbance and nitrogen deposition on the biomass of wetland plant communities
项目 Item 生物量 Biomass D N D × N 整体群落 Whole community 总生物量 Total biomass 0.047 0.174 0.381 地上生物量 Aboveground biomass 0.104 0.001 0.277 地下生物量 Underground biomass 0.435 0.490 0.304 粉绿狐尾藻
Myriophyllum aquaticum总生物量 Total biomass 0.086 0.885 0.050 地上生物量 Aboveground biomass 0.050 0.548 0.015 地下生物量 Underground biomass 0.826 1.815 0.276 黄花鸢尾 Iris wilsonii 总生物量 Total biomass 0.352 0.885 0.050 地上生物量 Aboveground biomass 0.613 0.645 0.148 地下生物量 Underground biomass 0.454 1.068 0.268 千屈菜 Lythrum salicaria 总生物量 Total biomass 0.473 0.477 0.520 地上生物量 Aboveground biomass 0.582 0.914 0.448 地下生物量 Underground biomass 0.285 0.074 0.527 水葱 Scirpus validus 总生物量 Total biomass 0.607 0.158 0.332 地上生物量 Aboveground biomass 0.224 1.954 1.419 地下生物量 Underground biomass 0.564 0.001 0.133 注:数据为F值。Note: data is F value. -
[1] 吴昊, 丁建清. 入侵生态学最新研究动态[J]. 科学通报, 2014, 59(6): 438−448. doi: 10.1360/972013-450 Wu H, Ding J Q. Recent progress in invasion ecology[J]. Chinese Science Bulletin, 2014, 59(6): 438−448. doi: 10.1360/972013-450
[2] 彭少麟, 向言词. 植物外来种入侵及其对生态系统的影响[J]. 生态学报, 1999, 19(4): 560−568. doi: 10.3321/j.issn:1000-0933.1999.04.024 Peng S L, Xiang Y C. The invasion of exotic plants and effects of ecosystems[J]. Acta Ecologica Sinica, 1999, 19(4): 560−568. doi: 10.3321/j.issn:1000-0933.1999.04.024
[3] Mack R N, Simberloff D, Lonsdale W M, et al. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecological Applications, 2000, 10(3): 689−710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
[4] Seebens H, Bacher S, Blackburn T M, et al. Projecting the continental accumulation of alien species through to 2050[J]. Global Change Biology, 2021, 27(5): 970−982. doi: 10.1111/gcb.15333
[5] 陈俊芳. 浅谈生物入侵机制中的假说[J]. 农业与技术, 2020, 40(4): 51−53. doi: 10.19754/j.nyyjs.20200229014 Chen J F. A brief talk on hypotheses in the mechanism of biological invasion[J]. Agriculture and Technology, 2020, 40(4): 51−53. doi: 10.19754/j.nyyjs.20200229014
[6] Manzoor S A, Griffiths G, Lukac M. Land use and climate change interaction triggers contrasting trajectories of biological invasion[J]. Ecological Indicators, 2021, 120: 106936. doi: 10.1016/j.ecolind.2020.106936
[7] Quijano-Medina T, Covelo F, Moreira X, et al. Compensation to simulated insect leaf herbivory in wild cotton (Gossypium hirsutum): responses to multiple levels of damage and associated traits[J]. Plant Biology, 2019, 21(5): 805−812. doi: 10.1111/plb.13002
[8] 高芳磊, 郭素民, 闫明, 等. 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学报, 2018, 38(7): 2344−2352. Gao F L, Guo S M, Yan M, et al. Effects of simulated insect herbivory on the growth and chemical defense of Alternanthera philoxeroides in different habitats[J]. Acta Ecologica Sinica, 2018, 38(7): 2344−2352.
[9] 申思, 郭文锋, 王伟, 等. 地上−地下植食性天敌对入侵植物空心莲子草与本地种莲子草种间关系的影响[J]. 应用生态学报, 2021, 32(8): 2975−2981. Shen S, Guo W F, Wang W, et al. Effects of above- and below-ground herbivore interactions on interspecific relationship between the invasive plant Alternanthera philoxeroides and its native congener Alternanthera sessilis[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2975−2981.
[10] Kumaran N, Lockett C, Dhileepan K. Effect of simulated herbivory on bellyache bush (Jatropha gossypiifolia L.) growth and implications for biological control[J]. Weed Biology and Management, 2018, 18(4): 151−159. doi: 10.1111/wbm.12159
[11] 闫卫东. 不同刈割强度对北方农牧交错带草地生态系统温室气体通量的影响 [D]. 太谷: 山西农业大学, 2019. Yan W D. Effects of different cutting intensities on greenhouse gas fluxes in grassland ecosystem in northern agro-pastoral ecotone [D]. Taigu: Shanxi Agricultural University, 2019.
[12] 王楠楠, 皇甫超河, 陈冬青, 等. 刈割对外来入侵植物黄顶菊的生长、气体交换和荧光的影响[J]. 生态学报, 2012, 32(9): 2943−2952. doi: 10.5846/stxb201103160328 Wang N N, Huangfu C H, Chen D Q, et al. Effects of clipping on the growth, gas exchange and chlorophyll fluorescence of invasive plant Flaveria bidentis[J]. Acta Ecologica Sinica, 2012, 32(9): 2943−2952. doi: 10.5846/stxb201103160328
[13] Bozzolo F H, Lipson D A. Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community[J]. Plant and Soil, 2013, 371(1/2): 37−51.
[14] Yu H W, He W M. Congeneric invasive versus native plants utilize similar inorganic nitrogen forms but have disparate use efficiencies[J]. Journal of Plant Ecology, 2021, 14(2): 180−190. doi: 10.1093/jpe/rtaa085
[15] 周一平, 张玉革, 马望, 等. 氮添加和干旱对呼伦贝尔草原5种植物性状的影响[J]. 生态环境学报, 2020, 29(1): 41−48. Zhou Y P, Zhang Y G, Ma W, et al. Effects of nitrogen addition and water reduction on the traits of five plants in Hulunbeir Grassland[J]. Ecology and Environmental Sciences, 2020, 29(1): 41−48.
[16] 陆光亚, 王晋萍, 桑卫国. 氮沉降对外来种豚草入侵能力与竞争能力的影响[J]. 东北林业大学学报, 2012, 40(6): 60−66. doi: 10.3969/j.issn.1000-5382.2012.06.016 Lu G Y, Wang J P, Sang W G. Effects of nitrogen deposition on invasive and competitive abilities of an alien plant Ambrosia artemisiifolia[J]. Journal of Northeast Forestry University, 2012, 40(6): 60−66. doi: 10.3969/j.issn.1000-5382.2012.06.016
[17] 吴昊, 张三煜, 姬秋博, 等. 异质生境对水生型空心莲子草−双穗雀稗共存的影响[J]. 应用生态学报, 2022, 33(1): 85−96. Wu H, Zhang S Y, Ji Q B, et al. Effect of heterogeneous habitats on species coexistence of aquatic ecotype Alternanthera philoxeroides and Paspalum paspaloides[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 85−96.
[18] Jeschke J M. General hypotheses in invasion ecology[J]. Diversity and Distributions, 2014, 20(11): 1229−1234. doi: 10.1111/ddi.12258
[19] Wang Z X, He Z S, He W M. Nighttime climate warming enhances inhibitory effects of atmospheric nitrogen deposition on the success of invasive Solidago canadensis[J]. Climatic Change, 2021, 167(1/2): 20. doi: 10.1007/s10584-021-03175-0
[20] Livingstone S W, Isaac M E, Cadotte M W. Invasive dominance and resident diversity: unpacking the impact of plant invasion on biodiversity and ecosystem function[J/OL]. Ecological Monographs, 2020, 90(4): e01425 [2021−12−19]. https://doi.org/10.1002/ecm.1425.
[21] Geng X M, He W M. Success of native and invasive plant congeners depends on inorganic nitrogen compositions and levels[J]. Journal of Plant Ecology, 2021, 14(2): 202−212. doi: 10.1093/jpe/rtaa088
[22] 陈燕丽, 陈中义. 空心莲子草入侵控制的生态学研究进展[J]. 湖北农业科学, 2010, 49(9): 2260−2263, 2267. doi: 10.3969/j.issn.0439-8114.2010.09.068 Chen Y L, Chen Z Y. Ecology research progress on invasion control of alligator weed Alternanthera philoxeroides (Mart.) Griseb[J]. Hubei Agricultural Sciences, 2010, 49(9): 2260−2263, 2267. doi: 10.3969/j.issn.0439-8114.2010.09.068
[23] Geng Y, Gao L, Yang J. Epigenetic flexibility underlying phenotypic plasticity [M]. Heidelberg: Springer, 2013.
[24] Gao L X, Geng Y P, Li B, et al. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation[J]. Plant, Cell & Environment, 2010, 33(11): 1820−1827.
[25] Burns J H. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients[J]. Diversity & Distributions, 2004, 10(5/6): 387−397.
[26] 秦启文, 赵昕, 周守标. 水禾和粉绿狐尾藻对生活污水净化效果研究[J]. 安徽师范大学学报(自然科学版), 2020, 43(5): 452−458. doi: 10.14182/J.cnki.1001-2443.2020.05.007 Qin Q W, Zhao X, Zhou S B. Study on purification effect of Hygroryza aristata and Myriophyllum aquaticum vulgare on domestic sewage[J]. Journal of Anhui Normal University (Natural Science), 2020, 43(5): 452−458. doi: 10.14182/J.cnki.1001-2443.2020.05.007
[27] 冯春慧, 孙梅, 田昆, 等. 模拟增温对水葱输导组织的影响[J]. 东北林业大学学报, 2020, 48(4): 24−28. doi: 10.3969/j.issn.1000-5382.2020.04.005 Feng C H, Sun M, Tian K, et al. Effect of conducting tissue of Scirpus validus to simulated warming[J]. Journal of Northeast Forestry University, 2020, 48(4): 24−28. doi: 10.3969/j.issn.1000-5382.2020.04.005
[28] 雷晓寒. 黄花鸢尾微生态系统底泥覆盖的水质效应研究 [D]. 南京: 南京大学, 2018. Lei X H. Study the effects of sediment capping on water quality in an Iris wilsonii microcosm [D]. Nanjing: Nanjing University, 2018.
[29] 孙焕荣, 李静, 封晓辉, 等. 盐胁迫对荷兰菊、千屈菜及狼尾草生长的影响[J]. 河北林业科技, 2020(2): 13−16. Sun H R, Li J, Feng X H, et al. Effects of salt stress on the growth of Symphyotrichum novi-belgii,Lythrum salicaria and Pennisetum alopecuroides[J]. The Journal of Hebei Forestry Science and Technology, 2020(2): 13−16.
[30] 杨翔宇, 董炜华, 陆娟, 等. 生物质炭对黄花鸢尾湿地浮游植物群落的影响[J]. 吉林大学学报(理学版), 2018, 56(1): 184−189. Yang X Y, Dong W H, Lu J, et al. Effects of biochar on phytoplankton community in Iris wilsonii wetland[J]. Journal of Jilin University (Science Edition), 2018, 56(1): 184−189.
[31] 周建. 环境因子对空心莲子草种内和种间关系的影响[D]. 北京: 北京林业大学, 2015. Zhou J. Effects of environmental factors on interspecific and intraspecific relationships of Alternanthera philoxeroides[D]. Beijing: Beijing Forestry University, 2015.
[32] 赵鸿怡, 张勇, 崔媛, 等. 退化梯度上滇西北高山草甸植物群落的补偿生长能力[J]. 草业科学, 2020, 37(6): 1025−1034. doi: 10.11829/j.issn.1001-0629.2019-0526 Zhao H Y, Zhang Y, Cui Y, et al. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province[J]. Pratacultural Science, 2020, 37(6): 1025−1034. doi: 10.11829/j.issn.1001-0629.2019-0526
[33] 申时才, 徐高峰, 李天林, 等. 5种入侵植物补偿反应及其形态可塑性比较[J]. 西北植物学报, 2012, 32(1): 173−179. doi: 10.3969/j.issn.1000-4025.2012.01.028 Shen S C, Xu G F, Li T L, et al. Comparative study of compensatory response and morphological plasticity of five invasive plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 173−179. doi: 10.3969/j.issn.1000-4025.2012.01.028
[34] 赵威, 王艳杰, 李亚鸽. 草地入侵植物对枝叶去除的生理生态响应: 模式、机理与研究展望[J]. 草业学报, 2017, 26(6): 195−202. doi: 10.11686/cyxb2016368 Zhao W, Wang Y J, Li Y G. The eco-physiological responses of invasive plants to defoliation in grassland: patterns, mechanisms, and research prospects[J]. Acta Prataculturae Sinica, 2017, 26(6): 195−202. doi: 10.11686/cyxb2016368
[35] 廖慧璇, 周婷, 陈宝明, 等. 外来入侵植物的生态控制[J]. 中山大学学报(自然科学版), 2021, 60(4): 1−11. Liao H X, Zhou T, Chen B M, et al. Ecological control of exotic invasive plants[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(4): 1−11.
[36] 陈中义, 陈燕丽, 李华成. 几种物理方式控制空心莲子草种群生长的效应研究[J]. 长江大学学报(自然科学版), 2014, 11(17): 47−51. Chen Z Y, Chen Y L, Li H C. Study on the effect of several physical methods on controlling the growth of Alternanthera philoxeroides community[J]. Journal of Yangtze University (Natural Science Edition), 2014, 11(17): 47−51.
[37] 周颖, 刘杰, 闫晓慧, 等. 模拟昆虫取食对牛膝菊防御特征的影响[J]. 应用生态学报, 2022, 33(3): 808−812. doi: 10.13287/j.1001-9332.202202.036 Zhou Y, Liu J, Yan X H, et al. Effects of simulated insect herbivory on the defense traits of Galinsoga parviflora[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 808−812. doi: 10.13287/j.1001-9332.202202.036
[38] 周雨露, 李凌云, 高俊琴, 等. 种间竞争对入侵植物和本地植物生长的影响[J]. 生态学杂志, 2016, 35(6): 1504−1510. Zhou Y L, Li L Y, Gao J Q, et al. Effects of interspecific competition on the growth of invasive and native species[J]. Chinese Journal of Ecology, 2016, 35(6): 1504−1510.
[39] Grime J P. The role of plasticity in exploiting environmental heterogeneity[J/OL]. Exploitation of Environmental Heterogeneity by Plants, 1994: 1−19[2021−12−18]. https://doi.org/10.1016/B978-0-12-155070-7.50006-8.
[40] Belsky A J, Carson C L, Jensen C L, et al. Overcompensation by plants: herbivore optimization or red herring[J]. Evolutionary Ecology, 1993, 7(1): 109−121. doi: 10.1007/BF01237737
[41] 杨中领, 张家洋, 楚莉莉, 等. 施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响[J]. 生态学杂志, 2012, 31(9): 2276−2282. Yang Z L, Zhang J Y, Chu L L, et al. Effects of fertilization and mowing on community biomass compensation in eastern alpine meadow of Tibetan Plateau[J]. Chinese Journal of Ecology, 2012, 31(9): 2276−2282.
[42] Lamb E G, Stewart A C, Cahill J F. Root system size determines plant performance following short-term soil nutrient pulses[J]. Plant Ecology, 2012, 213(11): 1803−1812. doi: 10.1007/s11258-012-0135-0
[43] 刘琳. 氮沉降、繁殖体压力及基因型对加拿大一枝黄花(Solidago canadensis L.)入侵的影响[D]. 北京: 北京林业大学, 2018. Liu L. Effects of nitrogen pulses, propagule pressure and genotypic diversity on the invasion of Solidago canadensis L. [D]. Beijing: Beijing Forestry University, 2018.
[44] 孙思邈, 陈吉欣, 冯炜炜, 等. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72−80. doi: 10.17520/biods.2020072 Sun S M, Chen J X, Feng W W, et al. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions[J]. Biodiversity Science, 2021, 29(1): 72−80. doi: 10.17520/biods.2020072
[45] 王桔红, 陈文, 张燕芳, 等. 不同入侵程度的微甘菊及本土种豨莶碳氮磷化学计量特征与营养策略[J]. 生态学杂志, 2020, 39(6): 1994−2003. Wang J H, Chen W, Zhang Y F, et al. Carbon, nitrogen, and phosphorus stoichiometry and nutrition strategy of invasive species Mikania micrantha with three invasive degrees and native species Siegesbeckia orientalis[J]. Chinese Journal of Ecology, 2020, 39(6): 1994−2003.
[46] 陈旭, 王国严, 彭培好, 等. 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2021, 29(7): 865−874. doi: 10.17520/biods.2020485 Chen X, Wang G Y, Peng P H, et al. Effects of taxonomic and phylogenetic diversity of resident Pinus yunnanensis communities on Ageratina adenophora invasion in the Panxi Region, Sichuan Province[J]. Biodiversity Science, 2021, 29(7): 865−874. doi: 10.17520/biods.2020485
-
期刊类型引用(9)
1. 宫联沙,杨静,戴全厚,聂云鹏,周畅. 不同降雨类型下植被剔除对灌木林降雨再分配特征的影响. 水土保持学报. 2024(05): 315-322+331 . 百度学术
2. 任斯宇,张金威,盛后财,琚存勇. 城市蒙古栎人工林对降雨中金属元素迁移的影响. 东北林业大学学报. 2023(02): 33-39 . 百度学术
3. 孙天妙,阳辉,曹建生. 太行山区不同植被降雨再分配特征. 中国生态农业学报(中英文). 2023(09): 1471-1481 . 百度学术
4. 李连强,杨会侠,丁国泉,李虹谕,白荣芬,王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同. 北京林业大学学报. 2023(09): 83-94 . 本站查看
5. 于德水,卢杰. 地被物对土壤含水量及养分影响的研究进展. 吉林林业科技. 2022(01): 24-28 . 百度学术
6. 汪水前. 南方水土流失区马尾松对降雨再分配的影响. 中国水土保持科学(中英文). 2022(02): 99-105 . 百度学术
7. 王淑春,程然然,杜盛. 黄土丘陵区2种典型林分降雨分配特征及其主要影响因素. 水土保持学报. 2022(03): 173-180 . 百度学术
8. 张娜,程琳,赵西平. 蒙古栎生长与材积的研究进展. 防护林科技. 2022(04): 73-74+82 . 百度学术
9. 王玉涛,郭雨竹,李佳宁,王澍涵,冀宗琪,陆秀君. 蒙古栎花芽分化、花器官发育及花粉离体萌发特性研究. 沈阳农业大学学报. 2021(05): 530-536 . 百度学术
其他类型引用(7)